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Nonlinear viscosity and velocity distribution function in a simple longitudinal flow
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A compressible flow characterized by a velocity fielgx,t) =ax/(1+at) is analyzed by means of the
Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control paré@hester
longitudinal deformation rat@) distinguishes between an expansia>0) and a condensationra0)
phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing
function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear
viscosity »* (a*), that depends on the dimensionless longitudinal @teThe Chapman-Enskog expansion of
7* in powers ofa* is seen to be only asymptotiexcept in the case of Maxwell molecule3he velocity
distribution function is also studied. At any value af, it exhibits an algebraic high-velocity tail that is
responsible for the divergence of velocity moments. For sufficiently negatiyanoments of degree 4 and
higher may diverge, while for positive* the divergence occurs in moments of degree equal to or larger than
8.

PACS numbse(s): 05.20.Dd, 47.50td, 05.60—k, 51.10:+y

. INTRODUCTION on a(nA)
= NA — =—2nA? (1.2
One of the most challenging problems in nonequilibrium
statistical mechanics is the understanding of transport PIOR: hose solution is
erties in fluids beyond the scope of the Navier-Stolt¢S)
constitutive equations. As part of the NS constitutive equa- a no
tions, Newton’s law establishediaear relationship between A(t)=——, n(t)y=——, 1.3
the irreversible momentum flux and the velocity gradients, 1+at 1+at
namely,

wherea is an arbitrary constant that represents (iméial)
longitudinal deformation rate, angy>0 is the initial den-
v du; 2 sity. In this case, Newton’s laWl.1) becomes
Pij=pP3dij — 7ns (9_)(]-+ X gV udij| sV udij,

1
3 Po=P— ( 2—— st s | A (L4

whereP;; is the pressure tensqo=(1/d) Tr P is the hydro-  This simple flow is known afiomoenergetic extensiand,
static pressured=2 is the dimensionality of the systemjs  along with the uniform shear flow, is a particular case of a
the flow velocity, 7ys is the shear viscosity, angls is the  more general class of homoenergetic affine flows character-
bulk viscosity[1]. Linear law(1.1) only holds for small hy- jzed by #2u; 19%;9%=0 [13]. In the flow defined by Egs.
drodynamic gradients, i.e., when the typical distances ovef1.3), the longitudinal deformation ratis the onlycontrol
which the hydrodynamic quantities change are much largeparameter determining the departure of the fluid from its
than a characteristic microscopic leng8uch as the mean equilibrium state, thus playing a role similar to that of the
free path in the case of gage®therwise, Eq(1.1) no longer  shear rate in the uniform shear flow state. On the other hand,
holds, a situation usually characterized by the introduction ofn contrast to the uniform shear flow, the signabplays a
a generalized ononlinearviscosity that depends on the hy- relevant role and defines two distinct situations. The ase
drodynamic gradientg2]. >0 corresponds to a progressively more sloekpansiorof
The nonlinear ViSCOSity was eXtenSiVely studied in the SO‘[he gas from the p|anE:0 into a” of Space' Given a |ayer
called uniformshearflow, which is characterized by a linear of width &, the flux of particles leaving the layer exceeds the
velocity field u,=ay and uniform density and temperature fjyx of incoming particles byras/(1+at) and, as a conse-
[3—7]. This is an example of an incompressible flo®,  quence, the number of particles inside the layer decreases
sinceV-u=0. Recently, some attention was devoted to Vis-monotonically with time. As time progresses, the system be-
couslongitudinalflows of the formu(r,t) = u,(x,t)x [8—12]. comes more and more rarefied, until no particles are left in
The simplest example of such compressible flows is charadhe long-time limit, i.e., lim_..n(t)=0. On the other hand,
terized by a linear velocity profile, i.eu,(x,t) =A(t)x, and  the casea<0 corresponds to a progressively more rapidly
uniform densityn and pressure tensér[13,14l. In that case, condensatiorof the gas toward the plane=0. The latter
the balance equations for mass and momentum read takes place over dinite time periodt=|a| !. However,
since the collision frequency rapidly increases with time, the
finite periodt=|a| ! comprises arinfinite number of colli-
*Electronic address: andres@unex.es sions per particlésee below
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Equations(1.3) apply regardless of the initial density of the potential is not small, especially near the maximum value
the fluid. On the other hand, a kinetic description based owf the viscosity. The paper ends with a summary of the main
the Boltzmann equation is valid only for densities such thaconclusions in Sec. IV.
no? is much smaller than 1, whete is a characteristic dis-
tance measuring the effective size of the molecules. Let us Il. BOLTZMANN DESCRIPTION
call n,~ o9 a characteristic density beyond which notice- FOR MAXWELL MOLECULES
able deviations from the Boltzmann equation can be ex-
pected. Thus, even ifipy<n,, there exists a finite time,
=|a|"Y(1—ng/n,) beyond which the Boltzmann descrip-

tion ceases to be applicable in the case0. This timet,, function f(x,v,t). In particular, the number density, the

. . . . _l
can be made arbitrarily close to the maximum tifag " by flow velocity u, and the pressure tensBr are obtained in

formally taking the limitng/n,—0. terms of velocity moments df
The aim of this paper is to carry out a detailed and self-

contained analysis of the nonequilibrium behavior of a dilute
gas under the longitudinal flow characterized by Hds3),

for arbitrary sign and magnitude of the control parameter
The study is performed by using the tools of kinetic theory,Heremis the mass of a particle, ant=v—u is thepeculiar
namely the Boltzmann equation and the Bhatnagar-Grosgelocity. The trace ofP gives the hydrostatic pressure
Krook (BGK) kinetic model, and deals with the nonlinear =(1/d)TrP, which is related to the temperatutethrough
viscosity, as well as with more general velocity moments andhe equation of state=nkgT, kg being the Boltzmann con-
the velocity distribution function. Most of the results are de-Stant. The time evolution dfis governed by the Boltzmann
rived for arbitrary dimensionality and for the general class ofeduation[15]
repulsive potentials of the form # with u=2(d—1). The (

Let us consider a dilute gas subject to the homoenergetic
extension flow described in Sec. I. All the relevant informa-
tion is contained in the one-particle velocity distribution

n=fdvf, nu=fdvvf, P=mj dvvvf. (2.1

Boltzmann equation for the problem is considered in Sec. Il. P +vx5

Since the density is knowjtf. Egs.(1.3)], one can focus on
the probability distribution of velocities. In addition, the dis- whereJ[f,f] is the nonlinear Boltzmann collision operator,
tribution becomes uniform when the velocities are referred tqQ, e explicit expression will be omitted here.

the local Lagrangian frame moving with the flow velocity — ag happens in the uniform shear fId®,16], the velocity

u(x,t). As a consequence, the original problem can beyistribution function f(x,v,t) becomes spatially uniform

mapped onto that of a uniform system with a stationary denghen the velocities are referred to a Lagrangian frame mov-
sity and subject to the action of a nonconservative drivingng with the flow, i.e., f(x,v,t)=f(V,t), where V=v

force; also, there is a nonlinear relationship between the time. y(x t) is the peculiar velocity. The Boltzmann equation
variables in the original and the equivalent systems. To pro¢2 2) for this flow can then be written as

ceed further, the Maxwell interactiop=2(d—1) is as-

sumed, and the time evolution of the pressure tensor is ex- d d ~ e

actly obtained. The long-time behavior allows one to identify ( VX) f=J0f. 1], 2.3
the nonlinear viscosity as a function of the longitudinal de-
formation rate. When the velocities are scaled with(thme-  where
dependent thermal velocity, the distribution obeys in the
long-time limit a steady-state Boltzmann equation with the
addition of a second nonconservative force playing the role

of a thermostat. The exact fourth-degree velocity moments

are then derived as functions of the longitudinal rate, and ar&quation(2.3) can be interpreted as corresponding tbca

seen to diverge in the case of condensation for states suffinogeneougas with a velocity distributiod and subject to

ciently far from equilibrium. The picture is complemented in . . °
Sec. Il by the solution of the BGK kinetic model. In the casethe aF:t|on of a nonconservative for . avl)f' Nc~>te that the
density and pressure tensor associated Wwithen=n, and

of Maxwell molecules, the distribution function exhibits an = o

algebraic high-velocity tail that is responsible for the diver-Pi;=(no/n)P;;, respectively. In factf is proportional to the
gence of the moments. The solution predicts that moments girobability distribution of velocities. The time variable
sufficiently high degree can also diverge in the case of ex:fgdt’n(t’)/no is a nonlinear measure of time scaled with
pansion. In addition, the distribution function becomes infi-the number density; this variable is unbounded even if
nite in the limit of zero velocity in far from equilibrium <O, since in that case—o whent—/a| 1. It must be
states. Section Il also analyzes the nonlinear viscosity foemphasized that Eq$2.2) and (2.3) are fully equivalent in
more general repulsive potentials, including hard sphereghe present problem. On the other hand, E§3) has the
Evidence is given about the nonconvergémit asymptotic  advantage of describing a uniform system with a constant
character of the Chapman-Enskog expansion, Maxwell moldensity. The price to be paid is the introduction of a driving
ecules being an exception. On the other hand, the nonlinedorce that acts as a longitudinal “drag” force in the case of
dependence of the generalized viscosity is practically insenexpansion §>0), and as a “pushing” force in the case of
sitive to the interaction potential in the case of positive de-condensationg<0). Of course, every solution to E(R.3)
formation rates. For negative rates, however, the influence afan be mapped onto a corresponding solution to(E®).

f=J[f,f], 2.2

No

fv,n)= o0

f(x,v,t), r=a lIn(1+at). (2.9
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The Boltzmann equatiof2.3) cannot be solved by ana- creasing function of* that behaves as~2a* +(d—1)/d
lytical tools in general. On the other hand, its associatedn the limita* — —o«, and as\~[1—(d—1)/2da*]/d in the
hierarchy of moment equations can be recursively solved ifimit a* — .
the special case of Maxwell molecules, i.e., particles inter- Based upon Eq(1.4), in the long-time limit we define a
acting via a repulsive potential of the forg(r)er ~2@-1  (dimensionlessnonlinearviscosity ag12]
in which case the collision rate is independent of the relative

velocity of the colliding particle§l7]. In particular, Eq(2.3 7* :L P~ P
yields a closed set of equations for the elements of the pres- 2(d—1) Anns
sure tensor in the case of Maxwell molecules, namely,
_J 1 PXX) (2.10
d~ 2a. = ———r )
e ielr Y 2(d—1)a* p
—-Pp+ PO, (2.5 (d-1)
p where we have taken into account that the bulk visca§ity
— Pt 2aPu=— vo(Pr— D), (2.6) vamshe; in a low-density g4%5]. Using Eq.(2.9), we sim-
T ply obtain
where p=ngkgT=(1/d)TrP and vyxn, is a constant that *(a*) = d 2a*—d\(a¥) .19
plays the role of an effectivéinitial) collision frequency. ” d-1 4a*2 ' '

More explicitly, vo=Pp/7ns. Equation(2.5) is a condition
expressing the conservation of energy. As for m6), it In the three-dimensional Can:é3), this result coincides
must be emphasized that itéxactfor Maxwell molecules in ~ With the one derived by Karliret al. [9] for Maxwell mol-
our problem, i.e., no approximate truncation schésueh as  €cules by applying the invariance principle under the micro-
Grad’s moment metho@12]) has been applied. This is a scopic and macroscopic dynamics in the context of Grad’s
consequence of the fact that the collisional velocity momentgnethod. It should also be noted that, although by a somewhat
of a certain degree do not involve moments of a higher dedifferent route, most of the above resulfer d=3) were
gree in the case of the Maxwell interactipt3]. The right-  first derived by Galkin more than 30 years dd@3,14.
hand side of Eq(2.6) represents thébilinean collisional The behavior of the nonlinear viscositig. (2.11] for
moment ofV2. small longitudinal rates isp* ~1—[2(d—2)/d]a*. More

In this case of Maxwell molecules the time variablés ~ generally,7* can be expressed as a series expansion in pow-
just proportional to the average number of collisions per parers ofa*:
ticle between 0 and, namely, 7= v, *ffdt’ v(t"), wherev *
=p/yns=(N/Ng) vy is the time-dependent collision fre- 7*(a*)=1+ >, c,a*". (2.12
qguency. Thus, as stated in Sec. |, every particle experiences n=1

ggénlln;ien:?;?:] tr; L:\r;;tl)teii);lgollI@fgsabjt(\)/ve:;etrhren;:nal tllme This is just the specialization of the Chapman-Enskog expan-
L T ~ ~ Y 0% sion 15,18 to the simple viscous longitudinal flow. In the
lision times (>v,7) both p and P,, behave asp,P.x  case of Maxwell molecules* =0 is a regular point ofy*,
~exd —\@*)wr], wherea*=alvo=A(t)/v(t) is the re-  gg expansiori2.12 is convergent, although with a finite ra-
duced longitudinal rate anxl(a*) is the smallest root of the giys of convergence|4*|<1) due to a branch point at*

quadratic equation = —(d—2)/2d=+1yJd—1/d. The knowledge of the explicit
2 expression ofp* [Eqg. (2.11)] also allows one to obtain its
A2—(2a* + 1)\ + aa* =0, (2.7 asymptotic behaviors for large*|; they are »* ~[d/2(d

—1)]a* ~1fora* >0 andn* ~(d/2)|a*| ! for a* <0. This

implies thatP,,/p—0 when a*— +«, while P,,/p—d

whena* — —o. In the former limit all the particles tend to
o 1 \/ . move along the transverse directions, while in the latter they

Mat)=at+ 5 - a2 (28 tend to move along the longitudinal direction. The shape of

7* (a*) for d=3 in the range-2<a*=<2 is shown in Sec.
The second root is obtained from E&.8) by changing the Il (cf. Fig. 5.
sign of the radical, and is only relevant in the transient stage. Because of the symmetry of the problem, one expects that

1 2

a*+ 5
2

Consequently, the heat flux is an irrelevant quantifg2] that, even if it is
_ initially different from zero, asymptotically decays in the
i XX 9 A(@*) 29 long-time limit. Let us analyze this point more carefully.
TL”; B T2 g (2.9 Taking third-degree moments in E@.3), we obtain
J ~ ~ ~ 2 -
In terms of real time, one has an algebraic behavior for the a—quJr a(qy+2M,,) = — §v0qx, (2.13
temperatureT (t) ~ (1+at) “*@)2" |t is important to note
that the sign of\ is the same as that af*. This means that d - - 3. 1.
the temperature decreases monotonically in tima*it>0 77 Moot 3aMy= = vo| 5 Moo= 50|, (214

(expansion, drag forgewhile it increases i* <0 (conden-
sation, pushing forge In addition,\ is a monotonically in-  where



6600 ANDRES SANTOS PRE 62

m . m Now we can go further and consider the fourth-degree
qX:EJ dVv VAV, f, Mxxxsz dVViF. (219 moments(£Y), (£2¢2), and(£*). Making use of the fourth-
degree collisional moments for three-dimensional Maxwell
In Egs. (2.13 and (2.14) use has been made of the third- moleculeg13], Eq.(2.17) gives rise to
degree collisional moments for the three-dimensilonal Max- AW T 38w 7
) . L o W wW—
well interaction[13]. For long collision times £> v 7), the 2(2a* _7\)<§i>: -~ ( )<§i>+ ( )<§§§f

third-degree moments behave®s M, ,~ exp — w(a*) vo7], 35 35
where w(a*)=2a*+ 35— (a*+3)%—a*. If a*<-3 7-3w, ,  54-91
+(\/33/12)=—0.271,0 is negative and then the heat flux + T@D_ T<§x>
grows in time. Apparently, this seems to contradict our ex-
pectation about the irrelevance of the heat flux in our prob- 3(36w—49) ,  9(7—3w)
lem. The solution to this paradox lies in the fact that also the + T<§X>+ 70
temperature grows if* <0; indeed, what is relevant is not
theabsolutevalue of the heat flux but its valuelativeto the (2.19
third power of the thermal velocity, namelyg,/ _
mno(2kBT/m)33’2~ exp_[—[w(a*)—%)\(g_*)]vor}. The differ- 2(a* —\)(E8%)=— %(ﬁgﬁ i 8\/:\;—57<§§>
encew(a*)—3\(a*) is always positive, but goes to zero as
5|a*| "t in the limit a* — —. In general, the smaller the 180—7 343— 162w
value ofa* the longer the transient period before the heat + 10 (eH - 105 (£2)?
flux, conveniently scaled with the thermal velocity, has de-
cayed to zero. 469-216wm  ,  3(36w—49)
In the long-time limit, not only theeducedelements of + 140 X 580 )
the pressure tensd?;; /p reach well-defined stationary val-
ues that depend on the reduced longitudinal edtebut the (2.20
same happens with the distribution function when properly
nondimensionalized with the temperature. This is just a state- 4 3w+28 8(7—3w) 4
ment on the validity of the “normal” or hydrodynamic re- —2MED=- 35 (€0)+ 105 (&
gime, that applies for sufficiently long tim¢45,18. To be
more precise, let us introduce a reduced veloditand a 418w-7) , ,. . 2(154w-81) .,
reduced distribution functio® as + 105 (&€ + 105 (&0
vz 18(7—3w) 3(56—9w)
lokeTn) g = 22
2kgT(7)]92 (2.18
d(&a*)=ny* Iim[ Bm Tov, 7). wherew=1.8731 is the ratio of two eigenvalues of the lin-

earized collision operatdd 9]. The solution of this linear set

. . , of algebraic equations is
In this hydrodynamic regime, the Boltzmann equati@rB)

becomegfor Maxwell molecule$ _
s 3(1-3)) . y
3 a*) 4 1 <§x>:?[—129a7—3w)>\ +54(217— 48w)\
* 0 —9(327w+ 602 A3+ 33(129wW+ 14)\?

As before, the first term on the left side representsigaing
force. The second term can be interpreted akeamostat
force[3,4] that compensates for the heatiraj < 0) or cool-
ing (a* >0) effect produced by the former. Equatitth17) 2.2y 173\ _ 4 B 3
directly yields the “stationary” values of thdreduced (&£0)= 2A(a*)[432(7 SW)AT—54(64wW— 9T\
second-degree moments, namely,

—25(75w— 14)\ + 245n], (2.22

+9(363v—392)A?—10(114w— 35)\ + 245w],

d-1 1
(=5 (&h=— 1= (218 (223
¥ 2142a% -\ 2 1-x
where £2=¢2—¢2. The consistency conditiodé?)=d/2 (&)= [324(7— 3w)\*— 90(6W+7)\3
again leads to Eq(2.7). As noted before{¢2)—0 in the A(a)
limit a*—+o and (¢2)—0 in the opposite limita* n 2
143w+ 2 —10(114wv— +24

— —oo, This means that all the particles motie the La- S(143w+28)\ X 39 S,
grangian framgalong directions perpendicular to the flow (2.29

whena* — +«, while they move parallel to the flow direc-
tion whena* — — . where
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d/i2 mv2 a1
ex —m ( )

is the local equilibrium distribution function. The collision
frequencyv is also a functional of through its dependence
on the density and the temperature. While the dependence on
n is always linear, its dependence dnvaries according to
the interaction potential under consideration. For instance, in
the case of repulsive potentials of the fogbir) ~r~#, we
simply have vecnT” with y=3—(d—1)/u [17]. The ex-
treme cases correspond to Maxwell moleculgs=2(d
—1), y=0] and hard spheresu(— =, y=3). For this class
of repulsive potentials, the Boltzmann equati@r8) is mod-
. - - - - . . eled as

-1.5 -10 05 00 05 10 15
J J ~ -~ ~
a (E__aa_\/xvx)f:_Vo(T/To)y(f_fL), fL:(noln)fL,

FIG. 1. Plot of the reduced fourth-degree momet¢d) (k 3.2
=0), (£2£2) (k=1), and(&?) (k=2) as functions of the reduced
longitudinal ratea* in a three-dimensional system of Maxwell mol- Where, as before, the subscript O denotes initial values. Since
ecules. Solid lines refer to the exact results derived from the Boltthe BGK model contains a single parametey,(it is unable
zmann equation, while dashed lines are predictions of the BGKO reproduce the correct Boltzmann values of both the shear

100

(o m
L_n 27TkBT

10¢

H

kg 2
&

4
X

&

0.1}

kinetic model. viscosity and the thermal conductivity coefficients simulta-
neously. In our problem, however, only the shear viscosity is
A(a*)=(1—N\) —4327—3w)A\*—548w—7)\° relevant and thus the effective collision frequencgan be
chosen as'=p/ nys, SO that the exact NS viscosity is recov-
+9(159W—56)\2—10(114v— 35)\ + 245w ]. ered.
(2.295

A. Maxwell molecules
In writing Egs.(2.22—(2.25 we made use of Eq2.18, and

eliminateda* in favor of A. In the limit a* — +o, i.e,, A
—%, we have (£1)=9(56-9w)/2(14v+9)=5.71 and
(£H=(£2¢%y=0, in agreement with a vanishing population
of particles moving along the longitudinal direction. A more
interesting situation occurs in the domain of negatafe

(condensation caseAs a* becomes more and more nega- nonlinear viscosity is again qiven by Ed€.11 and (2.8).
tive, the three moment&,), (£x£7), and(£1) grow mono- o vever, velocit))// mor%entsg of deéreg hig]r)1er th(an )2 no
tonically, and eventually diverge whert approaches a criti- - |onger coincide in both descriptions. The main advantage of
cal valueag = —1.599 (which corresponds to the roat=  the BGK equation is that it lends itself to an exact solution at
—2.607 of the functiond). This singular behavior of the the |evel of the distribution function. This solution is ex-
fourth-degree moments also occurs in the case of uniforpected to provide a fair description of the true distribution at
shear flow[20,21, and is an indication of an algebraic high- |east for velocities smaller than or of the order of the thermal
velocity tail in the distribution function22,23. We will re- velocity (2kgT/m)¥2,

turn to this point later on. The momentsy), (£2¢%), and The general solution of Eq3.2) for Maxwell molecules
(&%) are plotted in Fig. 1. While form*=0.24 one has is
(£ <(&2£2)<(&?}), the order is reversed fa* <—0.75.

In this subsection we specialize to Maxwell molecules
(vy=0). In that case, the evolution equations for the elements
of the pressure tensor aidentical to those already derived
from the Boltzmann equatiofi2.5) and(2.6)], provided that
the BGK collision frequencyy, is identified with the one
arising from the Boltzmann equation. As a consequence, the

T(V,7)=e "7V, Vxf(V,0)

Ill. KINETIC MODEL DESCRIPTION T , , ~
+ VOJ dr'e” vo(r—7 )ea(T*T )&VXVXfL(V,T,),

The description in Sec. Il is based on the Boltzmann 0
equation. However, it has two shortcomings. On the one (3.3
hand, it is restricted to Maxwell molecules. On the other
hand, even for Maxwell molecules, the explicit expressionwhere the action of the operator eapg, V,) is
for the velocity distribution function is not known. Both g
limitations are overcome if one resorts to a description less e VYXF(Vy) = 2 TF (e¥7V,). (39
detailed than that offered by the Boltzmann equation and
emp|0ys a model kinetic equation based on it. The Simp|eswe will focus on the long-time distribution function, which
and best known model kinetic equation is the one proposeaecomes independent of the choice of the initial distribution
by BGK [24]. It consists of replacing the true collision op- f(V,0)=f(V,0). To that end, it is convenient to work with
eratorJ[ f,f] by a single-time relaxation term of the form the reduced quantitie®.16). The BGK counterpart of Eq.
—v(f—1f.), wherewv is an effective collision frequency, and (2.17) is
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A@*) d 2
Ak B — —d2n—¢
a <9§X§X+ 7 OE §)CI> O+ Ye s,
(3.5
whose solution is
o d
cp(§;a*)=7fd’2f dsexp —|1-a*+ 5\ s
0
—e (g2 g2y 2|, (3.6

Of course, the same result is obtained by taking the limit

vo7— in EQ. (3.3). Equation(3.6) also allows us to obtain
the moments{giklgik?). A simple calculation yields

r r

d-1
oY

K 1
1t 5 5
d—l)

2
r()r
2

X[1+Kky(2a* —N)—kn] 7t

Gl

2

3.7

if 1+kq,(2a* —\)—k,\>0, beinge otherwise. The sign of
2a* —\A=(d—1)AN/(1—d\) is the same as that af. Thus
the momenl(giklgil(Z) diverges wherk; is sufficiently low
and k, is sufficiently high in the casa* >0, while it di-
verges wherk; is sufficiently high and, is sufficiently low
in the opposite casa* <0. More specifically{ £2¢)—o for
a*>0 if k=1/\(a*)>d; analogously,(¢2)— for a*
<0 if k=1/2a* —\|>d/(d—1). In the particular case of
the fourth-degree momentg2£2) and (£7) remain finite,
but (£}) diverges if\ is equal to or smaller than a critical
value \;=—1/(d—-2), i.e., if a¥*<a} =—d/4(d—2). This

behavior is reminiscent of the one observed in Sec. Il from
the Boltzmann equation, although there are two main differ-
ences:(i) in the case of the Boltzmann equation the three

fourth-degree moment@e., not only(£2)) diverge; andii)
this happens for a larger departure from equilibriuaj <
—1.599 versusa; = —0.75 for d=3). The dependence of

the three moments aar*, as predicted by the BGK model, is
shown in Fig. 1. A good agreement with the results obtained

from the Boltzmann equation in the regiafi = — 0.3, espe-

cially in the case of £') can be observed. For longitudinal
ratesa* < —0.3, however, the deviations become important.
It is remarkable that in this viscous longitudinal problem

ANDRES SANTOS
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Gou(gx:a*)zf d§ ®(&a*)
B 1
=w*1’2f dsex;{— 1—-a*+=\|s
0 2
- e<2M>S§§} : 3.9

o8 a)= | dg@gan

% d—1
=7r*(d*1)’2j dsex;{—(lﬂt—)\)s
0 2

—ehsg? |, (3.9

where§ =§é— §X§< is the transverse velocity vector. A simple
change of variable in Eq3.8) gives

2
,1/2FH(a* 16)() 72,3“

e|(éx;a*)=m 2a
1 1 (3.10
IBH(a*)EE_Za*—)\’
where
F|(a*,§§)=[r(ﬁ’§§)’ o0 (3.1
L(B)—T(B), &), a*<o.
Here
F(,B,X)=J:)dyyﬂfle*y (312
is the incompletd” function[27]. Analogously,
¢, (& a%)= ”(dm%*{ﬁ)g% ,
d—1 1 (3.13
IBL(a*)ET-FX,
where
, [T(B)-T(B.,&), a*>0
Fulah, &)= (3.14

I'(B..£2), a*<o.

From Eqs(3.10 and(3.11), it follows that<pH~§X_ZB” in the
limit &— oo if a*<0, and so(&*)— if k=8 —3=|2a*

the BGK model is able to capture, at least at a qualitative™ M - Similarly, ¢, ~& “** in the limit £ —co if a*>0

level, the existence of diverging moments for valuesadf

and then(¢%K)— o if k=B, —[(d—1)/2]=\"1. It is inter-

sufficiently large. In the case of the uniform shear flow, how-esting to note that the exponenig and 8, remain finite in

ever, all the moments predicted by the BGK equation ardhe

limit of infinite |a*|: limax_.B (a*)=(d

finite [25,26, in contrast to the scenario arising from the —1)lima_,_..B)(a*)=(3d—1)/2 and lims_, .8, (a*)

Boltzmann equatiof20-23. The origin of diverging mo-

=(d—1)limgx_..8)(a*)=(d—1)/2.

ments can be traced back to the existence of a high-velocity Apart from an algebraic high-velocity tail, the distribution

tail in the distribution function. To clarify this point, let us
consider the two marginal distribution functions

function may exhibit a singular behavior in the opposite limit
of vanishing velocities. Equation(3.6) shows that
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limg_o®(&a*)=o if 1—a*+(d/2)\(a*)=<0, which cor- a*<—d(d+1)/(d—1)(3d—1). By using the properties
responds toa*<—[d(3d—2)—d+2]/2(d—1) and a*  [25,27

=[yd(3d—2)+d—2]/2(d—1). A similar phenomenon of T'(B)—B %P, B>0
overpopulation of “rest” particles occurs in the uniform _ C1op

shear flow staté25]. Again, it is useful to consider the mar- lim T'(B.x)=¢ —B X, B<0 (3.19
ginal distributions in the analysis of this effect. In the case of x—07" —Inx, B=0,

¢| the divergence happens when bgihanda* are positive,
i.e., fora*>3d/(3d—1), while in the case op, the singu- from Egs. (3.10 and (3.13 one obtains the following
lar behavior takes place whef, >0 anda* <0, i.e., for asymptotic behaviors:

rw*m 1—a*+%)\ 71, a* %
;ﬁiTO@H(éx:a*): wl’z%g”, >z (3.16
kw—1/2|n|§x|—1' a*ZBj—El'
\ W*(dfl)IZ(d_1)|n|§i|71, ar=— (d—d:(L?(;cli)—l)'

Figure 2 shows the ratios with respect to local equi-tegrating over velocity, one can obtain a closed integral
librium Ry(&;a*)=¢|(&x:a*)/ ¢)(é4:0) and R (&, ;a*) equation forT(7). However, such an equation is quite in-
=@, (& ;a*) ¢, (& ;0) fora*=—1 anda*=1.5 in the volved, and then it is more transparent to work directly with
three-dimensional case. It can be observed that*at —1  the evolution equation itselEq. (3.2)]. From this equation it
(a*=1.5) the functiong) (¢,) develops a high-velocity s straightforward to find that the evolution pfand P, is
tail, while the functione, (¢)) diverges as the velocity van-  still given by Egs.(2.5 and (2.6), except that nowv, is

ishes. replaced by a time-dependent collision frequenglp(7)/

B. Repulsive potentials. Hard spheres 10 T T r

Now we consider more general repulsive potentials char-
acterized byy>0. The BGK model for our problem is given
by Eq.(3.2. Its general solution is

- - T T(7')|”
f(v,T)=e*5<f>ewvxvxf(v,0)+vof dr’ () ;
0 TO %L
o

><ef[S(T)fs(T’)]ea(T*T’)ﬁ\/XVX’FL(V'T,), (31&
where
e LRl (3.19 01 - - -
S(r)=wo | dr'l—= - 0.0 05 10 15 20
&xz’ &f

is the number of collisions per particle. In the limijt
—0, s(7)=vo7, and Eq.(3.18 re.duces to EQC3-3)_- On .the FIG. 2. Marginal velocity distributions normalized with respect
other hand, fory>0 Eq. (3.18 is not closed, since it re- to local equilibriumR (&) (solid lines andR, (£,) (dashed lines
quires a knowledge of the time dependence of the temperdor a* = —1 and 1.5, as predicted by the BGK kinetic model for a
ture. By multiplying both sides of Eq3.18 by V? and in-  three-dimensional system of Maxwell molecules.
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Pol”. Therefore, the pressue=nykgT obeys anonlinear
second-order differential equation

oo 2

p|"
Pr davo(p(,) p=0,
(3.20

subject to the initial conditiong(0)=p, and dp/d7|,—
= —(2a/d)P,,(0). For asymptotically long times {— o),
the solution of Eq(3.20 behaves a(r)~exp(—2ard) if
a<0 and asp(7)~(1+ yror/d) Y7 if a>0. In both cases
the accumulated number of collisiosér) [Eq. (3.19] goes
to infinity ast— . In particular, ifa<<0, the typical number
of collisions per particle during the finite interval<Q

e
Frs

2a+ Vo p
Po

<|a|~! becomes infinite, a property already seen in Sec. II

for Maxwell molecules.

In order to obtain the nonlinear viscosity as a function of
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FIG. 3. Ratio—c,/c,_, between successive coefficients in the

the longitudinal deformation rate, we must work with the Chapman-Enskog expansion of the nonlinear viscosity for a three-

reduced ratea* =A/v=alvo(p/py)? rather than with the
time variablesr or t. Note that lim_ .a*(7)=« if a>0,
while lim__,.a* (7) =0 if a<0. With this change of variable
one has

o5 P (3.20
sar" ya* '’ '
d - dp 1 P
—Py=—— |1+ — (1—~—) . (322
Ja ya 2a Pyx

This gives rise to the following ordinary differential equation

for the reduced nonlinear viscosity defined in E2,.10):

2’}’6\*2 1-2——a*y —+4_(1_,y)a*277*2

ga* d

d—-1 *>&n* d-1

+[d+2(d—2+y)a* | »* —d=0. (3.23
For smalla* the solution isp*~1—[2(d—2+ y)/d]a*,
while the asymptotic behavior of* for large |a*| is 7*
~[d/2(d—1)]a* }(1-a*"Y2) for a*>0 and #*
~(d/2)|a*| Y 1—|a*| " Y2(1+ y)] for a* <0. The leading
terms are independent ofy, and correspond to
liMgx 1Py /p=0 and limy_, .. Py /p=d, respectively.
Interestingly enough, Eq3.23), particularized tod=3, is
equivalent to the one derived by Karlat al. [9] from their

dimensional system of hard spheres, according to the BGK kinetic
model.

<a*, but for negative rates the rangea§<a* <0. All the
particular solutions, however, tend toward a special solution
(the hydrodynamic onefor sufficiently long times, i.e., for
a*>aj if ag>0 and for|a*|<|a§| if aj<0. This special
solution representing the hydrodynamic or normal regime
can be identified in principle by the Chapman-Enskog series
[Eqg. (2.12]. Insertion into the differential equatio(8.23
yields the following recurrence formula:

d-1
d2

d—2+ny
g

Ch=—2

n-2
X 2, CnCnp-ml1-(n=1-m)yl. (329

This equation shows that the coefficientis a polynomial in

v of degreen. The first four coefficients in the case of a
three-dimensional system of hard spherds-8, y=3) are
ci=—1,c,=%, c3=—%, andc,=3%. Further computation

of the coefficients shows that, except in the case of Maxwell
molecules ¢=0), expansion(2.12 is only asymptoticFor
largen, the magnitude of the coefficientg grows so rapidly
that the second term on the right-hand side of Ej24
can be neglected, soc,/c,_1~—2ny/d. The ratio

invariance principle and Grad’s method. In other words, the-c, /c,_;, n=1-20, is plotted in Fig. 3 for three-
invariance principle under the microscopic and macroscopigimensional hard spheres. The linear growth of the ratio is
dynamics is an approximation that, at least in this problemalready apparent fan=4. The divergence of the Chapman-
yields the same nonlinear viscosity as the one predicted bgnskog expansion foy>0 also takes place in the uniform
the BGK model. The latter approach, nevertheless, has thénhear flow probleni25,28. Since serie$2.12) is only useful
advantages of being conceptually simpler and providing thef truncated and applied to smadi*, a different strategy is
full velocity distribution function. It must be noted that Eq. needed to obtain the hydrodynamig® for finite a*. One
(3.23 possesses as many solutions as particular initial conpossibility is to expand»* around the point at infinity
ditions. Each particular solution is specified by assigning gnamely, in powers o&* ). Such an expansion proved to

given value of the viscosityy* at the initial (reduced lon-

be convergent in the case of uniform shear flow for shear

gitudinal rateag =a/v,. This situation is analogous to the rates larger than a certain val(i5,28. From a practical

one discussed in Ref25] for the uniform shear flow case.

point of view, however, this method is not very convenient,

Since the irreversible time evolution of the system leads to &ecause many terms would need to be retained in order to

monotonic increase od*, Eq. (3.23 must be solved for
a*=aj . For positive rates, this implies the range<aj

obtain reliable results in the range of interésay|a*|~1),
even if the expansion converges. A second possibility is to
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solve numerically the differential equatidi8.23 with the 6
boundary conditions qugﬂm n*(ag)=1 (for a*>0) and
|ima3ﬁ,x77*(a3):o (for a*<0). On the other hand, it
seems more convenient to follow the approach proposed in

Ref.[9], which consists of representing the nonlinear viscos-
ity as an expansion in powers of the interaction paramgter n

N
7" (a*)=lim »N(a*), n<N><a*>=20 7a(@%) Y,
N— o n=
(3.25

where 79(a*) is the nonlinear viscosity for Maxwell mol-

ecules[Eqg. (2.11)]. Since the Chapman-Enskog coefficients
c, are polynomials iny, series(3.25 can be interpreted as a 2 1 0 1 2
rearrangement of serig¢2.12. In other words, if we write

n

_ m

Ch= E Cam?
m=0

(3.26 FIG. 4. Longitudinal-rate dependence of the coefficiepts n
=0, 1,3,5, and 6 of the expansion of the nonlinear viscosity in
powers of the interaction parametgr according to the BGK ki-
then netic model for three-dimensional systems.
Un(a*)sz:n Cnn@* ™ (320 case ofy=% (hard spheres Figure 5 also shows that the

nonlinear viscosity is almost insensitive to the interaction

As a consequence, the truncated serig¥(a*) is exact model in the case of_ an e_xpansioa*(>0). On the other
through ordea*V, i.e., 7* (a*) — (N (a*)=0(a*N*1). In- hand, when the physical situation corresponds to a conden-

sertion of Eq.(3.29 into Eq. (3.23 yields the recurrence Sation of the gasg*<0), the hardness of the repulsion

formula

nn(@*)

2a

* d—-1 *2 *
d+2(d-2)a +8Ta no(a*)

plays a relevant role, especially around the maximwah (

~—0.4) [30].

Before closing this section, it is worthwhile to note that
Uribe and Gar@-Coln [12] used Grad’s(nonlineay mo-
ment method to obtain an expression fgr(a*) that is dra-
matically at odds with the results obtained in this paper for

d—1 a* <0. According to their resultsy* (a*) increases mono-
x[ 1-2——a*npo(a*)|[na-1(a*) tonically asa* becomes more and more negative, and finally
d reaches a plateay* —49 in the limita* — —o. However,
n—1 these results are strongly inconsistent with the physical con-

* ! * _Zd_ *Z *
+a*n, q4(a%)]-2——a 7m(a*)
d =

><["ln—l—m(a*)"'a* 77r,1—l—m(a*)

14}

£ "‘.‘/Iyzl 2

Y

12+

y:l/ié,'-\ 4

\

_Unm(a*)]]r (3.28

where the prime denotes a derivative with respeet*toThe
coefficientn, for d=3 was the only one considered by Kar-
lin et al.[9,11,29. The coefficientsy,, for n=0, 1, 3, 5, and
6 andd=3 are plotted in Fig. 4. Up ta=3 the coefficients
remain small, but the magnitude ef and, especially, that
of 7 reach rather high values, thus suggesting the 0.2 1
asymptotic character of expansi¢®.25, at least for nega-

tive a*. This is not surprising if one takes into account that, 005 1 0 1 >
while all the truncated serieg™)(a*) are regular a@*

=0, the full viscosityn* (a*) is singular ag* =0. Notwith- a
standing this, since the maximum valuejofs y= 3, it turns
out that the functionsy™N)(a*) with N=3 or 4 can be con-
sidered as rather good approximationssgf(a*). This is  tal (y=1), and hard spheresy& %). The solid line is the exact
quite apparent in Fig. 5, wherg®(a*) and »(¥(a*) prac-  result derived from the Boltzmann equation and the BGK model,
tically overlap in the casg= 3 (corresponding to a repulsive while the dashed and dotted lines are the approximatig@sand
potential withu=12), and are hardly distinguishable in the 7, respectively, as obtained from the BGK kinetic model.

FIG. 5. Nonlinear viscosity for three-dimensional systems of
Maxwell molecules ¢=0), particles interacting via an 2 poten-
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dition p=[Py+(d—1)P,]/d=P,,/d, which implies[cf. problem of uniform shear flow as well.

Eq. (2.10] that * (a*)<(d/2)|a*| ! if a*<0. Since »* (vi) The shape of the velocity distribution functidfor

has an upper bound that goes to zero in the lafits> — o, Maxwell moleculegwas also analyzed by scaling the veloci-

then limy %™ (a*)=0 necessarily. On the other hand, ties with the(unsteadythermal velocity. This gives rise to a

from Egs.(45) or (47) of Ref.[12] it follows thatp<P,,/3  new term in the kinetic equation that represents a nonconser-

(e, P,y<0) if a*<— ;. These inconsistencies of the re- vative thermostat force that cancels the cooliag ¥ 0) or

sults derived in Ref[12] are likely associated with the as- neating @* <0) produced by the driving force. This exact

sumption of a stationary situation in this compressible ﬂOW-equivaIence between the free system and the thermostated
one is analogous to that taking place in the uniform shear
flow, and is restricted to Maxwell moleculésollision fre-
qguency independent of the velogityFor other interactions

IV. CONCLUSIONS the equivalence is only approximate, but still the thermo-

This paper has dealt with a simple viscous IongitudinaI_Stated problem is worth studyin_g_ by itself. It would be qu_ite
flow characterized by an unsteady velocity profilgx,t) interesting to carry out nonequilibrium molecular dynamics
=ax/(1+at) and a uniform densitp(t)=n,/(1+at). The simulations of hard spheres subject to the simultaneous ac-
situation witha>0 corresponds to an expansion of the gastion of the driving and thermostat forces, in order to measure
while the casea<0 describes a condensation phenomenonthe nonlinear viscosity and related phenomena in dense
By using kinetic theory tool§Boltzmann equation and BGK gases. This would complement the extensive simulation
kinetic mode), exact results have been derived for the gen-studies of the uniform shear flow.
eralized or nonlinear viscosity, the velocity moments, and (vii) The exact fourth-degreéscaled velocity moments
the velocity distribution function. The following points sum- derived from the Boltzmann equation diverge for sufficiently
marize the main conclusions of the present study. negative values of the longitudinal rata*(<—1.6). This

(i) By an adequate change of velocity and time variablesindicates the existence of an algebraic high-velocity tail, es-
the problem is seen to be formally equivalent to that of apecially for the longitudinal component of the velocity, for
uniform gas with a steady density, in which the particles argyegativea* .
under the action of a longitudinal driving forc&= (viii) The above singular behavior of the moments is de-
—maVyx. According to this viewpoint, the particles are de- scribed, at least qualitatively, by the exact solution of the
celerated or accelerated along the longitudinal direction, deBGK model. This is a very remarkable feature, since a simi-
pending on the sign ad. As a consequence, the temperature|ar behavior showing up in the uniform shear flow was not
monotonically decreases in timeaf>0, while it increases if captured by the kinetic model. Also note that Grad’s method
a<_Q. ) ) is unable to predict an algebraic high-velocity tail, as it ap-

(i) The relative difference between the normal stiegs  proximates the distribution function by a Gaussian times a
and the hydrostatic pressugefor long collision times is  hoynomial. The BGK solution obtained in this paper pre-
characterized by a(dimensionless viscosity coefficient yicts an algebraic tail in the marginal distribution of longitu-
7* (@), which is a nonlinear function of the longitudinal yina) yelocities ifa* <0, and a weaker tail in the marginal
deformation rate relative to an effectiye collision frquency'distribution of transvers’e velocities @ >0. The latter tall
_The(Chapman-Enst@xpgnsmn ofy™ in Powers ofaf‘ IS, implies that, while all the moments of degrees equal to or
in general, only asymptotic. An exception is provided by gajier than 6(for a three-dimensional systérare finite
Maxwell molecules, in which case the expansion CONVErgeg hen a* >0, the moments of eighth degree divergealf

for |a*|<3. , o ; .
=1.125. The investigation of whether or not this prediction

H i 1 * H *
(iii) A thmnmg_efﬁac;és _present fozla: >*O’ (')'eH 7" de- is confirmed by the Boltzmann equation will be the subject
creases monotonically increases. Foa* <0, however, ¢ o separate paper.

7" s:tarts mcrefsmglwnltaﬂ (thickening effect, reaches a (ix) The explicit expression of the BGK velocity distribu-
maximum (at a* = -3 for Maxwell molecules and around o, fnction allows one to unveil a different type of singular
a*=—0.4 for hard spherg¢sand then decreases for more popayior that does not have, however, a direct influence on
negative longitudinal rates. _ _ the velocity moments since it is associated with the limit of
_(iv) In the case of an expansio@ > 0), the nonlinear gmq| yelocities. More specifically, the distribution of vanish-
viscosity " is practically “universal.” On the other hand, jnq velocities diverges if the longitudinal rate is sufficiently
its behavior in the case of condensatiai €0) is rather positive (@* =1.40) or sufficiently negativea® <—0.90).
sensitive to the interaction potential. In particular, the hardefpis effect is also present in the marginal distribution of

the potential the higher the maximum value gf (for in-  |ongitudinal velocities(for a* =1.125) and in that of trans-
stance, npq=1.125 for Maxwell molecules angf,,=1.46  yerse velocitiegfor a* < —0.75).

for hard spheres

(v) The results forp* derived from the Boltzmann equa-
tion for Maxwell molecules and from the BGK model for ACKNOWLEDGMENTS
more general potentials coincide with those derived by Kar-
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