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Nonlinear viscosity and velocity distribution function in a simple longitudinal flow

Andrés Santos*
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 17 February 2000!

A compressible flow characterized by a velocity fieldux(x,t)5ax/(11at) is analyzed by means of the
Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control parameter~the
longitudinal deformation ratea) distinguishes between an expansion (a.0) and a condensation (a,0)
phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing
function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear
viscosityh* (a* ), that depends on the dimensionless longitudinal ratea* . The Chapman-Enskog expansion of
h* in powers ofa* is seen to be only asymptotic~except in the case of Maxwell molecules!. The velocity
distribution function is also studied. At any value ofa* , it exhibits an algebraic high-velocity tail that is
responsible for the divergence of velocity moments. For sufficiently negativea* , moments of degree 4 and
higher may diverge, while for positivea* the divergence occurs in moments of degree equal to or larger than
8.

PACS number~s!: 05.20.Dd, 47.50.1d, 05.60.2k, 51.10.1y
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I. INTRODUCTION

One of the most challenging problems in nonequilibriu
statistical mechanics is the understanding of transport p
erties in fluids beyond the scope of the Navier-Stokes~NS!
constitutive equations. As part of the NS constitutive eq
tions, Newton’s law establishes alinear relationship between
the irreversible momentum flux and the velocity gradien
namely,

Pi j 5pd i j 2hNSS ]ui

]xj
1

]uj

]xi
2

2

d
“•ud i j D2zNS“•ud i j ,

~1.1!

wherePi j is the pressure tensor,p5(1/d)Tr P is the hydro-
static pressure,d>2 is the dimensionality of the system,u is
the flow velocity,hNS is the shear viscosity, andzNS is the
bulk viscosity@1#. Linear law~1.1! only holds for small hy-
drodynamic gradients, i.e., when the typical distances o
which the hydrodynamic quantities change are much lar
than a characteristic microscopic length~such as the mean
free path in the case of gases!. Otherwise, Eq.~1.1! no longer
holds, a situation usually characterized by the introduction
a generalized ornonlinearviscosity that depends on the hy
drodynamic gradients@2#.

The nonlinear viscosity was extensively studied in the
called uniformshearflow, which is characterized by a linea
velocity field ux5ay and uniform density and temperatu
@3–7#. This is an example of an incompressible flow@1#,
since“•u50. Recently, some attention was devoted to v
couslongitudinalflows of the formu(r ,t)5ux(x,t) x̂ @8–12#.
The simplest example of such compressible flows is cha
terized by a linear velocity profile, i.e.,ux(x,t)5A(t)x, and
uniform densityn and pressure tensorP @13,14#. In that case,
the balance equations for mass and momentum read
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52nA,

]~nA!

]t
522nA2, ~1.2!

whose solution is

A~ t !5
a

11at
, n~ t !5

n0

11at
, ~1.3!

wherea is an arbitrary constant that represents the~initial!
longitudinal deformation rate, andn0.0 is the initial den-
sity. In this case, Newton’s law~1.1! becomes

Pxx5p2S 2
d21

d
hNS1zNSDA. ~1.4!

This simple flow is known ashomoenergetic extensionand,
along with the uniform shear flow, is a particular case o
more general class of homoenergetic affine flows charac
ized by ]2ui /]xj]xk50 @13#. In the flow defined by Eqs
~1.3!, the longitudinal deformation ratea is the onlycontrol
parameter determining the departure of the fluid from
equilibrium state, thus playing a role similar to that of th
shear rate in the uniform shear flow state. On the other ha
in contrast to the uniform shear flow, the sign ofa plays a
relevant role and defines two distinct situations. The casa
.0 corresponds to a progressively more slowlyexpansionof
the gas from the planex50 into all of space. Given a laye
of width d, the flux of particles leaving the layer exceeds t
flux of incoming particles bynad/(11at) and, as a conse
quence, the number of particles inside the layer decrea
monotonically with time. As time progresses, the system
comes more and more rarefied, until no particles are lef
the long-time limit, i.e., limt→`n(t)50. On the other hand
the casea,0 corresponds to a progressively more rapid
condensationof the gas toward the planex50. The latter
takes place over afinite time period t5uau21. However,
since the collision frequency rapidly increases with time,
finite periodt5uau21 comprises aninfinite number of colli-
sions per particle~see below!.
6597 ©2000 The American Physical Society
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6598 PRE 62ANDRÉS SANTOS
Equations~1.3! apply regardless of the initial density o
the fluid. On the other hand, a kinetic description based
the Boltzmann equation is valid only for densities such t
nsd is much smaller than 1, wheres is a characteristic dis
tance measuring the effective size of the molecules. Le
call ns;s2d a characteristic density beyond which notic
able deviations from the Boltzmann equation can be
pected. Thus, even ifn0!ns , there exists a finite timets

5uau21(12n0 /ns) beyond which the Boltzmann descrip
tion ceases to be applicable in the casea,0. This timets

can be made arbitrarily close to the maximum timeuau21 by
formally taking the limitn0 /ns→0.

The aim of this paper is to carry out a detailed and s
contained analysis of the nonequilibrium behavior of a dil
gas under the longitudinal flow characterized by Eqs.~1.3!,
for arbitrary sign and magnitude of the control parametea.
The study is performed by using the tools of kinetic theo
namely the Boltzmann equation and the Bhatnagar-Gr
Krook ~BGK! kinetic model, and deals with the nonline
viscosity, as well as with more general velocity moments a
the velocity distribution function. Most of the results are d
rived for arbitrary dimensionality and for the general class
repulsive potentials of the formr 2m with m>2(d21). The
Boltzmann equation for the problem is considered in Sec
Since the density is known@cf. Eqs.~1.3!#, one can focus on
the probability distribution of velocities. In addition, the di
tribution becomes uniform when the velocities are referred
the local Lagrangian frame moving with the flow veloci
ux(x,t). As a consequence, the original problem can
mapped onto that of a uniform system with a stationary d
sity and subject to the action of a nonconservative driv
force; also, there is a nonlinear relationship between the t
variables in the original and the equivalent systems. To p
ceed further, the Maxwell interactionm52(d21) is as-
sumed, and the time evolution of the pressure tensor is
actly obtained. The long-time behavior allows one to ident
the nonlinear viscosity as a function of the longitudinal d
formation rate. When the velocities are scaled with the~time-
dependent! thermal velocity, the distribution obeys in th
long-time limit a steady-state Boltzmann equation with t
addition of a second nonconservative force playing the r
of a thermostat. The exact fourth-degree velocity mome
are then derived as functions of the longitudinal rate, and
seen to diverge in the case of condensation for states s
ciently far from equilibrium. The picture is complemented
Sec. III by the solution of the BGK kinetic model. In the ca
of Maxwell molecules, the distribution function exhibits a
algebraic high-velocity tail that is responsible for the dive
gence of the moments. The solution predicts that momen
sufficiently high degree can also diverge in the case of
pansion. In addition, the distribution function becomes in
nite in the limit of zero velocity in far from equilibrium
states. Section III also analyzes the nonlinear viscosity
more general repulsive potentials, including hard sphe
Evidence is given about the nonconvergent~but asymptotic!
character of the Chapman-Enskog expansion, Maxwell m
ecules being an exception. On the other hand, the nonli
dependence of the generalized viscosity is practically ins
sitive to the interaction potential in the case of positive d
formation rates. For negative rates, however, the influenc
n
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the potential is not small, especially near the maximum va
of the viscosity. The paper ends with a summary of the m
conclusions in Sec. IV.

II. BOLTZMANN DESCRIPTION
FOR MAXWELL MOLECULES

Let us consider a dilute gas subject to the homoenerg
extension flow described in Sec. I. All the relevant inform
tion is contained in the one-particle velocity distributio
function f (x,v,t). In particular, the number densityn, the
flow velocity u, and the pressure tensorP are obtained in
terms of velocity moments off:

n5E dv f , nu5E dv vf , P5mE dv VV f . ~2.1!

Herem is the mass of a particle, andV[v2u is thepeculiar
velocity. The trace ofP gives the hydrostatic pressurep
5(1/d)Tr P, which is related to the temperatureT through
the equation of statep5nkBT, kB being the Boltzmann con
stant. The time evolution off is governed by the Boltzmann
equation@15#

S ]

]t
1vx

]

]xD f 5J@ f , f #, ~2.2!

whereJ@ f , f # is the nonlinear Boltzmann collision operato
whose explicit expression will be omitted here.

As happens in the uniform shear flow@3,16#, the velocity
distribution function f (x,v,t) becomes spatially uniform
when the velocities are referred to a Lagrangian frame m
ing with the flow, i.e., f (x,v,t)5 f (V,t), where V[v
2u(x,t) is the peculiar velocity. The Boltzmann equatio
~2.2! for this flow can then be written as

S ]

]t
2a

]

]Vx
VxD f̃ 5J@ f̃ , f̃ #, ~2.3!

where

f̃ ~V,t!5
n0

n~ t !
f ~x,v,t !, t5a21 ln~11at!. ~2.4!

Equation~2.3! can be interpreted as corresponding to aho-

mogeneousgas with a velocity distributionf̃ and subject to
the action of a nonconservative force2maVxx̂. Note that the
density and pressure tensor associated withf̃ are ñ5n0 and
P̃i j 5(n0 /n)Pi j , respectively. In fact,f̃ is proportional to the
probability distribution of velocities. The time variablet
5*0

t dt8n(t8)/n0 is a nonlinear measure of time scaled wi
the number density; this variable is unbounded even ia
,0, since in that caset→` when t→uau21. It must be
emphasized that Eqs.~2.2! and ~2.3! are fully equivalent in
the present problem. On the other hand, Eq.~2.3! has the
advantage of describing a uniform system with a const
density. The price to be paid is the introduction of a drivi
force that acts as a longitudinal ‘‘drag’’ force in the case
expansion (a.0), and as a ‘‘pushing’’ force in the case o
condensation (a,0). Of course, every solution to Eq.~2.3!
can be mapped onto a corresponding solution to Eq.~2.2!.
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The Boltzmann equation~2.3! cannot be solved by ana
lytical tools in general. On the other hand, its associa
hierarchy of moment equations can be recursively solve
the special case of Maxwell molecules, i.e., particles in
acting via a repulsive potential of the formf(r )}r 22(d21),
in which case the collision rate is independent of the rela
velocity of the colliding particles@17#. In particular, Eq.~2.3!
yields a closed set of equations for the elements of the p
sure tensor in the case of Maxwell molecules, namely,

]

]t
p̃1

2a

d
P̃xx50, ~2.5!

]

]t
P̃xx12aP̃xx52n0~ P̃xx2 p̃!, ~2.6!

where p̃5n0kBT5(1/d)Tr P̃ and n0}n0 is a constant tha
plays the role of an effective~initial! collision frequency.
More explicitly, n05 p̃/hNS. Equation~2.5! is a condition
expressing the conservation of energy. As for Eq.~2.6!, it
must be emphasized that it isexactfor Maxwell molecules in
our problem, i.e., no approximate truncation scheme~such as
Grad’s moment method@12#! has been applied. This is
consequence of the fact that the collisional velocity mome
of a certain degree do not involve moments of a higher
gree in the case of the Maxwell interaction@13#. The right-
hand side of Eq.~2.6! represents the~bilinear! collisional
moment ofVx

2 .
In this case of Maxwell molecules the time variablet is

just proportional to the average number of collisions per p
ticle between 0 andt, namely,t5n0

21*0
t dt8n(t8), wheren

5p/hNS5(n/n0)n0 is the time-dependent collision fre
quency. Thus, as stated in Sec. I, every particle experie
an infinite total number of collisions between the initial tim
and thefinite interval t5uau21 whena,0. After many col-
lision times (t@n0

21) both p̃ and P̃xx behave asp̃,P̃xx

;exp@2l(a* )n0t#, where a* [a/n05A(t)/n(t) is the re-
duced longitudinal rate andl(a* ) is the smallest root of the
quadratic equation

l22~2a* 11!l1
2

d
a* 50, ~2.7!

i.e.,

l~a* !5a* 1
1

2
2AS a* 1

1

2D 2

2
2

d
a* . ~2.8!

The second root is obtained from Eq.~2.8! by changing the
sign of the radical, and is only relevant in the transient sta
Consequently,

lim
t→`

P̃xx

p̃
5

d

2

l~a* !

a*
. ~2.9!

In terms of real time, one has an algebraic behavior for
temperature,T(t);(11at)2l(a* )/a* . It is important to note
that the sign ofl is the same as that ofa* . This means that
the temperature decreases monotonically in time ifa* .0
~expansion, drag force!, while it increases ifa* ,0 ~conden-
sation, pushing force!. In addition,l is a monotonically in-
d
in
r-

e

s-

ts
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r-

es
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e

creasing function ofa* that behaves asl'2a* 1(d21)/d
in the limit a* →2`, and asl'@12(d21)/2da* #/d in the
limit a* →`.

Based upon Eq.~1.4!, in the long-time limit we define a
~dimensionless! nonlinearviscosity as@12#

h* 5
d

2~d21!

p2Pxx

AhNS

5
d

2~d21!a*
S 12

Pxx

p D , ~2.10!

where we have taken into account that the bulk viscosityzNS
vanishes in a low-density gas@15#. Using Eq.~2.9!, we sim-
ply obtain

h* ~a* !5
d

d21

2a* 2dl~a* !

4a* 2
. ~2.11!

In the three-dimensional case (d53), this result coincides
with the one derived by Karlinet al. @9# for Maxwell mol-
ecules by applying the invariance principle under the mic
scopic and macroscopic dynamics in the context of Gra
method. It should also be noted that, although by a somew
different route, most of the above results~for d53) were
first derived by Galkin more than 30 years ago@13,14#.

The behavior of the nonlinear viscosity@Eq. ~2.11!# for
small longitudinal rates ish* '12@2(d22)/d#a* . More
generally,h* can be expressed as a series expansion in p
ers ofa* :

h* ~a* !511 (
n51

`

cna* n. ~2.12!

This is just the specialization of the Chapman-Enskog exp
sion @15,18# to the simple viscous longitudinal flow. In th
case of Maxwell molecules,a* 50 is a regular point ofh* ,
so expansion~2.12! is convergent, although with a finite ra
dius of convergence (ua* u, 1

2 ) due to a branch point ata*
52(d22)/2d6ıAd21/d. The knowledge of the explicit
expression ofh* @Eq. ~2.11!# also allows one to obtain its
asymptotic behaviors for largeua* u; they areh* '@d/2(d
21)#a* 21 for a* .0 andh* '(d/2)ua* u21 for a* ,0. This
implies that Pxx /p→0 when a* →1`, while Pxx /p→d
whena* →2`. In the former limit all the particles tend to
move along the transverse directions, while in the latter th
tend to move along the longitudinal direction. The shape
h* (a* ) for d53 in the range22<a* <2 is shown in Sec.
III ~cf. Fig. 5!.

Because of the symmetry of the problem, one expects
the heat flux is an irrelevant quantity@12# that, even if it is
initially different from zero, asymptotically decays in th
long-time limit. Let us analyze this point more carefull
Taking third-degree moments in Eq.~2.3!, we obtain

]

]t
q̃x1a~ q̃x12M̃ xxx!52

2

3
n0q̃x , ~2.13!

]

]t
M̃ xxx13aM̃xxx52n0S 3

2
M̃ xxx2

1

2
q̃xD , ~2.14!

where
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q̃x5
m

2 E dV V2Vxf̃ , M̃ xxx5
m

2 E dV Vx
3 f̃ . ~2.15!

In Eqs. ~2.13! and ~2.14! use has been made of the thir
degree collisional moments for the three-dimensional M
well interaction@13#. For long collision times (t@n0

21), the

third-degree moments behave asq̃x ,M̃ xxx;exp@2v(a* )n0t#,

where v(a* )[2a* 1 13
12 2A(a* 1 5

12 )22a* . If a* ,2 3
4

1(A33/12).20.271,v is negative and then the heat flu
grows in time. Apparently, this seems to contradict our
pectation about the irrelevance of the heat flux in our pr
lem. The solution to this paradox lies in the fact that also
temperature grows ifa* ,0; indeed, what is relevant is no
theabsolutevalue of the heat flux but its valuerelative to the
third power of the thermal velocity, namely,q̃x /
mn0(2kBT/m)3/2;exp$2@v(a* )23

2l(a* )#n0t%. The differ-
encev(a* )2 3

2 l(a* ) is always positive, but goes to zero a
1

12 ua* u21 in the limit a* →2`. In general, the smaller th
value of a* the longer the transient period before the h
flux, conveniently scaled with the thermal velocity, has d
cayed to zero.

In the long-time limit, not only thereducedelements of
the pressure tensorPi j /p reach well-defined stationary va
ues that depend on the reduced longitudinal ratea* , but the
same happens with the distribution function when prope
nondimensionalized with the temperature. This is just a st
ment on the validity of the ‘‘normal’’ or hydrodynamic re
gime, that applies for sufficiently long times@15,18#. To be
more precise, let us introduce a reduced velocityj and a
reduced distribution functionF as

j5F m

2kBT~t!G
1/2

V,

~2.16!

F~j;a* !5n0
21 lim

t→`
F2kBT~t!

m Gd/2

f̃ ~V,t!.

In this hydrodynamic regime, the Boltzmann equation~2.3!
becomes~for Maxwell molecules!

S 2a*
]

]jx
jx1

l~a* !

2

]

]j
•jDF5

1

n0
J@F,F#. ~2.17!

As before, the first term on the left side represents adriving
force. The second term can be interpreted as athermostat
force@3,4# that compensates for the heating (a* ,0) or cool-
ing (a* .0) effect produced by the former. Equation~2.17!
directly yields the ‘‘stationary’’ values of the~reduced!
second-degree moments, namely,

^jx
2&5

1

2

1

112a* 2l
, ^j'

2 &5
d21

2

1

12l
, ~2.18!

where j'
2 5j22jx

2 . The consistency condition̂j2&5d/2
again leads to Eq.~2.7!. As noted before,̂ jx

2&→0 in the
limit a* →1` and ^j'

2 &→0 in the opposite limit a*
→2`. This means that all the particles move~in the La-
grangian frame! along directions perpendicular to the flo
whena* →1`, while they move parallel to the flow direc
tion whena* →2`.
-

-
-
e

t
-

y
e-

Now we can go further and consider the fourth-deg
momentŝ jx

4&, ^jx
2j'

2 &, and^j'
4 &. Making use of the fourth-

degree collisional moments for three-dimensional Maxw
molecules@13#, Eq. ~2.17! gives rise to

2~2a* 2l!^jx
4&52

4~2w17!

35
^jx

4&1
3~8w27!

35
^jx

2j'
2 &

1
723w

35
^j'

4 &2
54w291

35
^jx

2&2

1
3~36w249!

70
^jx

2&1
9~723w!

70
,

~2.19!

2~a* 2l!^jx
2j'

2 &52
144w149

210
^jx

2j'
2 &1

8w27

35
^jx

4&

1
18w27

210
^j'

4 &2
3432162w

105
^jx

2&2

1
4692216w

140
^jx

2&1
3~36w249!

280
,

~2.20!

22l^j'
4 &52

3w128

35
^j'

4 &1
8~723w!

105
^jx

4&

1
4~18w27!

105
^jx

2j'
2 &1

2~154w281!

105
^jx

2&2

2
18~723w!

35
^jx

2&1
3~5629w!

70
, ~2.21!

wherew.1.8731 is the ratio of two eigenvalues of the lin
earized collision operator@19#. The solution of this linear se
of algebraic equations is

^jx
4&5

3~123l!

4D~a* !
@21296~723w!l5154~217248w!l4

29~327w1602!l3133~129w114!l2

225~75w214!l1245w#, ~2.22!

^jx
2j'

2 &5
123l

2D~a* !
@432~723w!l4254~64w291!l3

19~363w2392!l2210~114w235!l1245w#,

~2.23!

^j'
4 &5

2

D~a* !
@324~723w!l4290~6w17!l3

19~143w128!l2210~114w235!l1245w#,

~2.24!

where
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D~a* ![~12l!2@2432~723w!l4254~8w27!l3

19~159w256!l2210~114w235!l1245w#.

~2.25!

In writing Eqs.~2.22!–~2.25! we made use of Eq.~2.18!, and
eliminateda* in favor of l. In the limit a* →1`, i.e., l
→ 1

3 , we have ^j'
4 &59(5629w)/2(14w19).5.71 and

^jx
4&5^jx

2j'
2 &50, in agreement with a vanishing populatio

of particles moving along the longitudinal direction. A mo
interesting situation occurs in the domain of negativea*
~condensation case!. As a* becomes more and more neg
tive, the three momentŝjx

4&, ^jx
2j'

2 &, and^j'
4 & grow mono-

tonically, and eventually diverge whena* approaches a criti-
cal valueac* .21.599 ~which corresponds to the rootlc.
22.607 of the functionD). This singular behavior of the
fourth-degree moments also occurs in the case of unif
shear flow@20,21#, and is an indication of an algebraic high
velocity tail in the distribution function@22,23#. We will re-
turn to this point later on. The moments^jx

4&, ^jx
2j'

2 &, and
^j'

4 & are plotted in Fig. 1. While fora* *0.24 one has
^jx

4&,^jx
2j'

2 &,^j'
4 &, the order is reversed fora* &20.75.

III. KINETIC MODEL DESCRIPTION

The description in Sec. II is based on the Boltzma
equation. However, it has two shortcomings. On the o
hand, it is restricted to Maxwell molecules. On the oth
hand, even for Maxwell molecules, the explicit express
for the velocity distribution function is not known. Bot
limitations are overcome if one resorts to a description l
detailed than that offered by the Boltzmann equation a
employs a model kinetic equation based on it. The simp
and best known model kinetic equation is the one propo
by BGK @24#. It consists of replacing the true collision op
eratorJ@ f , f # by a single-time relaxation term of the form
2n( f 2 f L), wheren is an effective collision frequency, an

FIG. 1. Plot of the reduced fourth-degree moments^jx
4& (k

50), ^jx
2j'

2 & (k51), and^j'
4 & (k52) as functions of the reduce

longitudinal ratea* in a three-dimensional system of Maxwell mo
ecules. Solid lines refer to the exact results derived from the B
zmann equation, while dashed lines are predictions of the B
kinetic model.
m

n
e
r
n

s
d
st
d

f L5nS m

2pkBTD d/2

expS 2
mV2

2kBTD ~3.1!

is the local equilibrium distribution function. The collisio
frequencyn is also a functional off through its dependenc
on the density and the temperature. While the dependenc
n is always linear, its dependence onT varies according to
the interaction potential under consideration. For instance
the case of repulsive potentials of the formf(r );r 2m, we
simply haven}nTg with g5 1

2 2(d21)/m @17#. The ex-
treme cases correspond to Maxwell molecules@m52(d
21), g50# and hard spheres (m→`, g5 1

2 ). For this class
of repulsive potentials, the Boltzmann equation~2.3! is mod-
eled as

S ]

]t
2a

]

]Vx
VxD f̃ 52n0~T/T0!g~ f̃ 2 f̃ L!, f̃ L5~n0 /n! f L ,

~3.2!

where, as before, the subscript 0 denotes initial values. S
the BGK model contains a single parameter (n), it is unable
to reproduce the correct Boltzmann values of both the sh
viscosity and the thermal conductivity coefficients simul
neously. In our problem, however, only the shear viscosity
relevant and thus the effective collision frequencyn can be
chosen asn5p/hNS, so that the exact NS viscosity is reco
ered.

A. Maxwell molecules

In this subsection we specialize to Maxwell molecul
(g50). In that case, the evolution equations for the eleme
of the pressure tensor areidentical to those already derived
from the Boltzmann equation@~2.5! and~2.6!#, provided that
the BGK collision frequencyn0 is identified with the one
arising from the Boltzmann equation. As a consequence,
nonlinear viscosity is again given by Eqs.~2.11! and ~2.8!.
However, velocity moments of degree higher than 2
longer coincide in both descriptions. The main advantage
the BGK equation is that it lends itself to an exact solution
the level of the distribution function. This solution is ex
pected to provide a fair description of the true distribution
least for velocities smaller than or of the order of the therm
velocity (2kBT/m)1/2.

The general solution of Eq.~3.2! for Maxwell molecules
is

f̃ ~V,t!5e2n0teat]Vx
Vx f̃ ~V,0!

1n0E
0

t

dt8e2n0(t2t8)ea(t2t8)]Vx
Vx f̃ L~V,t8!,

~3.3!

where the action of the operator exp(at]Vx
Vx) is

eat]Vx
VxF~Vx!5eatF~eatVx!. ~3.4!

We will focus on the long-time distribution function, whic
becomes independent of the choice of the initial distribut
f̃ (V,0)5 f (V,0). To that end, it is convenient to work wit
the reduced quantities~2.16!. The BGK counterpart of Eq
~2.17! is

t-
K
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S 2a*
]

]jx
jx1

l~a* !

2

]

]j
•jDF52F1p2d/2e2j2

,

~3.5!

whose solution is

F~j;a* !5p2d/2E
0

`

dsexpF2S 12a* 1
d

2
l D s

2e2ls~e2a* sjx
21j'

2 !G . ~3.6!

Of course, the same result is obtained by taking the li
n0t→` in Eq. ~3.3!. Equation~3.6! also allows us to obtain
the momentŝ jx

2k1j
'

2k2&. A simple calculation yields

^jx
2k1j

'

2k2&5

GS k11
1

2DGS k21
d21

2 D
GS 1

2DGS d21

2 D
3@11k1~2a* 2l!2k2l#21 ~3.7!

if 1 1k1(2a* 2l)2k2l.0, being` otherwise. The sign of
2a* 2l5(d21)l/(12dl) is the same as that ofa* . Thus
the moment̂ jx

2k1j
'

2k2& diverges whenk1 is sufficiently low
and k2 is sufficiently high in the casea* .0, while it di-
verges whenk1 is sufficiently high andk2 is sufficiently low
in the opposite casea* ,0. More specifically,̂ j'

2k&→` for
a* .0 if k>1/l(a* ).d; analogously,^jx

2k&→` for a*
,0 if k>1/u2a* 2lu.d/(d21). In the particular case o
the fourth-degree momentŝjx

2j'
2 & and ^j'

4 & remain finite,
but ^jx

4& diverges ifl is equal to or smaller than a critica
value lc521/(d22), i.e., if a* <ac* 52d/4(d22). This
behavior is reminiscent of the one observed in Sec. II fr
the Boltzmann equation, although there are two main diff
ences:~i! in the case of the Boltzmann equation the thr
fourth-degree moments~i.e., not only^jx

4&) diverge; and~ii !
this happens for a larger departure from equilibrium (ac* .
21.599 versusac* 520.75 for d53). The dependence o
the three moments ona* , as predicted by the BGK model, i
shown in Fig. 1. A good agreement with the results obtain
from the Boltzmann equation in the regiona* *20.3, espe-
cially in the case of̂ j'

4 & can be observed. For longitudina
ratesa* &20.3, however, the deviations become importa

It is remarkable that in this viscous longitudinal proble
the BGK model is able to capture, at least at a qualitat
level, the existence of diverging moments for values ofua* u
sufficiently large. In the case of the uniform shear flow, ho
ever, all the moments predicted by the BGK equation
finite @25,26#, in contrast to the scenario arising from th
Boltzmann equation@20–23#. The origin of diverging mo-
ments can be traced back to the existence of a high-velo
tail in the distribution function. To clarify this point, let u
consider the two marginal distribution functions
it

r-
e

d

.

e

-
e

ity

w i~jx ;a* ![E dj'F~j;a* !

5p21/2E
0

`

dsexpF2S 12a* 1
1

2
l D s

2e(2a2l)sjx
2G , ~3.8!

w'~j' ;a* ![E
2`

`

djx F~j;a* !

5p2(d21)/2E
0

`

dsexpF2S 11
d21

2
l D s

2e2lsj'
2 G , ~3.9!

wherej'[j2jxx̂ is the transverse velocity vector. A simp
change of variable in Eq.~3.8! gives

w i~jx ;a* !5p21/2
F i~a* ,jx

2!

u2a* 2lu
jx

22b i ,

~3.10!

b i~a* ![
1

2
2

1

2a* 2l
,

where

F i~a* ,jx
2!5H G~b i ,jx

2!, a* .0

G~b i!2G~b i ,jx
2!, a* ,0.

~3.11!

Here

G~b,x!5E
x

`

dy yb21e2y ~3.12!

is the incompleteG function @27#. Analogously,

w'~j' ;a* !5p2(d21)/2
F'~a* ,j'

2 !

ulu
j

'

22b' ,

~3.13!

b'~a* ![
d21

2
1

1

l
,

where

F'~a* ,j'
2 !5H G~b'!2G~b' ,j'

2 !, a* .0

G~b' ,j'
2 !, a* ,0.

~3.14!

From Eqs.~3.10! and~3.11!, it follows thatw i;jx
22b i in the

limit jx
2→` if a* ,0, and sô jx

2k&→` if k>b i2
1
2 5u2a*

2lu21. Similarly, w';j
'

22b' in the limit j'
2 →` if a* .0

and then̂ j'
2k&→` if k>b'2@(d21)/2#5l21. It is inter-

esting to note that the exponentsb i andb' remain finite in
the limit of infinite ua* u: lima* →`b'(a* )5(d
21)lima* →2`b i(a* )5(3d21)/2 and lima* →2`b'(a* )
5(d21)lima* →`b i(a* )5(d21)/2.

Apart from an algebraic high-velocity tail, the distributio
function may exhibit a singular behavior in the opposite lim
of vanishing velocities. Equation~3.6! shows that
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limj→0F(j;a* )5` if 1 2a* 1(d/2)l(a* )<0, which cor-
responds toa* <2@Ad(3d22)2d12#/2(d21) and a*
>@Ad(3d22)1d22#/2(d21). A similar phenomenon o
overpopulation of ‘‘rest’’ particles occurs in the uniform
shear flow state@25#. Again, it is useful to consider the ma
ginal distributions in the analysis of this effect. In the case
w i the divergence happens when bothb i anda* are positive,
i.e., for a* .3d/(3d21), while in the case ofw' the singu-
lar behavior takes place whenb'.0 and a* ,0, i.e., for
ui

-

a
n

-
er
f

a* ,2d(d11)/(d21)(3d21). By using the properties
@25,27#

lim
x→01

G~b,x!5H G~b!2b21xb, b.0

2b21xb, b,0

2 ln x, b50,

~3.15!

from Eqs. ~3.10! and ~3.13! one obtains the following
asymptotic behaviors:
lim
jx

2→0

w i~jx ;a* !55
p21/2S 12a* 1

1

2
l D 21

, a* ,
3d

3d21

p21/2
G~b i!

2a* 2l
jx

22b i , a* .
3d

3d21

p21/2 lnujxu21, a* 5
3d

3d21
,

~3.16!

lim
j'

2 →0

w'~j' ;a* !55
p2(d21)/2S 11

d21

2
l D 21

, a* .2
d~d11!

~d21!~3d21!

p2(d21)/2
G~b'!

ulu
j

'

22b' , a* ,2
d~d11!

~d21!~3d21!

p2(d21)/2~d21!lnuj'u21, a* 52
d~d11!

~d21!~3d21!
.

~3.17!
ral
-

ith

ct

a

Figure 2 shows the ratios with respect to local eq
librium Ri(jx ;a* )5w i(jx ;a* )/w i(jx ;0) and R'(j' ;a* )
5w'(j' ;a* )/w'(j' ;0) for a* 521 and a* 51.5 in the
three-dimensional case. It can be observed that ata* 521
(a* 51.5) the functionw i (w') develops a high-velocity
tail, while the functionw' (w i) diverges as the velocity van
ishes.

B. Repulsive potentials. Hard spheres

Now we consider more general repulsive potentials ch
acterized byg.0. The BGK model for our problem is give
by Eq. ~3.2!. Its general solution is

f̃ ~V,t!5e2s(t)eat]Vx
Vx f̃ ~V,0!1n0E

0

t

dt8FT~t8!

T0
Gg

3e2[s(t)2s(t8)]ea(t2t8)]Vx
Vx f̃ L~V,t8!, ~3.18!

where

s~t!5n0E
0

t

dt8FT~t8!

T0
Gg

~3.19!

is the number of collisions per particle. In the limitg
→0, s(t)5n0t, and Eq.~3.18! reduces to Eq.~3.3!. On the
other hand, forg.0 Eq. ~3.18! is not closed, since it re
quires a knowledge of the time dependence of the temp
ture. By multiplying both sides of Eq.~3.18! by V2 and in-
-

r-

a-

tegrating over velocity, one can obtain a closed integ
equation forT(t). However, such an equation is quite in
volved, and then it is more transparent to work directly w
the evolution equation itself@Eq. ~3.2!#. From this equation it
is straightforward to find that the evolution ofp̃ and P̃xx is
still given by Eqs.~2.5! and ~2.6!, except that nown0 is
replaced by a time-dependent collision frequencyn0@ p̃(t)/

FIG. 2. Marginal velocity distributions normalized with respe
to local equilibrium,Ri(jx) ~solid lines! andR'(j') ~dashed lines!,
for a* 521 and 1.5, as predicted by the BGK kinetic model for
three-dimensional system of Maxwell molecules.



.

o
e

n

th
p
m
b
t

th
q.
o

g

e
.
o

ion

me
ries

a

ell

-
is

-

o
ear

nt,
r to

to

e
ree-
etic

6604 PRE 62ANDRÉS SANTOS
p0#
g. Therefore, the pressurep̃5n0kBT obeys anonlinear

second-order differential equation

]2

]t2
p̃1F2a1n0S p̃

p0
D gG ]

]t
p̃1

2

d
an0S p̃

p0
D g

p̃50,

~3.20!

subject to the initial conditionsp̃(0)5p0 and ] p̃/]tut50
52(2a/d)Pxx(0). For asymptotically long times (t→`),
the solution of Eq.~3.20! behaves asp̃(t);exp(22at/d) if
a,0 and asp̃(t);(11gn0t/d)21/g if a.0. In both cases
the accumulated number of collisionss(t) @Eq. ~3.19!# goes
to infinity ast→`. In particular, ifa,0, the typical number
of collisions per particle during the finite interval 0<t
<uau21 becomes infinite, a property already seen in Sec
for Maxwell molecules.

In order to obtain the nonlinear viscosity as a function
the longitudinal deformation rate, we must work with th
reduced ratea* 5A/n5a/n0( p̃/p0)g rather than with the
time variablest or t. Note that limt→`a* (t)5` if a.0,
while limt→`a* (t)50 if a,0. With this change of variable
one has

]

]a*
p̃52

p̃

ga*
, ~3.21!

]

]a*
P̃xx52

dp̃

ga*
F11

1

2a*
S 12

p̃

P̃xx
D G . ~3.22!

This gives rise to the following ordinary differential equatio
for the reduced nonlinear viscosity defined in Eq.~2.10!:

2ga* 2S 122
d21

d
a* h* D ]h*

]a*
14

d21

d
~12g!a* 2h* 2

1@d12~d221g!a* #h* 2d50. ~3.23!

For small a* the solution ish* '12@2(d221g)/d#a* ,
while the asymptotic behavior ofh* for large ua* u is h*
'@d/2(d21)#a* 21(12a* 21/2) for a* .0 and h*
'(d/2)ua* u21@12ua* u21/2(11g)# for a* ,0. The leading
terms are independent ofg, and correspond to
lima* →1`Pxx /p50 and lima* →2`Pxx /p5d, respectively.
Interestingly enough, Eq.~3.23!, particularized tod53, is
equivalent to the one derived by Karlinet al. @9# from their
invariance principle and Grad’s method. In other words,
invariance principle under the microscopic and macrosco
dynamics is an approximation that, at least in this proble
yields the same nonlinear viscosity as the one predicted
the BGK model. The latter approach, nevertheless, has
advantages of being conceptually simpler and providing
full velocity distribution function. It must be noted that E
~3.23! possesses as many solutions as particular initial c
ditions. Each particular solution is specified by assignin
given value of the viscosityh* at the initial ~reduced! lon-
gitudinal ratea0* 5a/n0. This situation is analogous to th
one discussed in Ref.@25# for the uniform shear flow case
Since the irreversible time evolution of the system leads t
monotonic increase ofa* , Eq. ~3.23! must be solved for
a* >a0* . For positive rates, this implies the range 0,a0*
II

f

e
ic
,
y

he
e

n-
a

a

<a* , but for negative rates the range isa0* <a* ,0. All the
particular solutions, however, tend toward a special solut
~the hydrodynamic one! for sufficiently long times, i.e., for
a* @a0* if a0* .0 and forua* u!ua0* u if a0* ,0. This special
solution representing the hydrodynamic or normal regi
can be identified in principle by the Chapman-Enskog se
@Eq. ~2.12!#. Insertion into the differential equation~3.23!
yields the following recurrence formula:

cn522
d221ng

d
cn2124

d21

d2

3 (
m50

n22

cmcn222m@12~n212m!g#. ~3.24!

This equation shows that the coefficientcn is a polynomial in
g of degreen. The first four coefficients in the case of
three-dimensional system of hard spheres (d53, g5 1

2 ) are
c1521, c25 8

9 , c352 28
27 , andc45 56

27 . Further computation
of the coefficients shows that, except in the case of Maxw
molecules (g50), expansion~2.12! is only asymptotic. For
largen, the magnitude of the coefficientscn grows so rapidly
that the second term on the right-hand side of Eq.~3.24!
can be neglected, socn /cn21'22ng/d. The ratio
2cn /cn21 , n51 –20, is plotted in Fig. 3 for three
dimensional hard spheres. The linear growth of the ratio
already apparent forn>4. The divergence of the Chapman
Enskog expansion forg.0 also takes place in the uniform
shear flow problem@25,28#. Since series~2.12! is only useful
if truncated and applied to smalla* , a different strategy is
needed to obtain the hydrodynamich* for finite a* . One
possibility is to expandh* around the point at infinity
~namely, in powers ofa* 21). Such an expansion proved t
be convergent in the case of uniform shear flow for sh
rates larger than a certain value@25,28#. From a practical
point of view, however, this method is not very convenie
because many terms would need to be retained in orde
obtain reliable results in the range of interest~say ua* u;1),
even if the expansion converges. A second possibility is

FIG. 3. Ratio2cn /cn21 between successive coefficients in th
Chapman-Enskog expansion of the nonlinear viscosity for a th
dimensional system of hard spheres, according to the BGK kin
model.
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solve numerically the differential equation~3.23! with the
boundary conditions lima

0* →01h* (a0* )51 ~for a* .0) and

lima
0* →2`h* (a0* )50 ~for a* ,0). On the other hand, i

seems more convenient to follow the approach propose
Ref. @9#, which consists of representing the nonlinear visc
ity as an expansion in powers of the interaction parameteg,

h* ~a* !5 lim
N→`

h (N)~a* !, h (N)~a* !5 (
n50

N

hn~a* !gn,

~3.25!

whereh0(a* ) is the nonlinear viscosity for Maxwell mol
ecules@Eq. ~2.11!#. Since the Chapman-Enskog coefficien
cn are polynomials ing, series~3.25! can be interpreted as
rearrangement of series~2.12!. In other words, if we write

cn5 (
m50

n

cnmgm, ~3.26!

then

hn~a* !5 (
m5n

`

cmna* m. ~3.27!

As a consequence, the truncated seriesh (N)(a* ) is exact
through ordera* N, i.e.,h* (a* )2h (N)(a* )5O(a* N11). In-
sertion of Eq.~3.25! into Eq. ~3.23! yields the recurrence
formula

hn~a* !52
2a

d12~d22!a* 18
d21

d
a* 2h0~a* !

3H F122
d21

d
a* h0~a* !G@hn21~a* !

1a* hn218 ~a* !#22
d21

d
a* (

m51

n21

hm~a* !

3@hn212m~a* !1a* hn212m8 ~a* !

2hn2m~a* !#J , ~3.28!

where the prime denotes a derivative with respect toa* . The
coefficienth1 for d53 was the only one considered by Ka
lin et al. @9,11,29#. The coefficientshn for n50, 1, 3, 5, and
6 andd53 are plotted in Fig. 4. Up ton53 the coefficients
remain small, but the magnitude ofh5 and, especially, tha
of h6 reach rather high values, thus suggesting
asymptotic character of expansion~3.25!, at least for nega-
tive a* . This is not surprising if one takes into account th
while all the truncated seriesh (N)(a* ) are regular ata*
50, the full viscosityh* (a* ) is singular ata* 50. Notwith-
standing this, since the maximum value ofg is g5 1

2 , it turns
out that the functionsh (N)(a* ) with N53 or 4 can be con-
sidered as rather good approximations ofh* (a* ). This is
quite apparent in Fig. 5, whereh (3)(a* ) andh (4)(a* ) prac-
tically overlap in the caseg5 1

3 ~corresponding to a repulsiv
potential withm512), and are hardly distinguishable in th
in
-

e

,

case ofg5 1
2 ~hard spheres!. Figure 5 also shows that th

nonlinear viscosity is almost insensitive to the interacti
model in the case of an expansion (a* .0). On the other
hand, when the physical situation corresponds to a cond
sation of the gas (a* ,0), the hardness of the repulsio
plays a relevant role, especially around the maximum (a*
'20.4) @30#.

Before closing this section, it is worthwhile to note th
Uribe and Garcı´a-Colı́n @12# used Grad’s~nonlinear! mo-
ment method to obtain an expression forh* (a* ) that is dra-
matically at odds with the results obtained in this paper
a* ,0. According to their results,h* (a* ) increases mono-
tonically asa* becomes more and more negative, and fina
reaches a plateauh* →49 in the limit a* →2`. However,
these results are strongly inconsistent with the physical c

FIG. 4. Longitudinal-rate dependence of the coefficientshn , n
50, 1, 3, 5, and 6 of the expansion of the nonlinear viscosity
powers of the interaction parameterg, according to the BGK ki-
netic model for three-dimensional systems.

FIG. 5. Nonlinear viscosity for three-dimensional systems
Maxwell molecules (g50), particles interacting via anr 212 poten-
tial (g5

1
3 ), and hard spheres (g5

1
2 ). The solid line is the exact

result derived from the Boltzmann equation and the BGK mod
while the dashed and dotted lines are the approximationsh (3) and
h (4), respectively, as obtained from the BGK kinetic model.
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dition p5@Pxx1(d21)Pyy#/d>Pxx /d, which implies @cf.
Eq. ~2.10!# that h* (a* )<(d/2)ua* u21 if a* ,0. Sinceh*
has an upper bound that goes to zero in the limita* →2`,
then lima* →2`h* (a* )50 necessarily. On the other han
from Eqs.~45! or ~47! of Ref. @12# it follows that p,Pxx/3
~i.e, Pyy,0) if a* ,2 5

14 . These inconsistencies of the r
sults derived in Ref.@12# are likely associated with the as
sumption of a stationary situation in this compressible flo

IV. CONCLUSIONS

This paper has dealt with a simple viscous longitudi
flow characterized by an unsteady velocity profileux(x,t)
5ax/(11at) and a uniform densityn(t)5n0 /(11at). The
situation witha.0 corresponds to an expansion of the g
while the casea,0 describes a condensation phenomen
By using kinetic theory tools~Boltzmann equation and BGK
kinetic model!, exact results have been derived for the ge
eralized or nonlinear viscosity, the velocity moments, a
the velocity distribution function. The following points sum
marize the main conclusions of the present study.

~i! By an adequate change of velocity and time variab
the problem is seen to be formally equivalent to that o
uniform gas with a steady density, in which the particles
under the action of a longitudinal driving forceF5

2maVxx̂. According to this viewpoint, the particles are d
celerated or accelerated along the longitudinal direction,
pending on the sign ofa. As a consequence, the temperatu
monotonically decreases in time ifa.0, while it increases if
a,0.

~ii ! The relative difference between the normal stressPxx
and the hydrostatic pressurep for long collision times is
characterized by a~dimensionless! viscosity coefficient
h* (a* ), which is a nonlinear function of the longitudina
deformation rate relative to an effective collision frequen
The ~Chapman-Enskog! expansion ofh* in powers ofa* is,
in general, only asymptotic. An exception is provided
Maxwell molecules, in which case the expansion conver
for ua* u, 1

2 .
~iii ! A thinning effect is present fora* .0, i.e., h* de-

creases monotonically asa* increases. Fora* ,0, however,
h* starts increasing withua* u ~thickening effect!, reaches a
maximum ~at a* 52 1

3 for Maxwell molecules and aroun
a* .20.4 for hard spheres!, and then decreases for mo
negative longitudinal rates.

~iv! In the case of an expansion (a* .0), the nonlinear
viscosity h* is practically ‘‘universal.’’ On the other hand
its behavior in the case of condensation (a* ,0) is rather
sensitive to the interaction potential. In particular, the har
the potential the higher the maximum value ofh* ~for in-
stance,hmax* 51.125 for Maxwell molecules andhmax* .1.46
for hard spheres!.

~v! The results forh* derived from the Boltzmann equa
tion for Maxwell molecules and from the BGK model fo
more general potentials coincide with those derived by K
lin et al. @9# from Grad’s method and the application of the
invariance principle under microscopic and macroscopic
namics. It would be interesting to explore whether such
equivalence extends to the similar but more complica
.

l
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e
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r-
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problem of uniform shear flow as well.
~vi! The shape of the velocity distribution function~for

Maxwell molecules! was also analyzed by scaling the veloc
ties with the~unsteady! thermal velocity. This gives rise to a
new term in the kinetic equation that represents a noncon
vative thermostat force that cancels the cooling (a* .0) or
heating (a* ,0) produced by the driving force. This exa
equivalence between the free system and the thermos
one is analogous to that taking place in the uniform sh
flow, and is restricted to Maxwell molecules~collision fre-
quency independent of the velocity!. For other interactions
the equivalence is only approximate, but still the therm
stated problem is worth studying by itself. It would be qu
interesting to carry out nonequilibrium molecular dynam
simulations of hard spheres subject to the simultaneous
tion of the driving and thermostat forces, in order to meas
the nonlinear viscosity and related phenomena in de
gases. This would complement the extensive simulat
studies of the uniform shear flow.

~vii ! The exact fourth-degree~scaled! velocity moments
derived from the Boltzmann equation diverge for sufficien
negative values of the longitudinal rate (a* &21.6). This
indicates the existence of an algebraic high-velocity tail,
pecially for the longitudinal component of the velocity, fo
negativea* .

~viii ! The above singular behavior of the moments is d
scribed, at least qualitatively, by the exact solution of t
BGK model. This is a very remarkable feature, since a si
lar behavior showing up in the uniform shear flow was n
captured by the kinetic model. Also note that Grad’s meth
is unable to predict an algebraic high-velocity tail, as it a
proximates the distribution function by a Gaussian time
polynomial. The BGK solution obtained in this paper pr
dicts an algebraic tail in the marginal distribution of longit
dinal velocities ifa* ,0, and a weaker tail in the margina
distribution of transverse velocities ifa* .0. The latter tail
implies that, while all the moments of degrees equal to
smaller than 6~for a three-dimensional system! are finite
when a* .0, the moments of eighth degree diverge ifa*
>1.125. The investigation of whether or not this predicti
is confirmed by the Boltzmann equation will be the subje
of a separate paper.

~ix! The explicit expression of the BGK velocity distribu
tion function allows one to unveil a different type of singul
behavior that does not have, however, a direct influence
the velocity moments since it is associated with the limit
small velocities. More specifically, the distribution of vanis
ing velocities diverges if the longitudinal rate is sufficient
positive (a* *1.40) or sufficiently negative (a* &20.90).
This effect is also present in the marginal distribution
longitudinal velocities~for a* >1.125) and in that of trans
verse velocities~for a* <20.75).
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