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The radial distribution function g(r) of a sticky-hard-sphere fiuid is obtained by assuming a
rational-function form for a function related to the Laplace transform of rg(r), compatible with the
conditions of finite y(r) = g(r)e~i"l~ "s at contact point and finite isothermal compressibility. In a
recent paper [S. Bravo Yuste and A. Santos, J. Stat. Phys. 72, 703 (1993)] we have shown that the
simplest rational-function approximation, namely, the Pade approximant (2,3), leads to Baxter s
exact solution of the Percus-Yevick equation. Here we consider the next approximation, i.e. , the
Pade approximant (3,4), and determine the two new parameters by imposing the values of y(r)
at contact point and of the isothermal compressibility. Comparison with Monte Carlo simulation
results shows a significant improvement over the Percus-Yevick approximation.

PACS number(s): 61.20.Gy, 61.20.Ne, 05.20.—y

I. INTRODUCTION II. STICKY HARD SPHERES

In 1968, Baxter [1] introduced the sticky-hard-sphere
fluid. In it, the molecules interact through a square-well
potential of infinite depth and vanishing width. This
model is interesting not only because it is exactly solvable
in the Percus- Yevick (PY) approximation [1],but also be-
cause it is appropiate for describing structural properties
of colloids, micelles, and microemulsions [2].

In a recent paper [3], we derived analytic expressions
for the radial distribution functions (RDF) of sticky hard
rods and sticky hard spheres. In both cases, a function
related to the Laplace transform of the RDF is given
as the simplest Pade approximant compatible with some
basic physical requirements. In the one-dimensional case
the ansatz turns out to be exact, while in the three-
dimensional case the result coincides with that of the
PY approximation [1].

The aim of this paper is to extend the method of Ref.
[3] by considering the next Pade approximant. Since
two new coefBcients appear, two extra requirements are
needed. A similar situation is present in the case of pure
hard spheres [4]. In that case, the two coeificients are
Axed by requiring the virial and compressibility routes
to the equation of state to agree self-consistently with
the celebrated Carnahan-Starling (CS) equation of state
[4]. Unfortunately, we are not aware of any semiempirical
equation of state for sticky hard spheres playing a role
similar to that as the CS equation does for pure hard
spheres. Consequently, we have chosen to use simulation
data [5] to get crude estimates of the energy and the com-
pressibility. The RDF obtained in this way is compared
with simulation results [5] and represents a significant
improvement over the PY approximation.

The sticky-hard-sphere interaction and some basic def-
initions and equations are introduced in Sec. II. The
method to get analytical expressions for the RDF is
worked out in Sec. III. In Sec. IV our approximation is
compared with simulation. The paper ends with a brief
discussion in Sec. V.

Let us consider a simple classic fI.uid at equilibrium at
number density p and temperature T, whose molecules
interact via the square-well potential

p(r) = &

0

r(11(r (A
Acr,

(2.1)

S(q) = 1+p dr e ''i' h(r) . (2.2)

The RDF also gives the thermodynamical quantities

s d(p(r)z = =1—— 8K r g(r)pk~T 6 k~T dr
(2.3)
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u „=—p dr p(r) g(r) .
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(2.5)

where the hard-core diameter defines the length unit.
Now we take the limits of infinite depth (e' m oo) and
vanishing width (A —1 ~ 0) with r =

i2 (A —1) e
finite. Here k~ is the Boltzmann constant. The param-
eter v. is a monotonically increasing function of T and
its inverse measures the degree of "adhesiveness" of the
spheres. The case of pure hard spheres is recovered in
the limit r ~ oo (infinite temperature or, equivalently,
zero adhesiveness).

For a general potential p(r), the structure of the fiuid
is described by the RDF g(r) [6] or, equivalently, by the
auxiliary function y(r) = g(r)ev'(")~"s+. The Fourier
transform of h(r) = g(r) —1 is directly related to the
structure factor S(q):
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In these equations, p is the pressure, y is the isothermal
susceptibility, and u, is the excess internal energy per
particle. In the case of sticky hard spheres, Eqs. (2.3)
and (2.5) become, respectively, [3]

of g(r). In particular, y(l) is simply obtained from the
behavior of F(t) for large t [3]:

(2.16)

1z=1+4g y 1 — 3y 1 +y I+ (2.6) Since

'" = —rl r y(l), 2.7)
for large t, we conclude that

(2.17)

where g = —p and

d
y'(1+) —= lim lim —y(r) .

A~1+ ~—+1+ dp
(2.8)

Also, the relationship between g(r) and y(r) becomes

(„)
1 y(1) "„.2

(n —2)! 12r (2.18)

for small r and n & 2. Consequently, g(r) has a discon-
tinuity at r = n in its derivative of order n —2, n & 2.
In particular,

1
g(r) = y(r) 8 (r —1) + y(1)8+ (r —1),

127
(2.9) g(2 —) —g(2+) = „,[y(1)]' (2.19)

where e(z) is the Heaviside step function. In all these
equations we have taken into account the fact that y(r)
is finite and continuous at r = 1.

Equations (2.6), (2.4), and (2.7) are usually referred
to as the virial, compressibility, and energy routes to the
equation of state, respectively. Thermodynamical consis-
tency implies that

On the other hand, the value of the susceptibility y is
determined by the behavior of F(t) for small t [3,4]:

= —12'+ t' —a,t'+ t'+ o(t'), (2.2o)24'

where

1—= —(«)x '9
(2.1o) dr r h(r) (2.21)

(2.11)

Of course, these equations do not necessarily hold when
an approximate RDF is used to obtain z, y, and u, .

Let us now introduce the Laplace transform G(t) of
rg(r):

is a quantity without a direct physical relevance.
Thus, the values of y and y(1) are straightforwardly

related to the asymptotic behaviors of F(t) for small and
large t, respectively. Let us see that they are also related
to the behavior of the structure factor for small and large
wave numbers. First, comparison between Eqs. (2.2) and
(2.4) yields

G(t) = dr e "'r g(r) . (2.12) y = lim S(q) .
qmO

(2.22)

The function G(t) is related to the structure factor in a
simple way:

If we assume that the leading behavior in Eq. (2.16) holds
for t complex when ]t~ —+ oo, then iqF(iq) = y(1)/12&
for large q. Consequently, G(iq) —G(iq) —(iq)
e *~y(1)/12&. Therefore, from (2.13),

S(q) = 1 —24' Re lim t ' IG(t) —t
t-+iq

(2.13)

It is convenient to introduce a function F(t) by [3,4]
S(q) = 1 + 2 —y(1)

'T

or, equivalently,

(2.23)

F(t) eGt =t
1 + 12rIF(t)e

(2.14) 1 7 . g
y(1) = —— lim . [S(q) —1] .

2 g q-+~ sing
(2.24)

Inversion of this equation yields

rg(r) = ) (—12rl)" f„(r —n)e(r —n),
n=l

(2.15)

where f (r) is the inverse Laplace transform of t[F(t)]".
Thus, the knowledge of F(t) is fully equivalent to that

Strictly speaking, the knowledge of F(t) for sticky hard
spheres is not sufBcient to get the virial equation of state,
since the value of y'(1+) is not accessible from y(r ) once
the sticky limit has been taken. This fact was already rec-
ognized by Seaton and Glandt [5]. On the other hand, the
excess internal energy is directly related to y(1) through
Eq. (2.7).
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III. RATIONAL-FUNCTION APPROXIMATIONS By imposing the constraints one gets [3]

Equations (2.16) and (2.20) give a large amount of in-
formation about E(t). Since y(l) must be finite, Eq.
(2.16) tells us that E'(t) t for large t and that the
coefficient of t is 12& times smaller than that of t
Since y (and, consequently, also Hp) must be finite in a
disordered ffuid, Eq. (2.20) gives the first five terms (i.e. ,
up to t4) of the expansion of E(t) in powers of t.

These constraints of the behavior of E(t) for large and
small t are easily satisfied if one assumes a rational func-
tion form for F(t). The rational function compatible with
these constraints [3] containing the least number of pa-
rameters is the Pade approximant (2,3):

1
(~) + 2~ I L(2)+1+2~ 1+ 2

S() L()
21+2' 1+2'

SPY
———— + LPY,(2) 1 1 —g 1 —4g (2)

2 1 + 2g 1 + 2g

(3.2)

(3.4)

1 1 + LpYt + LpYt(~) (2) .
I" t

129 1+8( ) t+ 8( ) t2+ 8( ) ts
(3 1) (s)

12')(1+ 2i))

1 7/ (2)
1+ 2g

(3.s)

(1 )2 (1+ 2i)) i)s(i" ), + 2ri" + T —7r(l + 2i)) + i)

24' T (1 —q) (1 + 2g) + i 2 (14772 —4' —1)
(3.6)

The approximation (3.1) turns out to be equivalent to
Baxter's solution of the PY equation [1]. This is why we
have labeled the coefficients in Eq. (3.1) with the initials
PY. Once E(t) is known, Eqs. (2.16) and (2.20) can be
used to get y = y(1) and y. The result is [3]

g(2) ) + )L(2) + '1 (L(s) + g(4))
21+2@ 1+2' 1+2@

(3.12)

(2)
LPYQpY— vs,'" '

ypY = [1 —q+ 12qLpv]
(1 —~)' (2) 2

1+ 2i) 2

(3.7) (s) (1 —&)'
12il(1 + 2g)

6g (4)
1+ 2g

1 —g (2) 1 —4g (q)
1+ 20 +1+29

(3.13)

= (1 —rI) 7. [q(1 —il)ypY —(1+2g)r] . (3.8)

In order to go beyond the above approximation, we
consider the Pade approximant (3,4):

Next, we expand Eq. (3.9) in powers of t

L(3) L (2) S(4) L(3)S(3)—1

12~ S(4) S(4)'

1 + L(')t + L( )t2 + L( )t
F t

12& i + S( ) t + S( ) t2 + S(»ts + S(4) t4

(3.9)

+D(t ) .

Then, Eq. (2.16) yields

(3.i4)

By imposing the same constraints as before, we can
express all the parameters in terms of two of them, say
L( ) and S( ). First, by expanding Eq. (2.20), we get

L(2) S(3)
L(3) S(4) (3.is)

L(i) — 2~ + ) L(2) ~ (L(s) + $(4))
1

1+ 2g 1+2' 1+ 2g

(3.10)

g(i) — ~ + ~ L(2) ~ (L(s) + g(4) )21+2' 1+2@ 1+2'
(3.ii)

Equations (3.10)—(3.13) and (3.15) are the five con-
ditions that the physical requirements y(1)=finite and
y=finite impose on the seven parameters L(') and S(').
While in the case of the approximant (3.1) the number of
parameters equals the number of conditions, in the ap-
proximant (3.9) we have the freedom to ffx two new con-
ditions. A similar situation arises in the special case of
pure hard spheres [4]. In this case, by requiring the virial
and compressibility equations of state to agree with the
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CS equation of state, we rederived the generalized mean
spherical approximation (GMSA) [7]. In the same spirit,
we require Eq. (3.9) to be consistent with prescribed val-
ues of y(r) at contact point y and of the susceptibility y.
From Eqs. (2.16) and (3.14) one gets

~ L(3)

&s~~ (3.16)

Next, inserting into Eq. (2.20) the expansion of Eq. (3.9)
up to t, one arrives at

y =
( ), ((I —rj) [1 —rl + 12rIL ]

—288rj L [(1 —rl)(1 —4rj)L + (1 —8rI —2rI )S )]

24'(l —rj)L [(1 —rl)(1 —4rI) + 72rl L ]144 I7(2+ rl)S( ) [1 —rl —12rIS ]
—5184iI L( )S( ) }, (3.17)

where use has been made of Eqs. (3.10)—(3.13). Equations (3.13), (3.15), and (3.16) can be used to express I ( ), S( ),
and S(4) in terms of L( ). Substitution into Eq. (3.17) gives then the following quadratic equation for L( ):

A(rl, ~, y)L + B(rl, r, y)L + C( r,lay, y) = 0, (3.18)

rl y + 4rj~ (3~ —1)y + 2~
A il, r, y =6 B rl, r, y1 —'l7 7y

(3.19)

B(rl, w, y) = 24rl(1 —rI)7 y (rl(1 —rl) y —12(1 —rI) [q + (1 —q)r] wy + 6(2 + rI)7 ) (3.20)

C(rl, r, y, y) = (y [rl(1 —rl)y —(1+ 2rI)r] —(1 —rl) ~'jy (3.21)

A necessary condition to have a physically meaningful
approximation is that a positive real root of Eq. (3.18)
exists. If L~ ~ were negative then there would exist a
positive real value of t at which E(t) = 0 and, according
to Eq. (2.14), G(t) = 0. But this is incompatible with a
positive definite g(r).

I et us see which restrictions the positivity condition
of L~ ~ imposes on the admissible values of y and y for
a given state (rl, r). The coefficient A vanishes if B = 0.
In fact, this is the only possibility unless 7 ( 7p~ where

wP& ——(2 —i/2)/6 0.0976 is the critical "temperature"
predicted by the PY compressibility equation of state
[1,3]. The coefficient B is zero if y is given by the value
obtained from the approximant (3.1), i.e. , if y = ypv. If,
in addition, y = yp~, then C = 0. Figure 1 shows the
loci A = B = 0, C = 0, and 4 = B —4AC = 0 in
the plane y-y for the particular state (rl, w) = (0.1, 0.1).
The three curves cross at y = yp~, g = yp~, and split
the plane into six regions. In Region (I) and (IV) Eq.
(3.18) has a positive real root and a negative real root;
both roots are negative in Regions (II) and (V), while
they are complex conjugates in Regions (III) and (VI).
The diagram of Fig. 1 is typical of w ) wp&. In the hard
sphere limit (7 —i oo), the locus C = 0 becomes the line

X = Xp& = (1 —rl)'/(I + 2rl)
Therefore, the rational function approximation (3.9)

for E(t) requires that the prescribed values for y and y
define a point lying in region (I) or (IV). If we consider the
PY values as a reference, Fig. 1 shows that an arbitrary
correction to them might not be admissible. A necessary,
although not suKcient, condition for a correction to be
admissible is sgn(y —ypv) = sgn(y —gpss). Note that the

special prescription y = yp~, y = yp~ leads to A = B =
C = 0, so that L~ ~ is arbitrary. This means that the
value of L~ ~ is extremely sensitive to small deviations
y —. yp~ and y —yp~. The cross in Fig. 1 represents
the location of the point (y, y) estimated from computer
simulation data [5] (see Section IV).

I 6.0

l 3,0

1 0.0

7.0

0 I I I I l I ! I I I I I I I I I I I I ] I I I I I

090 0 95 1 00 1 05 1. ']0 1. '15 1 20

FIG. 1. Loci A = R = 0, C = 0, and A = B' —4AC = 0 in
the plane y-y at the state (q, r) = (0.1, 0.1), where A, B, and
C are the coefFicients of the quadratic equation for I . Its
roots are the following: real, one positive and one negative
[regions (I) and (IV)]; real, both negative [regions (II) and
(V)]; and complex conjugates [regions (III) and (VI)]. The
cross in region IV represents the values of y and y estimated
from simulation data of Ref. [5] .
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Before closing this section, we summarize how to get
the RDF from our approximation. At a given state (g, r)
one has to prescribe admissible values for y and y. Then,
the positive real root of Eq. (3.18) gives L( ), Eq. (3.16)
gives S( ), and Eqs. (3.10)—(3.13) give L( ), S( ), S( ),
and S(s). Once F(t) is completely determined from Eq.
(3.9) the RDF g(r) is obtained via Eq. (2.15). All the
steps, including the Laplace inversion [since the poles of
E(t) are the roots of a quartic equation], can be per-
formed analytically. Furthemore, the structure factor of
the fluid is easily obtained from Eqs. (2.13) and (2.14).

In the limit of hard spheres (r ~ oo), L( ) tends to
zero as r i and Eq. (3.18) becomes a quadratic equation
for S( ) = —(7/qy)L( l, which remains finite. Equations
(3.15) and (3.16) collapse to L( ) = —12ilyS( ) and the
results of Ref. [4] for the GMSA are recovered.

IV. COMPARISON WITH SIMULATION DATA

Despite the singular character of the sticky-hard-
sphere interaction, Seaton and Glandt [5] have succeeded
in adapting the Metropolis Monte Carlo method to deal
directly with the sticky-hard-sphere Hamiltonian. In
Ref. [5], the RDF obtained from simulation is compared
with the PY results for the states (il, r) = (0.2, 0.2)
and (g, 7 ) = (0.1,0.1). In the first case, which corre-
sponds to a value of 7 about twice the critical one, the
agreement is good. Nevertheless, at (rl, r) = (0.1, 0.1),
which is quite close to the PY critical state (rip Y, rpY)
(0.1213,0.0976), the PY result deviates significantly from

the simulation data.
In order to compare our approximation (3.9) with sim-

ulation, we need to assign values to y and y. In the case of
pure hard spheres, the excellent CS equation of state pro-
vides a natural choice for y and y. In that case, Eq. (3.9)
leads to the GMSA, which represents a noticeable im-
provement over the PY approximation [4]. However, we
do not know of any empirical equation of state for sticky
hard spheres in the same spirit as the CS equation. We
have tried "naive" extensions of the CS equation (such as
interpolating between the virial, compressibility, and en-
ergy versions of the PY equation of state), but they fail at
low temperature, i.e. , at high "adhesiveness. " The same
happens with Pade approximants obtained from the first
few terms in the virial expansion of the equation of state
[8]

Thus we have chosen to take estimates for y and y
directly from the simulation data. The value of y is
given, using Eq. (2.9), by the value of the 8-function
coefflcient of g(r) at r = 1, which is reported in Ref.
[5]. In this way, we get y 0.912 at (ri, r) = (0.2, 0.2)
and g 0.954 at (rl, r) = (0.1, 0.1). The respective
PY values are ypv = (54 —+1266) /20 0.921 and

@pe = (19 —~11) /15 1.046. The determination of
the susceptibility y is much less direct, as it is not mea-
sured in the Monte Carlo simulation. Instead, Seaton
and Glandt use the virial equation of state, which follows
from Baxter's solution of the PY equation [1], to obtain
(approximate) values of the pressure from the ("exact")
simulation results for y. This equation of state reads

1 (1+2il —p) —3g(2+ rl) + 2(l + 7il + rt )p —(2+ rt)tj p1+4@ g — 3(1+g)
( )

+ 2

(4-1)

with y, = q(l —rl)y/r. From the values of the pres-
sure reported in Ref. [5] and by using Eq. (2.10), we
have estimated y 0.87 and y 4.8 at the states
(rj, r) = (0.2, 0.2) and (tl, 7) = (0.1, 0.1), respectively.
The corresponding PY values are yp~ 0.931 and

9.781. In both states, the empirical point (y, y)
lies on region IV (see Fig. 1).

At the state (il, r) = (0.2, 0.2) the PY g(r) agrees well
with the simulation results [5], although the PY value
of g(2 ) is slightly higher than that of simulation. The
approximation that we propose here gives a much better
agreement.

On the other hand, the state (rl, r) = (0.1, 0.1) is much
more interesting, since it is rather close to the critical
point. Figure 2 shows the regular part of g(r) as given
by the PY approximation, Eq. (3.1), by our approxima-
tion, Eq. (3.9), and by the Monte Carlo simulation [5].
We observe that the PY curve difFers significantly from
the simulation results. In fact, the PY overestimates the
values of y and y by a 14%%uo and a 204%%uo, respectively.
This can be qualitatively noted in Fig. 2, since y is the

I I I I I I I I
) I I I I I I I I I

i
I I I ! I I I I I

1.4

g (I-)

1.0 ~ ~ ~ 0 Oe ~ ~ ice~ ~
~ o ~

0.8
l.0

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1.5 2.0 2.5 3.0

FIG. 2. Regular part of g(r) at the state (il, r) = (0.1, 0.1).
The dashed line corresponds to the Pade approximant (2,3)
for F(t) (Percus-Yevick approximation), the solid line corre-
sponds to the Pade approximant (3,4) for F(t), and the bullets
correspond to simulation results of Ref. [5].
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limit of the regular part of g(r) as r ~ 1+ and y —1 is
proportional to the net area of r [g(r) —1]. When the
empirical estimates of y and y are used in our approxima-
tion (3.9) the agreement improves notably. Nevertheless,
some discrepancies are still apparent for r ) 2. This
could be due to limitations of our analytical approxima-
tion and jor to inaccuracies in the empirical values of g
and, especially, y. Three sources of errors are present in
our estimate of y: (i) the uncertainty in the simulation
values of y, (ii) the use of Eq. (4.1), which is correct only
in the PY approximation, and (iii) the numerical differ-
entiation needed in Eq. (2.10). In fact, Fig. 2 suggests
that the net area of r [g(r) —1] obtained from simula-
tion is smaller than the one corresponding to the solid
line and, therefore, the value (y 4.8) we have taken
in our approximation might be a poor upper estimate of
the exact susceptibility at (rj, r) = (0.1, 0.1). If that is
the case, a better estimate of y would lead to a better
approximate RDF, since we have observed that the agree-
ment of our approximation with simulation increases as
one is allowed to decrease the estimated value of y.

V. DISCUSSION

In this paper, we have proposed an approximation
that yields analytic expressions for the radial distribu-
tion function g(r) and the structure factor S(q) of a
fluid of sticky hard spheres. The approximation con-
sists of assuming a rational function form for a func-
tion E(t) related to the Laplace transform of rg(r).
The conditions of finite susceptibility y and finite y =
lim ~~+ g(r)e~("l~"a dictate the behaviors of E(t) for
small and large t, respectively. The simplest rational
function compatible with those conditions is a Pade ap-
proximant (2,3) and the resulting approximation [3] coin-
cides with the exact solution of the Percus-Yevick equa-
tion for sticky hard spheres [1]. Here we have been con-
cerned with the next rational function approximation for
E(t), namely a Pade approximant (3,4). There are two
new parameters, which need to be fixed. We have cho-
sen to do that by imposing prescribed values of y and

Nevertheless, not all the pairs (y, y) are admissible

in our approximation at a given thermodynamic state.
A necessary admissibility condition is sgn(y —ypv)
sgn(y —gpss), where ypv and gpss are the values obtained
from the Pade approximant (2,3). This condition is sat-
isfled by the simulation results for sticky hard spheres [5],
as well as by the Carnahan-Starling values in the partic-
ular case of pure hard spheres.

Our approximation is subordinated to the knowledge of
y and y or, equivalently, to the knowledge of the equation
of state. In the case of hard spheres, the CS equation
of state provides an excellent route to obtain y and y.
The resulting approximation, which coincides with the
generalized mean spherical approximation, improves the
agreement of the PY results with simulation [4]. Since
we are not aware of any good semiempirical equation of
state for sticky hard spheres, we have chosen to make
estimates of y and y based on simulation data [5]. The
estimate is much less reliable in the case of y than in the
case of y.

In general, given the values of y and y for a partic-
ular thermodynamic state, there is an infinite number
of positive definite functions g(r) compatible with those
values. Out of that infinite number, our method selects
a particular function, namely the one which is a "natu-
ral" extension of the PY approximation, when the latter
is reinterpreted as a Pade approximant for the auxiliary
function F(t). Comparison with simulation shows that
this extension represents a significant improvement over
the PY results. We speculate that the agreement might
even increase if more reliable values for y were available.

It must also be pointed out that neither of the approxi-
mations (3.1) and (3.9) reflects the presence of 8-function
singularities in g(r) for r ) 1, which are associated with
the appearance of rigid structures in the fluid [5,8]. How-
ever, the amplitudes of those singularities are of the order
of or smaller than 10 for the cases considered here [5].
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