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Hydrodynamics for granular flow at low density
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The hydrodynamic equations for a gas of hard spheres with dissipative dynamics are derived from the
Boltzmann equation. The heat and momentum fluxes are calculated to Navier-Stokes order and the transport
coefficients are determined as explicit functions of the coefficient of restitution. The dispersion relations for the
corresponding linearized equations are obtained and the stability of this linear description is discussed. This
requires consideration of the linear Burnett contributions to the energy balance equation from the energy sink
term. Finally, it is shown how these results can be imbedded in simpler kinetic model equations with the
potential for analysis of more complex states.
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I. INTRODUCTION

The rapid flow of granular media is frequently describ
at the macroscopic level by the equations for fluid dynam
modified to account for dissipation among the interact
particles@1#. These equations are generally phenomenolo
cal with unknown transport coefficients and with unknow
limits of validity. The details and basis for such macrosco
balance equations have their origins in the more fundame
microscopic kinetic theory description of granular flow. T
isolate the most important distinguishing feature of granu
media, dissipative dynamics, we consider here the simp
case of smooth hard spheres at low density. The system
sidered is well described by the Boltzmann kinetic equat
modified to account for inelastic two-particle collision
Derivations of the hydrodynamic equations based on this
related kinetic equations have been considered for some
@2–4#. However, the complexity of the equation has led
the use of various approximations not required for ela
fluids and a complete identification of the transport coe
cients as a function of the dissipation parameter to Nav
Stokes order has not yet been given. However, let us men
that very recently Sela and Goldhirsch@5# have numerically
obtained a perturbative solution of the inelastic Boltzma
equation to Burnett order, i.e., one order in the gradie
beyond the Navier-Stokes approximation, although restric
to the small inelasticity limit.

The consideration of the dependence of the transport
efficients on the dissipation parameter can be signific
since a primary application of hydrodynamics is to disco
the conditions of stability for various states. Also, the rhe
ogy of granular fluids under large shear is determined fr
the dependence of the transport coefficients on the diss
PRE 581063-651X/98/58~4!/4638~16!/$15.00
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tion parameter. The objective here is to provide a derivat
of the hydrodynamic equations from the Boltzmann equat
using an extension of the Chapman-Enskog method to gra
lar media. The transport coefficients in the heat and mom
tum fluxes at Navier-Stokes order are calculated as funct
of the coefficient of restitution using a first Sonine polyn
mial approximation, as is usual for elastic fluids. Addition
transport coefficients associated with contributions from
sink term in the energy equation are discussed and th
required for a linear stability analysis at Navier-Stokes or
~up through second order in the gradients! are explicitly cal-
culated in the same approximation. They characterize con
butions that are proportional to the Laplacian of the tempe
ture or the density.

In the next section the Boltzmann equation for inelas
collisions is given and the exact balance equations for m
energy, and momentum are obtained from it. The Chapm
Enskog method for obtaining a ‘‘normal’’ solution as an e
pansion in spatial gradients is described and the res
through Navier-Stokes order are given. The analysis is m
complete than previous studies@2–4#; it is exact to leading
order in the dissipation but not limited to weak dissipatio
Some details of the calculations are given in Appendixes
and B. The contributions coming from the energy sink te
are also analyzed, and the coefficients associated with lin
terms are explicitly evaluated. This requires consideration
the distribution function to second order in the gradie
~Burnett order!. Appendixes C and D provide a sketch of th
calculation of these coefficients. The hydrodynamic eq
tions and their linearization about the homogeneous coo
state are discussed in Sec. III. The conditions for stability
identified as functions of the wave vector and the coeffici
of restitution.
4638 © 1998 The American Physical Society
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The derivation of hydrodynamics is based on a spe
‘‘normal’’ solution expanded to low order in the spatial gr
dients. For more complex states the Boltzmann equatio
generally intractable and traditionally~elastic collisions! it
has been replaced by model kinetic equations for such ap
cations@6–8#. The spirit of a kinetic model is not to captur
all details of the underlying Boltzmann equation, but rath
to preserve only the critical features responsible for the pr
erties of interest. For example, a kinetic model should im
the same macroscopic balance equations for mass, en
and momentum density as derived from the Boltzmann eq
tion. In the present case this should include the energy
due to inelastic collisions@9,10#. This is discussed in Sec
IV, where it is shown to what extent the transport propert
of the Boltzmann equation can be embedded in a kin
model. Three different versions of kinetic models for gran
lar flow are indicated depending on the degree of comp
mise between quantitative accuracy and tractability. The
nal section contains some further comments
hydrodynamics and kinetic modeling of granular flows.

II. BOLTZMANN EQUATION AND CHAPMAN-ENSKOG
SOLUTION

The distribution function,f (r ,v;t), for the positions and
velocities of a low density gas of smooth hard spheres
assumed to be well described by the Boltzmann kinetic eq
tion @4,9#,

~] t1v–¹! f 5J@ f , f #. ~1!

The Boltzmann collision operatorJ@ f , f # describing the scat
tering of two particles is

J@ f , f #5s2E dv1 E dŝQ~g–ŝ!~g–ŝ!

3~a22b2121! f ~r ,v,t ! f ~r ,v1 ,t !, ~2!

whereg5v2v1, s is the diameter of the particles,ŝ is a unit
vector along their line of centers, andQ is the Heaviside
function. The operator for ‘‘restituting’’ collisions,b21, is
defined by

b21h~G,g!5h~G,b21g!,

b21g5g2a21~11a!~g–ŝ!ŝ. ~3!

The center of mass velocityG5(v1v1)/2 is invariant under
the action ofb. It is easily verified that the total energ
change in collision isDE52(12a2)m/4 (g•ŝ)2, which
identifiesa as the coefficient of restitution, in the range
,a<1. A useful identity, for an arbitrary functionh, is
given by

E dvh„v)J@ f , f #

5s2E dv1 E dv f ~r ,v,t ! f ~r ,v1 ,t !E dŝ Q~g–ŝ!

3~g–ŝ!~b21!h„v), ~4!
l
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where the inverse operatorb for direct collisions is given by

bg5g2~11a!~g–ŝ!ŝ. ~5!

With this identity the following properties ofJ@ f , f # follow
directly,

E dvS 1

mv

1

2
mv2

D J@ f , f #5S 0

0

2~12a2!v@ f , f #
D . ~6!

The zeros on the right-hand side represent conservatio
mass and momentum for the two-particle collisions. T
term 2(12a2)v@ f , f # provides the rate of energy loss du
to dissipation, withv@ f ,h# given by

v@ f ,h#5
mps2

16 E dv1

3 E dv2 uv1 2v2u3f ~r ,v1 ,t !h~r ,v2 ,t !. ~7!

The balance equations for mass, momentum, and energy
low by taking moments of the Boltzmann equation with r
spect to 1,v, andv2, @2,3#

Dtn1n¹–u50, ~8!

Dtui1~mn!21¹ j Pi j 50, ~9!

DtT1
2

3nkB
~Pi j ¹ jui1¹–q!1Tz50, ~10!

whereDt5] t1u–¹ is the material derivative, and we hav
introduced the cooling rate

z@ f #5~12a2!
2

3nkBT
v@ f , f #. ~11!

The pressure tensorPi j and heat fluxq are given by

Pi j @r ,tu f #5
n

b
d i j 1E dvDi j ~V! f ~r ,v,t !,

q@r ,tu f #5E dv S~V! f ~r ,v,t !, ~12!

Di j ~V![m~ViVj2
1
3 V2d i j ! , S~V![S m

2
V22

5

2b DV.

~13!

Here V5v2u is the velocity relative to the local flow,b
5(kBT)21, andn(r ,t), u(r ,t), andT(r ,t) are the local den-
sity, flow velocity, and temperature, respectively. The Bo
zmann equation admits a basic solution describing the ho
geneous cooling state, in which the system is spatia
uniform and the temperature decreases monotonically
time.

The balance equations become a closed set of hydro
namic equations for the fieldsn, u, andT oncePi j @r ,tu f #,
q@r ,tu f #, andz@r ,tu f ,# are expressed as functionals of the
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fields. The latter are explicit functionals off so the desired
forms are obtained from a solution to the kinetic equat
that expresses the space and time dependence off entirely in
terms of the hydrodynamic fields. Such a solution is calle
‘‘normal’’ solution, and a practical means to obtain it fo
small spatial gradients is given by the Chapman-Ens
method@11#. The hydrodynamic equations depend on gra
ents of the pressure tensor and heat flux, and on the pres
tensor multiplied by a gradient. Thus a calculation off to
first order in the gradients~Navier-Stokes order! gives con-
tributions to the hydrodynamic equations up through sec
order in the gradients. However,z@ f # appears in the hydro
dynamic equations without additional gradients and requ
calculation of f to second order in the gradients~Burnett
order! for consistency. In this way, the balance equatio
become approximate closed hydrodynamic equations v
for long wavelength phenomena~length scales large com
pared to the mean free path!.

The solutions for homogeneous states are easily seen
Eqs. ~8!–~10! to be four ‘‘modes’’ with infinite relaxation
time, corresponding to the conserved density and momen
density, and one with a relaxation time equal to the inve
cooling rate ofT(t). For small but finite spatial perturba
tions, the relaxation times for the first four modes beco
finite, proportional to the square of the wavelength. The
maining mode has a relaxation time proportional to the
verse cooling rate of the homogeneous state perturbed
terms proportional to the square of the wavelength. The
pearance of two time scales within the hydrodynamic
scription is a new feature of granular media. However,
fact that these time scales may be quite different does
compromise the existence of a hydrodynamic descript
This is because the reference state for the Chapman-En
expansion incorporates the dynamics of cooling, so the
sidual corrections are all proportional to the small spa
gradients.

The Chapman-Enskog method assumes a solution to
kinetic equation of the form

f ~r ,v,t !5 f @vun,u,T#. ~14!

This means that the space and time dependence all oc
through a functional dependence on the hydrodynamic fie
This functional dependence can be made local in space
time through an expansion in the gradients of these fields
states with small spatial variations. In this case, the distri
tion function is represented as a series in a formal ‘‘unif
mity’’ parametere ~set equal to unity at the end!,

f 5 f ~0!1e f ~1!1e2f ~2!1•••. ~15!

The series is generated by assigning a factor ofe to every
gradient operator. Use of this expansion in the definitions
the fluxes and the dissipation functionv@ f , f # gives a corre-
sponding expansion for these quantities. Finally, use of th
in the hydrodynamic equations leads to an identification
the time derivatives of the fields as an expansion in the g
dients, ] t5] t

(0)1e] t
(1)1•••. This is the usual Chapman

Enskog method for solving kinetic equations@11,12#. The
problem is more complex here than for the casea51 since
the reference state about which gradients are considere
not stationary, and the terms from] t

(0) are not zero.
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To zeroth order in the gradients the kinetic equation~1!
becomes

] t
~0! f ~0!5J@ f ~0!, f ~0!#. ~16!

The macroscopic balance equations to this order read

] t
~0!n50, ] t

~0!u50, T21] t
~0!T52z~0!, ~17!

where the cooling ratez (0) is given by

z~0!5~12a2!
2v@ f ~0!, f ~0!#

3nkBT
. ~18!

The left side of Eq.~16! can be evaluated more explicitly t
give

2z~0!T]Tf ~0!5J@ f ~0!, f ~0!#, ~19a!

or

1

2
z~0!

]

]V
–~V f ~0!!5J@ f ~0!, f ~0!#. ~19b!

The second form follows from the fact thatf (0) is a function
of the velocity only throughV/v0, wherev05(2/bm)1/2 is
the thermal velocity. Thus its dependence on the tempera
is of the formT23/2f̄ (0)(v/T1/2), and consequently

2T]Tf ~0!5
1

2

]

]V
•~V f ~0!!. ~20!

In the following both forms, Eq.~19a! and Eq.~19b!, will be
used. Dimensional analysis requires thatz (0) is proportional
to nT1/2. The solutionf (0)5 f (0)(V) is isotropic so that the
zeroth order pressure tensor and heat flux are found to b

Pi j
~0!5pd i j , q~0!50, ~21!

wherep5nkBT is the hydrostatic pressure.
To first order in the gradients Eq.~1! leads to an equation

for f (1),

~] t
~0!1L ! f ~1!52~] t

~1!1v–¹! f ~0!52~Dt
~1!1V–¹! f ~0!,

~22!

with Dt
(1)5] t

(1)1u–¹ and

L f ~1!52J@ f ~0!, f ~1!#2J@ f ~1!, f ~0!#. ~23!

The macroscopic balance equations give

Dt
~1!n52n¹–u, Dt

~1!ui52~mn!21¹ i p,

Dt
~1!T52

2T

3
¹–u2z~1!T, ~24!

with

z~1!5~12a2!
4v@ f ~0!, f ~1!#

3nkBT
. ~25!

Therefore, Eq.~22! becomes
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~] t
~0!1L ! f ~1!2z~1!T]Tf ~0!

5 f ~0!~¹–u2V–¹ ln n!1~]Tf ~0!!S 2T

3
¹–u2V–¹TD

1S ]

]Vi
f ~0!D @2~mn!21¹ i p1V–¹ui #. ~26!

The solution to this equation has the form

f ~1!5A~V!–¹ ln T1B~V!–¹ ln n1Ci j ~V!¹ iuj .
~27!

Substitution of Eq.~27! into Eq. ~26! and identifying coeffi-
cients of independent gradients gives the set of equations
determine the functionsA(V), B(V), and Ci j (V). These
equations and the details of their analysis are given in
pendix A. The contributions to the pressure tensor, heat fl
and cooling rate of first order in the gradients can be ca
lated from Eqs.~12! and ~27! with the results

Pi j
~1!52h~¹ iuj1¹ jui2

2
3 d i j ¹–u!, ~28!

q~1!52k“T2m“n, ~29!

z~1!50, ~30!

whereh is the shear viscosity andk is the thermal conduc
tivity. The other transport coefficientm has no analogue fo
the elastic scattering case and is nonvanishing only foa
,1. The termz (1) vanishes from symmetry since it is
scalar that does not couple linearly to the vector functio
Ai(T,V) andBi(T,V), nor to the traceless tensorCi j (T,V).
The transport coefficients are given by

h* ~a![
h~a!

h0
5Fnh* ~a!2

1

2
z* ~a!G21

, ~31!

k* ~a![
k~a!

k0
5 2

3 @nk* ~a!22z* ~a!#21@11c* ~a!#,

~32!

m* ~a![
n

Tk0
m~a!

52z* ~a!Fk* ~a!1
1

3

c* ~a!

z* ~a!
G

3@2nm* ~a!23z* ~a!#21. ~33!

Here h055m1/2/16s2(pb)1/2 and k0515kBh0/4m are the
elastic limit values of the shear viscosity and thermal c
ductivity, respectively. The dimensionless functions ofa in
these expressions are

z* ~a![
z~0!

n0
5~12a2!

2bv@ f ~0!, f ~0!#

3nn0
, ~34!

c* ~a!5
8

15F S bm

2 D 2 1

nE dV V4f ~0!2
15

4 G , ~35!
at

-
x,
-

s

-

nh* ~a!5
*dVDi j ~V!LCi j ~V!

n0*dV Di j ~V!Ci j ~V!
,

~36!

nk* ~a!5
*dVS~V!•LA~V!

n0*dVS~V!•A~V!
,

nm* ~a!5
*dVS~V!•LB~V!

n0*dVS~V!•B~V!
, ~37!

where Di j (V) and S(V) are defined in ~13! and n0
5(16/5)ns2(p/mb)1/2 is a characteristic collision fre
quency introduced for normalization. The functionc* (a) is
related to the deviation of the fourth momentf (0) from the
corresponding value for a Maxwellian. These results are
exact. To obtain more explicit expressions for the dep
dence of the transport coefficients ona we use a first Sonine
polynomial expansion forA(V), B(V), Ci j (V), and f (0).
This is the usual approximation for a gas with elastic co
sions and there is noa priori reason to question its accurac
here as well. It follows from symmetry that the leading term
in this expansion areA(V)}B(V)} f M(V)S(V), Ci j (V)
} f M(V)Di j (V), and f (0)(V)2 f M(V)} f M(V)@(bmV2/2)2

25bmV2/2115/4#. Here f M(V) is the Maxwellian weight
factor defining the scalar product with respect to which
orthogonal polynomials are defined. With these expressi
the following results hold~see Appendix B!

z* ~a!5
5

12
~12a2!F11

3

32
c* ~a!G , ~38!

c* ~a!5
32~12a!~122a2!

81217a130a2~12a!
, ~39!

nh* ~a!5F12
1

4
~12a!2GF12

1

64
c* ~a!G , ~40!

nk* ~a!5nm* ~a!5 1
3 ~11a!

3F11
33

16
~12a!1

1923a

1024
c* ~a!G . ~41!

Equations~38! and~39! have been shown to be in very goo
agreement with the numerical results obtained by a dir
Monte Carlo simulation of the Boltzmann equation@13#.
This completes the identification of all terms in the expre
sions ~31!–~33! for the transport coefficients. The corre
sponding contribution to the distribution functionf (1) is cal-
culated in Appendix C with the result

f ~1!~V!52b3n21H 2m

5
S„V…–@k~a!“T1m~a!“n#

1b21h~a!Di j „V…¹ iuj J f M~V!. ~42!

The most frequently used expressions for transport co
ficients to date are those obtained by Lunet al. @3# using an
approximate moment method based on the Boltzmann e
tion ~low density limit of their results! for small a. In the
current terminology this method calculates the contributio
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4642 PRE 58BREY, DUFTY, KIM, AND SANTOS
from nh,k,m* only to leading order in (12a) and neglects
completely the contributions fromz* (a) and c* (a). Also,
this method predictsm(a)50 in contrast to the finite resul
obtained here. Goldshtein and Shapiro@4# use the correct
Chapman-Enskog method but report no results for any of
three transport coefficients at Navier-Stokes order. Figu
1–3 show a comparison of our results with those of@3# for
the coefficientsh, k, andm, respectively, as functions ofa.
There are both qualitative and quantitative differences. P
liminary Monte Carlo simulations of the shear viscosity co
firm the accuracy of our results. Further details will be p
vided elsewhere. Also shown in these figures are results f
kinetic models discussed in Sec. IV.

We have already seen that there is no contribution to
heating ratez@r ,tu f # of first order in the gradients. Howeve
for consistency it is necessary to include the contributio
from second-order gradients in the hydrodynamic equati
since the latter depend on the gradients ofPi j

(1) and q(1),
which also are of second order. Symmetry dictates the fo
of z (2),

FIG. 1. Shear viscosity as a function of the coefficient of re
tution a. The solid line is the result obtained here by using t
Sonine expansion and the dotted line is the one reported in Ref@3#.
The dashed lines correspond to the model equations discuss
Sec. IV. The shear viscosity is reduced in each case by its valu
the elastic limita51.

FIG. 2. Thermal conductivity as a function of the coefficient
restitutiona. Symbols are the same as in Fig. 1. The heat cond
tivity is reduced in each case by its value in the elastic limita51.
e
s

e-
-
-
m

e

s
s

m

z~2!5z1¹2T1z2¹2n1z3~¹T!21z4~¹n!21z5~“T!•~“n!

1z6~¹ iuj !~¹ iuj !1z7~¹ iuj !~¹ jui !. ~43!

Calculation of these coefficients requires knowledge off (2).
The contributions tof (2) that determine the coefficients o
the linear terms in Eq.~43! are discussed in Appendix D. In
the same Sonine polynomial approximation as discus
above it is found thatz1 and z2 are given by Eqs.~D19!–
~D21!. In order to provide an idea of the relevance of the
transport coefficients,k* /z1* andm* /z2* are plotted as func-
tions of a in Figs. 4 and 5, respectively. The reduced co
ficients z1* and z2* are defined in Eq.~D18!. For not very
inelastic particles,z1* (z2* ) is much smaller thank* (n* ).
That means that the termsz1¹2T and z2¹2n can be accu-
rately neglected in the transport equations@see Eqs.~58! and
~65! below#.

As mentioned in the Introduction, Sela and Goldhirsch@5#
have obtained expressions for the Boltzmann transport c
ficients up to Burnett order in the gradients and first order

-

in
in

c-

FIG. 3. The transport coefficientm as a function of the coeffi-
cient of restitutiona. Symbols are the same as in Fig. 1. The theo
in Ref. @3# predictsm50. The transport coefficient is reduced b
k0T/n, wherek0 is the elastic thermal conductivity.

FIG. 4. Ratio of the thermal conductivityk to the coefficientz1

associated with the contribution from the energy sink term prop
tional to the Laplacian of the temperature, as a function of
coefficient of restitutiona. Both quantities have been reduced
dimensionless form. The precise definitions are given in the m
text.
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PRE 58 4643HYDRODYNAMICS FOR GRANULAR FLOW AT LOW DENSITY
the inelasticity parametere512a2. In order to compare
with the results presented here, we have carried out an
pansion of our results in powers ofe,

h* 511 157
768 e1O~e2!, ~44!

k* 511 57
256 e1O~e2!, ~45!

m* 5
e

2
1O~e2!, ~46!

z* 5 5
12 e2 5

512 e21O~e3!, ~47!

z1* 5 3
32 e1O~e2!, ~48!

z2* 5 27
256 e21O~e3!. ~49!

The corresponding results in Ref.@5# written in the units we
are using read

hSG* '1.016010.1801e1O~e2!, ~50!

kSG* '1.025910.2682e1O~e2!, ~51!

mSG* '0.5278e1O~e2!, ~52!

zSG* ' 5
12 e20.0107e21O~e3!, ~53!

z1,SG* '0.0866e1O~e2!, ~54!

z2,SG* 5O~e2!. ~55!

We see that there is a quite good quantitative agreement
no qualitative discrepancies. In particular, the order ine and
the sign of the first corrections to the leading terms are
same in both theories. The quantitative differences are p
ably due to the use of different trial functions and also to
numerical evaluation of the integrals in Ref.@5#.

FIG. 5. Ratio of the transport coefficientm to the coefficientz2

associated with the contribution from the energy sink term prop
tional to the Laplacian of the density, as a function of the coeffici
of restitutiona. Both quantities have been reduced to dimensionl
form. The precise definitions are given in the main text.
x-

ith

e
b-
e

III. HYDRODYNAMIC EQUATIONS AND STABILITY

The results obtained in the previous section for the pr
sure tensor, heat flux, and energy sink provide the neces
constitutive equations to convert the balance equations~8!–
~10! into a closed set of hydrodynamic equations forn, T,
andu,

Dtn1n¹–u50, ~56!

Dtui1~nm!21¹ i p2~nm!21¹ j@h~¹ iuj1¹ jui

2 2
3 d i j“•u!#50, ~57!

DtT12~3nkB!21p“•u22~3nkB!21~¹ iuj !

3@h~¹ iuj1¹ jui2
2
3 d i j“•u!#

22~3nkB!21
“•~k“T!22~3nkB!21

“•~m“n!

52Tz~0!2Tz~2!. ~58!

In general, the energy sinkz (2) has many contributions, a
indicated in Eq.~43!. Our analysis of the hydrodynami
equations will be limited to their linearization about the h
mogeneous cooling state and consequently only the first
terms of Eq.~43! are needed.

The linearization about the homogeneous state lead
partial differential equations with coefficients that are ind
pendent of the space variable but dependent on the t
since the reference state is cooling. This time depende
can be eliminated through a change in the time and sp
variables, and a scaling of the hydrodynamic fields. L
dya(r ,t)[ya(r ,t)2yHa(t) denote the deviation of the hy
drodynamic fields from their value in the homogeneous st
A set of Fourier transformed dimensionless variables
then defined by

dyka~t!5E dl e2 ik• ldya~ l,t!, ~59!

uk~t!5
dTk~t!

TH~t!
, wk~t!5F m

kBTH~t!G
1/2

duk~t!,

rk~t!5
dnk~t!

nH
. ~60!

The subscriptH indicates that the quantity is computed
the homogeneous cooling state, andl and t are the dimen-
sionless space and time variables,

t5
1

2E0

t

dt8nH~ t8!, l5
nH~ t !

2 S m

kBTH~ t ! D
1/2

r , ~61!

and nH(t)[(16/5)nHs2@pkBTH(t)/m#1/2. In terms of these
variables the linearized hydrodynamic equations are

]

]t
rk1 ikwki50, ~62!

S ]

]t
2z* 1 2

3 h* k2Dwki1 ikuk1 ikrk50, ~63!
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S ]

]t
2z* 1 1

2 h* k2Dwk'50, ~64!

F ]

]t
1z* 1 5

4 ~k* 2z1* !k2Guk1@2z* 1 5
4 ~m* 2z2* !k2#rk

1 2
3 ikwki50. ~65!

The symbolswki andwk' denote the longitudinal and trans
versal components of the velocity field relative to the wa
vector k, respectively. Moreover, we have introduced t
reduced Burnett transport coefficients

z1* 5
3p

2k0
z1 , z2* 5

3n2kB

2k0
z2 . ~66!

Equation~64! is decoupled from the rest and can be in
grated directly yielding

wk'~t!5wk'~0!exp~s't!, ~67!

where

s'5z* 2 1
2 h* k2. ~68!

This identifies two degenerate shear modes. The remai
three eigenmodes have the formwn(k)exp@sn(a,k)t# for n
51,2,3, wheresn(a,k) are the solutions of the equation

s31 5
4 ~k* 1 8

15 h* 2z1* !k2s21H 5

6
k4h~k* 2z1* !

1 1
3 k2@512z* h* 2 15

4 z* ~k* 2z1* !#2z* 2J s

1@ 5
4 ~k* 2z1* 2m* 1z2* !k22z* #k250, ~69!

which follows from Eqs.~62!, ~63!, and~65!. Since the latter
are valid only fork!1 ~i.e., for wavelengths long compare
to the mean free path! and for 0,a<1, the solutions to Eq
~69! are meaningful only in this range. For the special case
elastic collisions,a51, the solutions are polynomials ink of
degree two corresponding to two sound modes and a
diffusion mode. However, the eigenvalues and eigenvec
are not analytic about the pointa51,k50 so that even in the
range close to the elastic limit the hydrodynamic modes m
be interpreted with some care. In this rangez* } (12a2)
and k both are small parameters in~69!, and the type of
modes obtained in the approach to the elastic limit depe
on how these parameters approach zero. Analysis of Eq.~69!
shows that ifk→0 as z* y with y<1/2 then the solutions
have the interpretation of modified sound modes and a
mode, similar to those in the elastic limit. Otherwise t
relationship to the elastic case is not simple and the mo
couple to different hydrodynamic variables. More genera
away from the elastic limit the eigenvalues have a m
complicated dependence onk andz* . The casek} z* y for
small z* and y<1/2 sometimes is referred to as the hydr
dynamic limit, which is a misnomer since solutions to E
~69! for any values ofk!1 and 0,a<1 characterize the
hydrodynamic modes.
e
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ng
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-
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It is straightforward to solve Eq.~69! in this entire param-
eter space. As an illustration, the dispersion relations fo
three-dimensional system witha50.9 are shown in Fig. 6.
The modes have been labeled as shear modes ('), heat
mode (h), and sound modes (6) with the above understand
ing that, except for the shear modes, the physical meanin
the modes is different from that of elastic fluids. At ve
small k all modes are real, while at largerk two modes
become a complex conjugate pair of propagating mod
Only the common real part of the propagating modes
been plotted. The results are similar at other values ofa.

The linear hydrodynamic equations characterize the
bility of the homogeneous cooling state. It is seen that
shear and heat modes are positive fork,k'

c andk,kh
c , re-

spectively, where

k'
c 5S 2z*

h*
D 1/2

, kh
c5F 4z*

5~k* 2z1* 2m* 1z2* !
G 1/2

.

~70!

Therefore, initial long wavelength perturbations of the h
mogeneous cooling state that excite these modes will g
exponentially, representing an instability of the referen
state. As the perturbations become larger, the full nonlin
hydrodynamic equations are required to understand the
sequent evolution and possible stabilization. Molecular
namics simulations show the formation of spatial structu
in the fluid at this later stage~e.g., velocity vortices and high
density clusters! @14–16#. The analysis here based on kinet
theory provides an alternative and potentially more instr
tive method to study these effects, using direct simulat
Monte Carlo methods to solve the kinetic equation@17#. The
advantages of this approach to exploring unstable dynam
has been illustrated recently for elastic fluids@18#.

The reference state for the hydrodynamic equations
spatially homogeneous but not stationary, due to the cont
ous collisional loss of energy. The distribution function f
the homogeneous cooling state is a local equilibrium dis
bution with a time dependent temperature given byT(t)

FIG. 6. Dispersion relations for the hydrodynamic modes vs
reduced wavenumberk. From top to bottom the curves correspon
to the shear modes ('), the heat mode (h), and the sound mode
(6). The coefficient of restitution isa50.9. Both s and k are
measured in the reduced dimensionless units defined in the m
text.
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5T(0)e22z* t. To analyze spatial perturbations of this hom
geneous state, dimensionless hydrodynamic fields have
introduced in this section that include some of this time
pendence. For example, the reduced velocity fieldwk(t) is
obtained by scaling relative toAT(t) and this is responsible
for the positive values of the modes in Fig. 6 atk50. Posi-
tivity of the modes in the linear equations therefore rep
sents instability of the reduced variables only. These are
relevant variables for the time dependent reference state
their instability signals an onset of the nonlinear couplings
these variables that are responsible for the subsequent fo
tion of spatial structures. Another important point to be no
is that the exponential behavior for the modes in the redu
variablet translates into an algebraic decay in timet,

etsn5S 11
t

t0
D sn /z*

, ~71!

where t0
215z* n0(0)/2. A more complete discussion of th

stability of the homogeneous state to spatial perturbati
will be given elsewhere.

IV. KINETIC MODELS

The Chapman-Enskog method described in Sec. II ge
ates a special solution to the Boltzmann equation suitable
states whose space and time dependence can be des
through the hydrodynamic fields. Within this context, t
method generates that solution as a perturbation expansi
small spatial gradients relative to the homogeneous coo
state. While the calculations are tractable to the order c
sidered here they become prohibitively complex for sta
with larger spatial gradients, such as granular flow un
shear or driven by other external forces and boundary c
ditions. For such cases and for more general states ou
the hydrodynamic description it is useful to consider kine
model equations in place of the Boltzmann equation. S
equations are obtained by replacing the complex Boltzm
collision operator with a simpler form, restricted to reta
certain fundamental properties such as those leading to
balance equations for mass, energy, and momentum. Kin
models have been used extensively for gases with ela
collisions, providing quantitative descriptions of states
from equilibrium that have not been possible using the B
zmann equation@7#. In this section, a brief description of th
generalization to inelastic collisions is given. As a first test
kinetic models for this case, it is shown that much of t
hydrodynamics obtained in the previous sections from
Boltzmann equation can be imbedded in the models wit
suitable choice of parameters.

The class of kinetic models considered are one relaxa
time models of the form

~] t1v–¹! f 52n~ f 2 f 0!. ~72!

The parametern is a scalar functional off only through its
dependence on low degree moments off and possibly the
dissipation parameterz which characterizes the cooling ra
in granular media. The functionf 05 f 0@ f # is a functional of
f to be specified. To constrain the form of this functional w
first require the exact balance equations through@see Eq.~6!#
-
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E dvS 1

mv

1

2
mv2

D ~ f 2 f 0!5S 0

0

3p

2n
z
D , ~73!

wherez is the functional off defined by Eq.~11!. Next we
require the existence of a given homogeneous cooling s
tion f H . From the discussion leading to Eq.~20! this implies
that

f 0@ f H#5 f H1
zH

2nH

]

]v
–~vf H!. ~74!

A sufficient condition for both Eqs.~73! and ~74! is to take

f 0@ f #5 f l H1
z

2n

]

]V
–~V f l H!, ~75!

where f l H is the local version off H , with the temperature
and density replaced by their true nonequilibrium values
sociated withf , and withv replaced byV. The kinetic equa-
tion obtained using Eq.~75! reads

~] t1v–¹! f 52n~ f 2 f l H!1 1
2 z

]

]V
–~V f l H!. ~76!

This form encompasses the kinetic model of Refs.@19# and
@10#, which differ in the choice off H . These will be referred
to as models 1 and 2, respectively, and are reviewed bri
in Appendix E.

An important consequence of the choice~75! is that ve-
locity moments of sufficiently high degree diverge. This
most easily seen for the simplest case of homogeneous s
using the change of variables@v0 is defined below Eq.~19b!#

dt5
nH

2
dt, c5v/v0~ t !, f̄ 5v0

3~ t ! f , ~77!

to get

~]t12n̄ !~ f̄ 2 f̄ H!52 z̄
]

]c
–@c~ f̄ 2 f̄ H!#, ~78!

where z̄5z/nH , n̄5n/nH , and f̄ H5v0
3(t) f H . Consider the

scalar moments

M ~ l !~t !5E dccl f̄ ~c,t!. ~79!

Using Eq. ~78! an equation for their time evolution is ob
tained,

]

]t
M ~ l !~t !5~22n̄1 l z̄ !@M ~ l !~t !2MH

~ l !#. ~80!

It follows that moments of degreel .2n̄/ z̄ grow without
bound as a function of time, due to the term on the right s
of Eq. ~75!. For model 1 this behavior is expected since t
corresponding moments off H do not exist; for model 2 it
represents an inconsistency between the choice~75! and the
additional requirement in this model thatf H→ f M . Neverthe-
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less, for relevant values ofa the values ofl for which these
problems arise are large and of little physical interest.
instance, fora50.9 the smallest moment to diverge is f
l 526. Even if very large dissipation,a50.6, is considered
divergence only shows up forl>8. The description of the
low order moments relevant for hydrodynamics is quite go
for both models, as illustrated below for the transport co
ficients.

A better choice than Eq.~75!, still consistent with the
requirements~73! and ~74!, is given by

f 0@ f #5 f l H1
z

2n

]

]V
–~V f !. ~81!

The model kinetic equation obtained using Eq.~81! in Eq.
~72! is

~] t1v–¹! f 52n~ f 2 f l H!1 1
2 z

]

]V
–~V f !. ~82!

This will be referred to as model 3. All three models a
quite similar although model 3 predicts finite moments
any degree~it leads to an evolution equation of form@]t

12n̄)( f̄ 2 f̄ H)50] and therefore is expected to be more a
curate for applications outside the hydrodynamic limit
well. More detailed discussion of the mathematical basis
this choice is given elsewhere.

The Chapman-Enskog analysis of Appendixes A and
applies for these kinetic models as well, and the express
for the transport coefficients given by Eqs.~31!–~33! are still
valid. Only the values ofc* (a) and the linear operatorL in
the expressions fornh* , nk* , and nm* are changed. For the
above three models these are found to be

c1* ~a!5
25~12a2!2

12~115a2!
, c2* 5c3* 50, ~83!

L15n1 , L25n2 , L35n32 1
2 z3

~0!S 31V–

]

]VD ,

~84!

z i
~0!5z@ f M#5 5

12 ~12a2!n0 , i 51,2,3. ~85!

The values ofci* (a) follow from the calculation off l H in
model 1 using a Gaussian form forf 0@ f # , while in models 2
and 3 the choicef l H5 f M is made. These choices are di
tated by simplicity but other choices are possible@e.g., the
approximation ~B1! from the Boltzmann equation#. With
these forms forL, Eqs. ~36! and ~37! are easily evaluated
with the result

nh1* ~a!5nk1* ~a!5nm1* ~a!5n1* , ~86!

nh2* ~a!5nk2* ~a!5nm2* ~a!5n2* ~87!

nh3* ~a!5n3* 1zM* , nk3* ~a!5nm3* ~a!5n3* 1 3
2 zM*

~88!

wheren i* 5n i /n0, zM* 5z@ f M#/n0. These are still free param
eters of the models that can be chosen to optimize the mo
for any particular application. For example, it is possible
r

d
f-

f

-
s
r

B
ns

els

choose them such that the viscosity agrees with that from
Boltzmann equation, aside from the value ofc* given by Eq.
~83!, which must be kept by consistency, i.e., require tha

n1* 5n2* 512 1
4 ~12a!2, n3* 512 1

4 ~12a!22zM* .
~89!

The explicit expressions for the transport coefficients
each of the models follow by substituting the above eq
tions into Eqs.~31!–~33!. It must be noticed that there th
expression for the heat conductivity,k(a) is reduced by its
Boltzmann value for the elastic limit. This latter does n
agree with the limiting value derived from the model equ
tion, which isk0,i55nkB

2T/2mn0. Therefore, if the transpor
coefficients are reduced by their elastic values as deri
from the models the factor of 2/3 disappears in Eq.~32!. For
the same reason, a factor of 2/3 appears in front ofc* on the
right hand side of Eq.~33!.

The transport coefficients obtained from the Chapm
Enskog expansion of the different models are shown in F
~1!–~3!. Model 3 provides the most accurate results as co
pared with the expressions obtained from the Boltzma
equation in the Sonine approximation. Nevertheless, a
models 1 and 2 give a quite fairly qualitative description
the a dependence of the transport coefficients. In practi
applications dealing with specific physical situations, t
model to be used will be dictated by a compromise betw
accuracy and tractability.

V. DISCUSSION

The primary objective of this work has been to derive
fluid dynamics description for inelastic hard spheres from
underlying kinetic theory in a systematic analysis. In ad
tion to giving a firm foundation for the hydrodynamic equ
tions, the kinetic equation admits an efficient complement
way to determine the hydrodynamic fields directly throu
Monte Carlo simulation@17#. The derivation of the hydrody-
namic equations consists of two steps. First the macrosc
balance equations for mass, energy, and momentum are
tained from the kinetic equation without approximatio
Next, the fluxes and energy sink in these equations are
termined from a solution to the kinetic equation expressed
terms of the hydrodynamic variables and their spatial gra
ents. The Chapman-Enskog method described in the App
dixes yields this solution as an expansion in these gradie
Truncation of this series at zeroth~first! order yields Euler
~Navier-Stokes! level fluxes, and associated contributions
the hydrodynamic equation of first~second! order in the gra-
dients. In the case of inelastic collisions there is a sink in
energy equation that requires calculation of the solution
the kinetic equation to one order higher than that used for
fluxes. The small parameter in this expansion is the ratio
the mean free path relative to the wavelength of the hyd
dynamic variation. The mean free path is independent of
time and therefore constant even for the homogeneous c
ing state so the conditions for Navier-Stokes order hydro
namics are essentially the same as for elastic collisions.

The Chapman-Enskog solution is not the most gene
solution to the kinetic equation and consequently the res
ing hydrodynamic equations do not give a complete desc
tion of the response of these variables to an initial pertur
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tion. To clarify the context in which the hydrodynam
equations apply it is useful to recall the case of small ini
perturbations for a gas with elastic collisions. The lineariz
kinetic equation has a fivefold degenerate spectrum at
origin for asymptotically long wavelengths, corresponding
the five conserved variables~the hydrodynamic modes!. In
addition there are points, branch cuts, etc. in the spect
bounded away from the origin by the collision frequencynH

corresponding to excitations of all other degrees of freed
~the kinetic modes!. At finite wavelengths this separation o
points in the spectrum persists, except for wavelengths
the order of the mean free path. Consequently, the kin
modes decay on a time scale of the inverse collision
quency leaving only the hydrodynamic modes at lon
times. This explains why a reduced description of the
namics, given by the hydrodynamic equations, provide
complete description on sufficiently long time scales. N
consider the case of inelastic collisions. Since energy is
conserved the fivefold degenerate set of points in the s
trum become four points at the origin and one at the fin
inverse cooling rate,z (0), for long wavelengths. The kineti
modes are again bounded away from the origin bynH . Note
that here we are referring to the actual time variablet and not
to t defined in Eq.~61!. Using the parameters of the previou
section it is found that 0<z (0)/nH<5/12, with the lower and
upper limits corresponding toa51 anda50, respectively.
Thus the hydrodynamic modes are again closer to the or
than the kinetic modes and dominate for long times. A m
complete description of the relationship of the hydrodynam
and kinetic modes will be given elsewhere. The conclusio
that the hydrodynamic equations apply for sufficiently lar
space and time scales, just as for the case of elastic c
sions.

The hydrodynamic equations as derived by means of
Chapman-Enskog method are restricted to near equilibr
situations. Even in the elastic case there is very little kno
about solutions of the Boltzmann equation far from equil
rium. It is then useful to consider model kinetic equatio
that retain the relevant properties of the Boltzmann equa
but are simpler than it. In this paper, we have discussed t
models with different degree of accuracy~and complexity!.
All of them have been shown to lead to hydrodynamic eq
tions similar to the Boltzmann equation. Also, the mod
referred to as model 2 is known to provide a semiquantita
description of the~inelastic! Boltzmann equation for som
far from equilibrium states@20,21#. Other applications are
being studied now.
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APPENDIX A: CHAPMAN-ENSKOG SOLUTION

The Chapman-Enskog solution to the Boltzmann equa
is based on the uniformity parameter expansion of Eq.~15!
together with the corresponding expansion for the time
rivatives of the hydrodynamic fields. To zeroth order t
solution f (0) is determined from Eq.~16!. For fluids with
elastic collisions the result is a local Maxwellianf M but the
exact solution is not known foraÞ1. To next order,f (1) is
the solution to Eq.~26!, which can be rewritten using Eq
~20! as

~] t
~0!1L ! f ~1!2z~1!T]Tf ~0!

5A•“ ln T1B•“ ln n1Ci j ¹ jui , ~A1!

whereL is the linear operator given by Eq.~23! andz (1) is
the linear functional off (1) given by Eq.~25!. The coeffi-
cients of the field gradients on the right side are functions
V and the hydrodynamic fields

A~Vun,T!5
V

2

]

]V
–~V f ~0!!2~bm!21

]

]V
f ~0!, ~A2!

B~Vun,T!52V f ~0!2~bm!21
]

]V
f ~0!, ~A3!

Ci j ~Vun,T!5
]

]Vi
~Vj f

~0!!2
1

3
d i j

]

]V
•~V f ~0!!. ~A4!

The solution to Eq.~A1! therefore has the form

f ~1!5A–¹ ln T1B–¹ ln n1Ci j ¹ iuj . ~A5!

The left side of Eq.~A1! can be simplified by noting thatCi j

is traceless and thereforeCi j also is traceless. Sincez (1) is a
scalar it follows directly from symmetry thatz (1)50. Also
the time derivative can be expressed in terms of the gradi
using

] t
~0!
“ ln T5“~T21] t

~0!T!52z~0!~“ ln n1 1
2 “ ln T!.

~A6!

The functionsA, B, andCi j in the solution~ A5! are found
by equating coefficients of the various gradients

S 2z~0!T]T1L2
z~0!

2 DA5A, ~A7!

~2z~0!T]T1L !B5B1z~0!A, ~A8!

~2z~0!T]T1L !Ci j 5Ci j . ~A9!

Consider first the viscosity. The contribution to the pre
sure tensor~12! from first order in the gradients is
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1Pi j
~1!5E dV Di j ~V!Ckl ~V!¹kul

52h~¹ jui1¹ iuj2
2
3 d i j ¹–u!, ~A10!

h52 1
10 E dV Di j ~V!Ci j ~V!. ~A11!

Use of Eq.~A9! gives an equation forh,

2z~0!T]Th2 1
10 E dV Di j ~V!LCi j ~V!

52 1
10 E dV Di j ~V!Ci j ~V!. ~A12!

Define

nh5
*dV Di j ~V!LCi j ~V!

*dV Di j ~V!Ci j ~V!
. ~A13!

Then Eq.~A12! becomes

~2z~0!T]T1nh!h52 1
10 E dV Di j ~V!Ci j ~V!.

~A14!

Dimensional analysis requires thatz (0) and nh are propor-
tional to T1/2 while the integral on the right side is propo
tional to T . Therefore the viscosity is proportional toT1/2

and Eq.~A14! gives immediately

h52
1

10~nh2 ~1/2! z~0!!
E dV Di j ~V!

]

]Vi
~Vj f

~0!!

5
1

3~nh2 ~1/2! z~0!!
E dV mV2f ~0!5p~nh2 1

2 z~0!!21.

~A15!

It is convenient to express this result in dimensionless fo
by introducing a characteristic average collision frequen
n0 defined in terms of the Boltzmann viscosity fora51, h0,

n05p/h05
16

5
ns2ApkBT

m
. ~A16!

The result~A15! then takes the dimensionless form

h

h0
5~nh* 2 1

2 z* !21, ~A17!

wherez* [z (0)/n0 andnh* [nh /n0.
The heat flux to this order is

q~1!52k“T2m“n, ~A18!

with transport coefficients given by

k52
1

3TE dVS~V!•A~V!,
y

m52
1

3nE dV S~V!•B~V!. ~A19!

The analysis is similar to that above for the viscosity, w
the results

k52
1

3T~nk22z~0!!
E dVS~V!•A~V!, ~A20!

m5
2

2nm23z~0!Fz~0!
T

n
k2

1

3nE dV S~V!•B~V!G ,
~A21!

with

nk5
*dV S~V!•LA~V!

*dV S~V!•A~V!
, nm5

*dV S~V!•LB~V!

*dV S~V!•B~V!
.

~A22!

Use of the above forms forA(V) and B(V) allows further
simplification,

1

3TE dVS~V!•A~V!

52
m

6TE dVV2V•FV~T]Tf ~0!!1~bm!21
]

]V
f ~0!G

52
5nkB

2mb
@11c* ~a!#, ~A23!

1

3nE dV S~V!•B~V!

52
m

6nE dV V2V•FV f ~0!1~bm!21
]

]V
f ~0!G

52
5c* ~a!

4mb2
. ~A24!

With these resultsk andm become

k

k0
5

2

3
~nk* 22z* !21~11c* !, ~A25!

nm

Tk0
52~2nm* 23z* !21S z*

k

k0
1 1

3 c* D , ~A26!

where nk* 5nk /n0, nm* 5nm /n0, and k0

575kB/64s2(pbm)1/2 is the Boltzmann thermal conductiv
ity for a51.

APPENDIX B: EVALUATION OF z* , nh* , nk* , AND nµ*

The results of Appendix A for the transport coefficien
are still formal since they depend onz* , nh* , nk* , andnm* .
Here approximate expressions for these quantities will
obtained by using an expansion in Sonine polynomials. T
is the same approximation as is used in the case of flu
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with elastic collisions and it is known in that case to be ve
accurate. In the above Sonine approximation Eq.~16! can be
solved with the result@4,22#:

f ~0!~V!5 f M~V!$11 1
4 c* ~a!@~ 1

2 bmV2!22 5
2 bmV21 15

4 #%.

~B1!

The functionc* (a) is given to linear order by Eq.~39!.
Consider nowz* [z (0)/n0, with z (0) defined by Eq.~18!.
Using the approximation~B1! and neglecting again term
nonlinear inc* , it is obtained:

z* 5~12a2!
2bv@ f ~0!, f ~0!#

3nn0
5~12a2! 5

192A2pI ~a!,

~B2!

whereI is the dimensionless integral

I 5p23E dv1 E dv2 e2~v1
2
1v2

2
!uv12v2u3@11 1

2 c* ~a!

3~v1
425v1

21 15
4 !#. ~B3!

The integral can be performed with the final result

z* 5~12a2! 5
12 @11 3

32 c* ~a!#. ~B4!

The functionsnh* , nk* , and nm* are evaluated approxi
mately by expandingA(V), B(V), andCi j (V) as a series in
Sonine polynomials and using the lowest order truncati
To lowest-order the velocity dependence is

A~V!} f MS~V!, B~V!} f MS~V!, Ci j ~V!} f MDi j ~V!,

~B5!

where f M(V) is the Maxwellian. Then the expressions f
nh* , nk* , andnm* become

nh* 5
*dV Di j ~V!L@ f M~V!Di j ~V!#

n0*dV f M~V!Di j ~V!Di j ~V!

5
b2

10nn0
E dVDi j ~V!L@ f M~V!Di j ~V!#, ~B6!

nk* 5nm* 5
*dVS~V!•L@ f M~V!S~V!#

n0*dV f M~V!S~V!•S~V!

5
2mb3

15nn0
E dVS~V!•L@ f M~V!S~V!#. ~B7!

The linear collision operatorL, defined by Eq.~23!, is

L@X~V! f M~V!#

52s2E dv1 E dŝ Q~g–ŝ!~g–ŝ!~a22b2121!

3@ f ~0!~V1! f M~V!X~V!1 f ~0!~V! f M~V1!X~V1!#,

~B8!

with the operatorb21 given by Eq.~3!. Integrals of the form
*dvYL@ f MX# can be transformed as follows by a change
variables,
.

f

E dvY~v!L@X~V! f M~V!#

52s2E dv E dv1 E dŝ Q~g–ŝ!~g–ŝ!Y~v!

3~a22b2121!@ f ~0!~V1! f M~V!X~V!

1 f ~0!~V! f M~V1!X~V1!#

5s2E dv E dv1 f ~0!~V! f M~V1!X~V1!

3E dŝ Q~2g–ŝ!~g–ŝ!~b21!@Y~v!1Y~v1!#.
~B9!

The evaluation of Eqs.~B6! and ~B7! is now a well-
defined problem. The integrations are straightforward
lengthy, and the exact evaluation is facilitated considera
by the use of symbolic computer programs. For the rea
interested in confirming our results some of the intermed
results are given. Consider firstnh* . Use of Eq.~B9! in Eq.
~B6! leads to

nh* 5
mb2

10nn0
s2E dVE dV1 f ~0!~V! f M~V1!Di j ~V1!

3E dŝQ~2g–ŝ!~g–ŝ!~b21!@ViVj1V1iV1 j #.

~B10!

The solid angle integral overŝ can be performed with the
result

nh* 5
pmb2

80nn0
~32a!~11a!s2E dVE dV1 f ~0!~V!

3 f M~V1!Di j ~V1!ggigj . ~B11!

Next, change variables toV andg, and perform the integra
tion overg to get

nh* 5
4p

5n0
S 2p

bmD 1/2

@42~12a!2#ns2

3E
0

`

dX f~0!* ~X!X@~ 1
2 1X2!Aperf~X!1Xe2X2

#,

~B12!

where f (0)* (X)5n21(2/bm)3/2f (0)@(2/bm)1/2X# and erf(X)
is the error function ofX. The integral overX is performed
using the approximation~B1! for the final result

nh* 5@12 1
4 ~12a!2#@12 1

64 c* ~a!#. ~B13!

In a similar waynk* 5nm* is evaluated as
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nk* 5nm* 5
m2b3

15nn0
~11a!s2E dVE dV1 f ~0!~V! f M~V1!Si~V1!E dŝ Q~g–ŝ!~g–ŝ!$ 1

2 Ḡi~g–ŝ!2~12a!

1@~giḠ•ŝ1Ḡ–gŝ i !~g–ŝ!2ŝ iḠ•ŝ~g–ŝ!2~11a!#%

5
m2b3

60nn0
~11a!s2pE dVE dV1 f ~0!~V! f M~V1!Si(V1…@

2
3 g3Ḡi~122a!1~32a!ggiḠ•g#

5
6p

45n0
ns2S 2p

bmD 1/2

~11a!E
0

`

dX f~0!* ~X!$4~423a!X2e2X2
1@5~523a!X14~423a!X3!#Aperf~X!%.

~B14!
in
er

f
ei

radi-
ning

rce
sec-

nly
the
In the above expressions it isḠ5(V1V1)/2. Finally, inte-
gration overX using once again approximation~B1! yields

nk* 5nm* 5 1
3 ~11a!F11 33

16 ~12a!1
1923a

1024
c* ~a!G .

~B15!

It is easily checked that the results given by Eqs.~B13! and
~B15! reduce to the correct elastic values fora51.

APPENDIX C: THE DISTRIBUTION FUNCTION f „1…

In the first Sonine polynomial approximation described
Appendix B the distribution function to Navier-Stokes ord
has the form

f ~1!~V!5@cTS„V…–¹ ln T1cnS„V…–¹ln n

1cuDi j „V…¹ iuj # f M~V!. ~C1!

The coefficientscT, cn , and cu are determined in terms o
the transport coefficients directly by use of this form in th
definitions~A11! and ~A19!,

h52
1

10E dV Di j ~V!Ci j ~V!

52cu
1

10 E dV f M~V!Di j ~V!Di j ~V!

52cunb22, ~C2!

k52
1

3TE dV S~V!•A~V!

52cT

1

3TE dV f M~V!S~V!•S~V!

52cT

5nkB

2m
b22, ~C3!
r

m52
1

3nE dV S~V!•B~V!

52cn

1

3nE dV f M~V!S~V!•S~V!

52cn

5

2m
b23. ~C4!

The distribution functionf (1) is therefore

f ~1!~V!52b3n21F2m

5
S„V…–~k“T1m“n!

1hb21Di j „V…¹ iuj G f M~V!. ~C5!

APPENDIX D: DETERMINATION OF z „2…

The macroscopic balance equations depend on the g
ents of the pressure tensor and heat flux. Thus determi
the latter to first order~Navier-Stokes! in the gradients leads
to contributions of second order. For consistency the sou
term in the temperature equation must be calculated to
ond order. The contributionz (2) is given by

z~2!5~12a2!
2b

3n
$v@ f ~1!, f ~1!#12v@ f ~0!, f ~2!#%, ~D1!

wherev@ f ,h# is defined by Eq.~7!. The general form ofz (2)

is given in Eq.~43!. In this appendix the contributions toz (2)

that are linear in the gradients are considered, since o
these contribute to the linear stability analysis. Therefore,
quantity we are interested in is

zL
~2![~12a2!

4b

3n
v@ f ~0!, f L

~2!#. ~D2!

Here f L
(2) denotes the part off (2) that is linear in the gradi-

ents. The Chapman-Enskog equation forf (2) is

~] t
~0!1L ! f ~2!52] t

~2! f ~0!2~Dt
~1!1V–¹! f ~1!1J@ f ~1!, f ~1!#,

~D3!

which simplifies forf L
(2) to
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~] t
~0!1L ! f L

~2!2zL
~2!T]Tf ~0!

522~3nkB!21~k¹2T1m¹2n!]Tf ~0!

1
2m

5
b3n21S~V!V:~k¹¹T1m¹¹n! f M

1~nm!21h@ 1
3 ¹~¹•u!1¹2u#•

]

]V
f ~0!

2
2m

5
b3n21S 2T

3
k1nm DS~V!•~¹¹•u! f M

2b2n21hDi j ~V!@~nm!21¹ i¹ j p2V•¹~¹ iuj !# f M .

~D4!

Further simplifications occur by noting thatzL
(2) is a scalar so

that any contributions tof L
(2) that are vector or traceless fun

tions of the velocity will not contribute. Letd f L
(2) denote the

residual part off L
(2) that gives contributions tozL

(2) . The
vector and traceless parts on the right side of Eq.~D4! can be
neglected for the purposes of calculatingd f L

(2) and we get

~] t
~0!1L !d f L

~2!2zL
~2!T]Tf ~0!

5F2m

15
b3n21f M~V!S„V…–V22b~3n!21~T]Tf ~0!!G

3~k¹2T1m¹2n!. ~D5!

The solution to this equation has the form

d f L
~2!5M ~T,V!¹2T1N~T,V!¹2n, ~D6!

leading after substitution into Eq.~D2! to

zL
~2!5z1¹2T1z2¹2n. ~D7!

Then using the fact that

] t
~0!¹2T52

3z~0!

2
¹2T2

Tz~0!

n
¹2n1nonlinear terms,

~D8!

the equations forM andN are found to be

S 2z~0!T]T2
3z~0!

2
1L D M2z1T]Tf ~0!

5kF2m

15
b3n21f M~V!S„V…–V22b~3n!21~T]Tf ~0!!G ,

~D9!
~2z~0!T]T1L !N2z2T]Tf ~0!

5
Tz~0!

n
M1mF2m

15
b3n21f M~V!S„V…–V

22b~3n!21~T]Tf ~0!!G . ~D10!

The functionsM (V) andN(V) are scalars and are orthogo
nal to 1,V, andV2. Thus their lowest order Sonine expa
sion should be

M ~V!→cT
~2!P~V! f M~V!, N~V!→cn

~2!P~V! f M~V!,
~D11!

where

P~V!5~ 1
2 bmV2!22 5

2 bmV21 15
4 ~D12!

is the third Sonine polynomial except for a normalizati
factor, which is not relevant for our purposes. Use of E
~D11! into Eq. ~D2! yields

z15
5n0

32
~12a2!cT

~2!S 11
3c*

64 D , ~D13!

z25
5n0

32
~12a2!cn

~2!S 11
3c*

64 D . ~D14!

Now we substitute Eqs.~D11! into Eqs.~D9! and ~D10!,
multiply by V4, and integrate overV. In this way it is ob-
tained that

~2 5
2 z* 1nz* !cT

~2!5
z1

n0
S 11

c*

2 D1
4k

15pn0
S 12

5c*

4 D ,

~D15!

~22z* 1nz* !cn
~2!

5
z2

n0
S 11

c*

2 D1cT
~2!z*

T

n
1

4m

15pn0
S 12

5c*

4 D ,

~D16!

where

nz* 5
*dVV4L@ f M~V!P~V!#

n0*dVV4f M~V!P~V!

5S 30nn0kB
2T2

m2 D 21E dV V4L@ f M~V!P~V!#.

~D17!

Upon deriving the above equations use has been made o
fact that cT

(2)}T21 and cn
(2)}T0. Taking into account Eqs

~D13! and~D14!, the above equations can be converted in
two closed equations forz1 and z2. Introducing the dimen-
sionless transport coefficients

z1* 5
3p

2k0
z1 , z2* 5

3n2kB

2k0
z2 , ~D18!
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one gets

z1* 5 1
16 ~12a2!k* S 11

3c*

64 D S 12
5c*

4 D
3Fnz* 2 5

2 z* 2 5
32 ~12a2!S 11

3c*

64 D S 11
c*

2 D G21

. 1
16 ~12a2!k* S 12

77c*

64 D Fnz* 2 5
2 z* 2 5

32 ~12a2!

3S 11
35c*

64 D G21

, ~D19!

z2* 5Fz1* z* 1 1
16 ~12a2!m* S 11

3c*

64 D S 12
5c*

4 D G
3Fnz* 22z* 2 5

32 ~12a2!S 11
3c*

64 D S 11
c*

2 D G21

.Fz1* z* 1 1
16 ~12a2!m* S 12

77c*

64 D G
3Fnz* 22z* 2 5

32 ~12a2!S 11
35c*

64 D G21

. ~D20!

In the last transformations we have consistently neglec
those contributions that are nonlinear inc* . The only re-
maining task is to compute the characteristic frequencynz*
defined by Eq.~D17!. This can be done by using the sam
procedure as discussed in Appendix B. We merely quote
result,

nz* 5
11a

192 F2712207a130a2230a3

1
c*

64
~13729a230a2130a3!G . ~D21!

APPENDIX E: TWO PREVIOUS KINETIC MODELS

Model 1 was introduced in Ref.@19# ~see also the discus
sion in Ref.@23#!. It was formulated by means of a kinet
equation of the same form as Eq.~72! with
al

, J

a-
d

e

f 05nS m

2pkBTD D 3/2

expS 2
mV2

2kBTD D , ~E1!

where

D512a~12a2!, ~E2!

a being a constant. This choice forf 0 leads to Eq.~73! with
z approximated by

z15n1a~12a2!. ~E3!

The value of the constanta can be fixed by requiring the
above expression to agree with the one obtained from
Boltzmann equation, Eq.~11!, in the local equilibrium ap-
proximation, i.e. withf replaced byf M . This gives

a5
5n0

12n1
. ~E4!

The solution of the model for the homogeneous cooling s
reads

f H~v,t !5E
1

`

dx P~x!nHS m

2pkBTH~ t !xD D 3/2

3expS 2
mv2

2kBTH~ t !xD D , ~E5!

P~x!5px2~11p!, p5
2

12D
. ~E6!

It is now trivially seen that Eq.~E1! is equivalent to Eq.~75!
with appropriate choices forf l H andz.

Model 2 was formulated at the level of the Enskog equ
tion in Ref. @10#. In the low density limit, it reduces directly
to Eq. ~75! with f l H5f M , the Maxwellian local equilibrium
distribution, whilez is given by the exact functional off of
Eq. ~11!. Then it follows thatf H is also a Maxwellian for this
model.
l
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