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Nonequilibrium phase transition for a heavy particle in a granular fluid

Andrés Santos* and James W. Dufty†

Department of Physics, University of Florida, Gainesville, Florida 32611
~Received 12 June 2001; published 30 October 2001!

It is shown that the homogeneous cooling state~HCS! for a heavy impurity particle in a granular fluid

supports two distinct phases. The order parameterf̄s is the mean square velocity of the impurity particle
relative to that of a fluid particle, and the control parameterj* is the fluid cooling rate relative to the impurity

collision rate. Forj* ,1 there is a ‘‘normal’’ phase for whichf̄s scales as the fluid/impurity mass ratio, just

as for a system with elastic collisions. Forj* .1 an ‘‘ordered’’ phase occurs in whichf̄s is finite even for
vanishingly small mass ratio, representing an extreme violation of energy equipartition. The phenomenon can
be described in terms of a Landau-like free energy for a second order phase transition. The dynamics leading
to the HCS is studied in detail using an asymptotic analysis of the Enskog-Lorentz kinetic equation near each
phase and the critical domain. Critical slowing is observed with a divergent relaxation time at the critical point.
The stationary velocity distributions are determined in each case, showing a crossover from Maxwellian in the

normal phase to an exponential quartic function of the velocity that is sharply peaked about the nonzerof̄s for
the ordered phase. It is shown that the diffusion coefficient in the normal phase diverges at the critical point
and remains so in the ordered phase. This is interpreted as a transition from diffusive to ballistic dynamics
between the normal and ordered phases.

DOI: 10.1103/PhysRevE.64.051305 PACS number~s!: 45.70.Mg, 05.20.Dd, 05.40.Jc
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I. INTRODUCTION

A mixture of two mechanically different fluids rapidl
approaches a common equilibrium state for times larger t
a mean free time. This equilibrium state is characterized b
common temperature or, equivalently, mean square vel
ties for each type of particle that differ by their mass ra
according to the equipartition of energies. Recently, the c
responding state for a granular mixture was studied usin
two-component system of hard spheres with inelastic co
sions@1#. Instead of the equilibrium state, the granular m
ture attains a homogeneous cooling state~HCS! in which all
time dependence occurs through a scaling of the particle
locities by their root mean square velocities. Although bo
components have a common cooling rate due to the inela
collisions in the HCS, their granular temperatures are diff
ent. In terms of their mean square velocities, this implie
violation of the classical equipartition theorem. The exten
the violation depends on the mechanical differences of
particles~e.g., mass, diameter, coefficient of restitution!, and
is greatest when the differences are large. The quantita
predictions of the two temperatures from an Enskog-Lore
kinetic theory have been confirmed by Monte Carlo simu
tions @2#.

This effect also occurs for the simplest mixture of an i
purity particle in a one-component fluid. The impuri
‘‘equilibrates’’ to a common HCS with different tempera
tures for the impurity and fluid particles. The dynamics of
impurity particle of massm0 in a granular fluid with particles
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of massm has been studied for the limiting case ofm/m0

!1 @3#. The description was based on the Enskog-Lore
kinetic equation for the impurity in a dense fluid and the flu
was taken to be in its homogeneous cooling state. As for
case of elastic collisions, the kinetic equation reduces t
simple Fokker-Planck equation in this limit with a veloci
independent friction coefficient. The solution to this equati
approaches a HCS for the impurity particle. As expected,
kinetic temperatures of the two types of particle~defined in
terms of their mean square velocities! are always different
although their cooling rates are the same. The ratio of im
rity to fluid thermal velocities is not simplym/m0 as for
equipartition of energy, but has a more complex mass dep
dence, according to the mechanical properties of both p
ticles and the degree of inelasticity in collisions. Neverth
less, the analysis requires that this mass dependence be
that the ratio of thermal velocities should vanish form/m0
→0 just as it would for equipartition. A single parameterj* ,
the ratio of the cooling rate to the impurity-fluid partic
collision rate, characterizes the domain for which the therm
velocity ratio vanishes,j* ,1. The predictions of the
Fokker-Planck equation in this domain~velocity distribution,
temperature ratio, mean square displacement, diffusion c
ficient! have been confirmed by both Monte Carlo and m
lecular dynamics simulation@4#. As j* →1 the diffusion co-
efficient calculated from this Fokker-Planck equati
diverges.

The objective here is to put the analysis of Ref.@3# in
context by extending the discussion toj* >1. A preliminary
report of this work has been given in Ref.@5#. It is found that
there is a qualitative change in the state of the system
j* 51 that is analogous to a second order phase transit
The order parameterf̄s is the ratio of thermal velocities with
a conjugate fieldh proportional to the mass ratio. The param
eterj* is the analog of the inverse temperature. The ter

:
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ANDRÉS SANTOS AND JAMES W. DUFTY PHYSICAL REVIEW E64 051305
nology ‘‘ordered’’ is used in analogy with magnetic system
where the ordered phase has a nonzero order param
~magnetization! at zero external field. More precisely, th
ordered phase here is associated with a broken symmet
scalinglh⇒lf̄s which applies forj* ,1 but does not hold
for j* >1. For j* ,1 the fluid is ‘‘normal’’ with f̄s50 at
h50, as in the case of a system with elastic collisions.
j* .1 an ‘‘ordered’’ state withf̄sÞ0 occurs ath50, rep-
resenting an extreme breakdown of equipartition. Criti
slowing and qualitative changes in the velocity distributi
function for the impurity particle occur near the transitio
The diffusion coefficient diverges forj* >1 and can be un-
derstood as a transition from diffusive to ballistic motion.

In the next section three characteristic frequencies are
troduced: the cooling rate for the fluid particles, the cooli
rate for the impurity, and the impurity-fluid collision rate.
simple estimate is obtained using a maximum entropy dis
bution to construct a phenomenological overview of t
HCS, its properties form/m0!1 ~or equivalentlyh!1), and
the phase transition analogy. In Sec. III the diffusion coe
cient is calculated from its Green-Kubo representation us
the leading term in a cumulant expansion of the veloc
autocorrelation function@6#. The diffusion coefficient is ex-
pressed as a function of the order parameterf̄s(j* ,h), and
for j* ,1 the results of@3# are recovered. Otherwise, at th
critical point and in the ordered phase, it is divergent. T
divergence is interpreted by reconsideration of the Gre
Kubo expression for finite times, showing a crossover fr
diffusive behavior in the normal phase to ballistic motion
the ordered phase.

A more complete description is given in Sec. IV based
an exact asymptotic analysis of the Enskog-Lorentz kin
equation for the impurity particle velocity distribution func
tion. This distribution function is calculated in the critic
domain, showing a crossover from Maxwellian forj* ,1 to
an exponential quartic function of the velocity center
about a nonzero value forj* .1. The functional form of
f̄s(h,j* ) and associated critical properties are similar
those obtained in the phenomenological overview, with
qualitative differences. These results are summarized
discussed in the last section.

II. PHENOMENOLOGICAL OVERVIEW

Consider a fluid of hard, smooth, inelastic spheres of m
m, diameters, and fluid-fluid particle coefficient of norma
restitutiona. In all of the following it is assumed that th
fluid is in its HCS. Due to the inelastic collisions amon
particles the mean kinetic energy decreases as a functio
time ~referred to as ‘‘cooling’’!. An impurity particle of mass
m0, diameters0, and impurity-fluid particle coefficient o
restitution a0 is inserted in the fluid at some initial time
There is energy transfer between the impurity and fluid p
ticles due to collisions and subsequently a common HCS
the fluid and impurity is attained where all particles have
same cooling rate. In this section a phenomenological
accurate description of this process and the HCS is give
present the basic ideas in a simple physical context.
05130
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A. Nonlinear friction coefficient

The primary property of interest is the ratio of the me
square velocities for the impurity and fluid particles,

f̄~ t !5
^v0

2~ t !&

^v2~ t !&
, ~1!

where the angular brackets denote an average over the in
state of the fluid plus impurity particle. This function me
sures the accommodation of the impurity particle to the fl
and will be referred to in the following as the order para
eter. The cooling rates associated with the mean square
locities are defined by

j~ t !52] t ln^v2~ t !&, j0~ t !52] t ln^v0
2~ t !&. ~2!

For dimensionless units it is useful to define an avera
impurity-fluid particle collision rate

nc~ t !5
8

3
hrps̄2g0^v~ t !&, h[

11a0

2

m

m1m0
, ~3!

wheres̄5(s1s0)/2 is the average diameter,r is the fluid
density,g0 is the pair correlation function for the impurit
particle and a fluid particle at contact, and^v(t)& is the av-
erage speed of a fluid particle in the HCS. The parameteh
has been introduced as a measure of the mass ratio.
function ofh this form for the collision frequency is the sam
as that for elastic collisions characterizing the equilibrat
rate. A dimensionless equation forf̄(t) now can be written
in the form

]sf̄5~j* 2j0* !f̄, ~4!

where the dimensionless cooling rates and dimension
time have been introduced as

j* 5
j

nc
, j0* 5

j0

nc
, ds5nc~ t !dt. ~5!

To proceed it is necessary to calculatej* andj0* as func-

tions of f̄. As shown in Appendix A, these are related
averages over the pair distribution function for two fluid pa
ticles and for a fluid and the impurity particle, respective
This is a formal result since the distribution functions are n
known. As a phenomenological estimate therefore, these
erages are performed using a maximum entropy ensem
parametrized by the true mean square velocities. The qu
tative accuracy of this approximation is confirmed in Se
IV. The results of Appendix A are

j* 5
12a2

4A2h

g

g0
S s

s̄
D 2

, j0* ~f̄ !5~11f̄ !1/2S 12h
11f̄

f̄
D ,

~6!

whereg is the pair correlation function for two fluid particle
at contact. This form for the cooling ratej0* of the impurity
is the same as that for elastic collisions and represents
equilibration rate. The new features of inelasticity are prim
5-2
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NONEQUILIBRIUM PHASE TRANSITION FOR A HEAVY . . . PHYSICAL REVIEW E64 051305
rily described byj* , which is independent off̄. The equa-
tion for f̄(s) with these approximate forms for the coolin
rates is

@]s1ḡ* ~f̄ !2j* #f̄5hn̄~f̄ !, ~7!

which results from the decompositionj0* (f̄)5ḡ* (f̄)

2hn̄* (f̄)/f̄ with the definitions

ḡ* ~f̄ !5~11f̄ !1/2, n̄~f̄ !5~11f̄ !3/2. ~8!

This has the same form as would be obtained from a sim
Langevin or Brownian motion model whereḡ* (f̄) is the
‘‘friction constant’’ or nonlinear impurity-fluid collision fre-
quency andhn̄(f̄) is the noise amplitude. The solution t
this equation is a function of time and the two parametersj*
and h. The stationary solutionsf̄s(j* ,h) are determined
from

f̄s5h
n̄~f̄s!

ḡ* ~f̄s!2j*
. ~9!

This form shows most clearly the effect of competition b
tween ‘‘friction’’ on the impurity particle and fluid cooling
since ḡ* (f̄s).j* is required for positive, finite solutions
This generalizes the result obtained in Ref.@3#, which is
limited to j* ,1 andh→0. It is easily verified that a unique
positive solution to Eq.~9! exists for all positivej* and h
and that it is linearly stable. This confirms that the HC
characterized byf̄s is approached for long times for a wid
class of initial conditions. The time scale for formation of t
HCS is discussed below. For elastic collisions (a5a051)
the solution isf̄s5h/(12h)5m/m0 as required by equipar
tition. If only the impurity-fluid particle collisions are inelas
tic ~i.e., a51, j* 50) a recent result of Martin and Piasec
is recovered @7#, f̄s5h/(12h)5m(11a0)/@2m01m(1
2a0)#.

More generally, Eq.~9! can be transformed into a cub
equation forf̄s whose physical solution givesf̄s(j* ,h) for
arbitraryj* andh. Figure 1 showsf̄s(j* ,h) as a function of

FIG. 1. Ratio of mean square velocitiesf̄s as a function of the
mass ratio parameterh for j* 50.9, 1, and 1.1.
05130
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h for j* 50.9,1.0, and 1.1. An instructive alternative for
for the determination off̄s is

j* 5j0* ~f̄s!. ~10!

The graphical solution to Eq.~10! is obtained in the planey
vs f̄ by finding the value off̄ at which the constanty
5j* intercepts the curvey5j0* (f̄), as illustrated in Fig. 2.
There is seen to be a qualitative difference between the
lutions for j* ,1 andj* .1 in the limit of smallh. Since
ḡ* (f̄)>ḡ* (0)51 andn̄(0)51 the asymptotic solution for
j* ,1 is

f̄s→h
n̄~0!

ḡ* ~0!2j*
5

h

12j*
, ~11!

which agrees with@3#. The mechanism responsible for sol
tions with j* .1 is now clear. Asj* exceedsḡ* (0) the
nonlinear dependence of the friction coefficient onf̄ is ac-
tivated to maintain positivity ofḡ* (f̄s)2j* . Sinceḡ* (f̄)
is a monotonically increasing function off̄, positivity is pos-
sible for any choice ofj* . In general this requires thatf̄
must be finite even forh→0. This is possible ifḡ* (f̄s)
2j* is of order h for small h or f̄s5const1O(h). This
nonlinear dependence of the friction coefficient onf̄s pro-
vides the mechanism whereby the coupling of the impu
particle to the fluid can be enhanced for large cooling ra
the impurity-fluid collision frequency is increased by an i
creased mean square velocity of the impurity relative to t
of the fluid. This is illustrated in Figs. 1 and 2 showing th
qualitative difference betweenj* ,1 andj* .1. The former
admits f̄s→0 for h→0 whereas the latter requiresf̄s
5const. In more detail, the asymptotic solution to Eq.~9! is

FIG. 2. Plot of j0* (f̄), Eq. ~6!, for h51022 ~dotted line!, h
51023 ~dashed line!, andh50 ~solid line!. The intercepts of the
curves with the horizontal linesj* 50.9, 1, and 1.1 give the corre

sponding values off̄s(j* ,h) ~circles!.
5-3
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ANDRÉS SANTOS AND JAMES W. DUFTY PHYSICAL REVIEW E64 051305
f̄s~j* ,h!→H ~12j* !21h, j* ,1,

A2h, j* 51,

j* 22112j* 4~j* 221!21h, j* .1.
~12!

The common domain ofh→0 andj* →1 can be obtained
from Eq. ~9! by the scalingh→e2h, f̄s→ef̄s, and 12j*
→e(12j* ), for e!1. The result is the quadratic form

h'~12j* !f̄s1
1

2
f̄s

2, ~13!

which has the solution

f̄s'j* 211A~j* 21!212h. ~14!

At h50 this givesf̄s'j* 211uj* 21u, illustrating again
the qualitative difference betweenj* ,1 andj* .1.

Figures 1 and 2 show that the fluid cooling rate relative
the impurity-fluid collision ratej* is a control paramete
distinguishing different dependencies off̄s on h for smallh.
This will be exploited in the next subsection, wherej* 51
identifies a critical point. Sincej* }(12a2)/h, Eq. ~6!, the
plots off̄s at constantj* require the change of both the flui
coefficient of restitutiona and the mass ratio parameterh. It
is instructive, however, to examine the mean square velo
ratio f̄s and the mean energy ratioe0 /e5(m0 /m)f̄s as
functions ofh at fixeda,1. In that case,j* ;h21 diverges
in the limit h→0 and so dof̄s'j* 2(11h)221;h22 and
e0 /e;h23. This is illustrated in Fig. 3, wheref̄s ande0 /e
are plotted versush for a51, 0.99, and 0.95~taking, for
simplicity, a051, s5s0 , g5g051). The dotted lines for

FIG. 3. Ratio of mean square velocitiesf̄s and of mean kinetic
energiese0 /e as functions of the mass ratio parameterh for a51,
0.95, and 0.99.
05130
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a51 represent equipartition for whichf̄s→h/(12h) and
e0 /e→1. Fora,1 there is a sharp deviation at sufficient
small h, representing the crossover to the domain for wh
j* .1.

B. Representation as a phase transition

Figure 1 and Eqs.~12! and ~14! are reminiscent of the
thermodynamics for magnetization as a function of an ex
nal magnetic field. Below some critical temperature the m
netization is finite at zero field, while above that temperat
it vanishes at zero field. To pursue this analogy, consi
f̄s(j* ,h) as the order parameter~magnetization!, h as the
conjugate field~magnetic field!, andj* as the control param
eter ~inverse temperature!. The ‘‘equation of state’’ for the
system is obtained from Eq.~9! by solving forh(f̄s,j* ):

h~f̄s,j* !5
f̄s

~11f̄s!
3/2

@~11f̄s!
1/22j* #. ~15!

A Helmholtz free energy can be defined in the usual way

F~f̄s,j* !5E
0

f̄s
dx h~x,j* !5f̄s2 ln~11f̄s!

22j* F 21f̄s

~11f̄s!
1/2

22G . ~16!

Next, the Gibbs free energy is obtained from the Legen
transformation:

F~j* ,h!5F~f̄s,j* !2hf̄s~j* ,h!

5~12h!f̄s~j* ,h!2 ln@11f̄s~j* ,h!#

22j* H 21f̄s~j* ,h!

@11f̄s~j* ,h!#1/2
22J . ~17!

The first and second derivatives ofF(j* ,h) provide the or-
der parameterf̄s, ‘‘entropy’’ S, ‘‘susceptibility’’ x, ‘‘ex-
pansion coefficient’’ah , and ‘‘heat capacity’’Ch . The re-
sults are

S~j* ,h!5
]F~j* ,h!

]j*
522F 21f̄s

~11f̄s!
1/2

22G , ~18!

x~j* ,h!52
]2F~j* ,h!

]h2
5

]f̄s~j* ,h!

]h

5
~11f̄s!

5/2

~11f̄s!
1/22j* S 12

1

2
f̄sD , ~19!

ah~j* ,h!52
]2F~j* ,h!

]j* ]h
5

]f̄s~j* ,h!

]j*
5x

f̄s

~11f̄s!
3/2

,

~20!
5-4
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Ch~j* ,h!52
]2F~j* ,h!

]j* 2
5x21ah

2 . ~21!

The values of these thermodynamic properties in the li
h50 for j* Þ1 follow directly from the asymptotic forms
~12! for f̄s:

F~j* ,h50!5H 0, j* ,1,

~j* 21!~32j* !22 lnj* , j* .1.
~22!

S~j* ,h50!5H 0, j* ,1,

22
~j* 21!2

j*
, j* .1,

~23!

x~j* ,h50!5
1

uj* 21u H 1, j* ,1,

2j* 4

j* 11
, j* .1,

~24!

ah~j* ,h50!5H 0, j* ,1,

2j* , j* .1,
~25!

Ch~j* ,h50!5H 0, j* ,1,

2
j* 221

j* 2
, j* .1.

~26!

With the exception ofx, all thermodynamic variables vanis
for j* ,1 and are finite forj* .1. All are continuous at
j* 51, except forah , which has a finite discontinuity. Th
susceptibility diverges asuj* 21u→0. Thus either the dis-
continuity of ah or the divergence ofx characterizes a sec
ond order phase transition atj* 51. Since the order param
eter f̄s behaves qualitatively like that for a system wi
elastic collisions whenj* ,1, this will be referred to as the
‘‘normal’’ phase. In contrast, sincef̄sÞ0 for j* .1 this will
be called the ‘‘ordered’’ phase. The entropy functio
S(j* ,h) is plotted versusj* for h51022, 1023, and 0 in
Fig. 4. The negative value ofS at h50 and j* .1 is a
measure of the degree of ‘‘order’’ in the ordered phase. T

FIG. 4. Entropy as a function ofj* for h51022 ~dotted line!,
h51023 ~dashed line!, andh50 ~solid line!.
05130
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response functionsx, ah , andCh at h50, 1022, and 1023

are shown as functions ofj* in Fig. 5.
Near the critical region (h!1, uj* 21u!1), the free en-

ergy adopts the Landau-like form

F~j* ,h!'
1

2
~12j* !f̄s

21
1

6
f̄s

32hf̄s, ~27!

which yields the critical equation of state~13!, as expected. It
is easily verified that the free energy and the equation of s
in the critical region satisfy the scaling relations

F„l~j* 21!,lah…5lbF~j* 21,h!,

f̄s„l~j* 21!,lah…5lb2af̄s~j* 21,h! ~28!

with a52 andb53. These scaling relations suffice to dete
mine the critical exponents@8# d̂5a/(b2a)52, b̂5b2a

51, and ĝ52a2b51, while the critical exponentâ52
2b521 is negative, indicating thatCh is continuous at the
critical point.

FIG. 5. Inverse susceptibility (x21), expansion coefficient (ah),
and heat capacity (Ch) as functions ofj* for h51022 ~dotted line!,
h51023 ~dashed line!, andh50 ~solid line!.
5-5
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ANDRÉS SANTOS AND JAMES W. DUFTY PHYSICAL REVIEW E64 051305
C. Critical dynamics

If the ratio between the initial mean square velocities
the fluid and impurity particles is not that given by the so
tion to Eq.~9!, there is an evolution to the HCS described
Eq. ~7! which can be written in the Ginzburg-Landau form

]sf̄52n̄~f̄ !
]F~j* ,h;f̄ !

]f̄
. ~29!

Here,F(j* ,h;f̄) is a variational free energy given by Eq
~17! with the order parameterf̄ considered as an indepen
dent variable, and the kinetic coefficient isn̄(f̄). The sta-
tionary solution occurs for]F(j* ,h;f̄)/]f̄50, which is
just Eq.~9!. It follows directly from Eqs.~17! and ~29! that
F(j* ,h;f̄) has the properties

F~j* ,h;f̄ !>F~j* ,h;f̄s!,
~30!

]sF~j* ,h;f̄ !52n̄~f̄ !F ]F~j* ,h;f̄ !

]f̄
G 2

<0.

This shows thatF(j* ,h;f̄) is a Lyapunov function for the
dynamics: it is bounded from below by the HCS solution a
monotonically approaches this bound. Consequently,
HCS solution results in both phases for a wide class of
mogeneous initial conditions and is stable.

The free energyF(j* ,h50;f̄) is shown in Fig. 6 for
j* 50.9, 1, and 1.1. As expected, the minimum is located
f̄50 for j* <1 and atf̄Þ0 for j* .1. For states near th
HCS the evolution equation~29! can be linearized and
characteristic response timet* identified according to

2]s lnuf̄2f̄su5t* 215~ n̄x21!f̄s
. ~31!

In the elastic limitt* is just the equilibration time~in terms
of the number of impurity-fluid particle collisions! for the
impurity particle to attain a mean kinetic energy equal to t
of the fluid particles. Similarly, for inelastic collisions it i
the time for the impurity particle to reach a cooling ra
equal to that of the fluid. This characteristic time is a smo
function of h and j* except in the limith→0 wheret*

FIG. 6. Variational free energyF(j* ,h50;f̄) for j* 50.9, 1,
and 1.1.
05130
f
-

d
e
-

t

t

h

diverges atj* 51. This critical slowing follows directly
from the fact thatt* }x. Otherwise, the relaxation time
away fromj* 51 are finite and comparable for the norm
and ordered states. Figure 7 shows the dependence oft* 21

on h for j* 50.9, 1, and 1.1.

III. DIFFUSION

Diffusion of an impurity particle in the HCS has bee
described in general elsewhere@6,9,10#. In this section the
consequences forh→0 in the two phases are explored.
generalized diffusion equation can be obtained by extend
the familiar methods of linear response to the granular flu
which for long wavelengths takes the form

]sn* ~r* ,s!2D* ~s!¹2n* ~r* ,s!50. ~32!

Here n* (r* ,s) is the dimensionless probability density
find the impurity particle at positionr5r* l , where l

5^v0
2&s

1/2/nc is an effective mean free path, ands is the di-
mensionless time of Eq.~5!. The time dependent diffusion
functionD* (s) is given exactly by a Green-Kubo expressio

D* ~s!5
1

3^v0*
2&s
E

0

s

ds8^v0* ~s8!•v0* &s, ~33!

where v0* 5v0 /A^v2&s and the angular brackets denote
average over the dimensionless HCS ensemble. A phen
enological but accurate evaluation of the velocity autocor
lation function is given by its exact short time behavior

^v0* ~s8!•v0* &s→^v0*
2&se

2vD* s8, ~34!

vD* 52
1

2
j0* 2

^~L* v0* !•v0* &s

^v0*
2&s

, ~35!

whereL* is the dimensionless Liouville operator~cf. Appen-
dix A!. The dimensionless frequencyvD* is calculated in
Appendix A using the same approximation as that for
cooling rates in Sec. II, with the result

vD* 5
1

2
@ ḡ* ~f̄s!2j0* #. ~36!

FIG. 7. Inverse characteristic timet* 21 as a function of the
mass ratio parameterh for j* 50.9, 1, and 1.1.
5-6
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For a fluid with elastic collisions the approximation~34! co-
incides with that obtained from the Enskog-Lorentz equat
in the first Sonine approximation, and is known to be ac
rate even for moderately dense systems. It is assumed t
similar level of accuracy extends to the inelastic case as
@10#. The diffusion functionD* (s) becomes

D* ~s!5
1

3vD*
~12e2vD* s!. ~37!

The analysis of Appendix A shows thatvD* .0 for all finite
h. Thus fors@vD*

21

D* ~s!→D* 5
1

3vD*
~38!

and Eq.~32! becomes the usual diffusion equation with d
fusion constantD* . The initial transient period is the ex
pected ‘‘aging’’ required for applicability of hydrodynamic
~diffusion!.

Consider now the behavior ash→0. Using Eqs.~8! and
~9! vD* can be expressed entirely in terms off̄s andh:

vD* 5
1

2
h

~11f̄s!
3/2

f̄s

. ~39!

Using Eq.~12! this frequency behaves forh→0 as

vD* ~j* ,h!→5
1

2
~12j* !, j* ,1,

1

2
Ah

2
, j* 51,

1

2

j* 3

j* 221
h, j* .1.

~40!

In general,vD* (j* ,0) is finite below the critical point, bu
vanishes at and above the critical point forh50. Thus dif-
fusion in the sense of Eq.~38! occurs ath50 only for j*
,1. To understand the phenomenon forj* >1 note that for
vD* 50 Eq. ~37! becomes

D* ~s!5
s

3
. ~41!

To interpret this, take the second moment of Eq.~32! with
respect tor 2 to relateD* (s) to the mean square displac
ment of the impurity particle,

D* ~s!5
1

6
]s^ur* ~s!2r* ~0!u2&s. ~42!

Thus the mean square displacement behaves as

^ur* ~s!2r* ~0!u2&s→H 6D* s, j* ,1,

s2, j* >1.
~43!
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This shows that the impurity is not diffusing but rather u
dergoing ballistic motion at its root mean square speed
j* >1.

IV. ASYMPTOTIC KINETIC THEORY

The analysis of Secs. II and III is based on the plausi
but uncontrolled estimate of the cooling rates for the flu
and impurity particles using a maximum entropy ensem
~Appendix A!. Furthermore, it is limited to a discussion o
the order parameter and diffusion but does not address o
properties such as the velocity distribution itself. In this se
tion the results of Sec. II are recovered systematically a
with additional detail from the Enskog-Lorentz kinetic equ
tion for the impurity particle velocity distribution@1,3,6#.
The features of interest here occur forh→0 so only an
asymptotic representation of the kinetic theory is requir
The fluid particle distribution is independent ofh and its
detailed form is not required for the analysis here. T
asymptotic form of the Enskog-Lorentz equation for the i
purity particle distributionf 0(v0 ,t), as a functional of the
fluid particle distribution, is the focus of this section.

An expansion of the impurity-fluid particle collision op
erator in powers ofh is straightforward, leading to the
Kramers-Moyal representation@11#. The leading terms of
this expansion have been given in Appendix A of Ref.@3#:

] t f 0~v0 ,t !5
]

]v0
•@hv0g~v0! f 0~v0 ,t !#

1
1

2

]2

]v0i]v0 j
H h2Fn1~v0!d i j 1n2~v0!

3S v0iv0 j2
1

3
d i j v0

2D G f 0~v0 ,t !J 1O~h3!.

~44!

The friction g(v0) and the noise functionsn1(v0),n2(v0)
are explicit averages over the fluid particle distribution giv
in Appendix B. The states of interest are functions only
the magnitude ofv0. Consequently, it is possible to introduc
a variable

f5
v0

2

^v2~ t !&
~45!

whose average value is the order parameterf̄(s), wheres is
the dimensionless time variable defined in Eq.~5!. The dis-
tribution function for this variable isP(f,s), defined by

P~f,s![4p f 0~v0 ,t !v0
2 dv0

df
52p^v2~ t !&3/2f1/2f 0~v0 ,t !.

~46!

Then the Kramers-Moyal expansion becomes forP(f,s)
5-7
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]sP~f,s!5
]

]f H f@2j* 1g* ~f!#2S 12
2

3

]

]f
f Dhn1* ~f!

1
4

5

]

]f
f2hn2* ~f!J P~f,s!1O~h2!. ~47!

Herej* is the dimensionless cooling rate for the fluid intr
duced in Eq.~2!. The functionsg* (f), n1* (f), andn2* (f)
are the dimensionless forms ofg(v0), n1(v0), andn2(v0),
respectively, given by Eqs.~A27! and ~B3! of the Appen-
dixes @12#. They are functionals of the distribution functio
f (v,t) of the fluid in the HCS and are normalized to ha
g* (0)51, n1* (0)53^v3&/4^v2&^v&, andn2* (0)51. In addi-

tion, the derivative g* 8(f)[dg* (f)/df at f50 is
g* 8(0)5^v21&^v2&/5^v&. These functions can be accurate
estimated by assuming a maximum entropy ensemble for
fluid f and the results are given by Eqs.~B8!–~B10!. Accord-
ing to these estimates,n1* (0).1 andg* 8(0).3/10. Figure
8 shows the friction coefficientg* (f) and the noise coeffi-
cients n1* (f), n2* (f) according to this maximum entrop
approximation forf. Hereafter, all the plots of quantities de
fined in terms of those coefficients will be made using E
~B8!–~B10!.

The Kramers-Moyal expansion is not well ordered sin
the small parameterh also multiplies the highestf deriva-
tive. A proper asymptotic result requires a scaling such t
all higher terms in the series are exactly zero in the app
priate limit. The simplest case is thedeterministic limitfor
which h50 in Eq. ~47!.

A. Deterministic limit

If the formal limit h50 is taken in Eq.~47!, the equation
becomes

]sP0~f,s!5
]

]f
f@2j* 1g* ~f!#P0~f,s!, ~48!

where the subindex 0 is used to denote quantities ath50.
The solution to this equation for sharp initial conditio
P0(f,s50)5d(f2f0) is

P0~f,s!5d„f2f̄0~s!… ~49!

FIG. 8. Plot of the friction coefficientg* (f) ~solid line! and the
noise functionsn1* (f) ~dashed line! andn2* (f) ~dotted line!.
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with

@]s1g* ~f̄0!2j* #f̄0~s!50 ~50!

and f̄0(s50)5f0. Thus the initial sharp distribution re
mains sharp and only its central value changes in time.
latter defines the macroscopic dynamics for the aver
valuef̄0(s). As expected, it has the form~7! with a vanish-
ing noise. The solution for more general initial conditio
can be obtained as a superposition of the specific solu
~49!.

The stationary solutions are obtained from Eq.~50! as the
solution to

f̄0s@2j* 1g* ~f̄0s!#50. ~51!

The possibilities aref̄0s50 andg* (f̄0s)5j* . It is shown in
Appendix B thatg* (0)51. Therefore, the solutionf̄0s50
is stable only ifj* ,1. In the casej* .1 the unique stable
solution is determined fromg* (f̄0s)5j* with a nonzero
value off̄0s. Such solutions exist becauseg* (f̄) is a mono-
tonically increasing function, i.e.,g* (f̄)>g* (0̄), g* 8(f̄)
>0, as proved in Appendix B. These are the two pha
discussed in Sec. II, now identified precisely from t
Enskog-Lorentz kinetic equation. The details of the ‘‘equ
tion of state’’ are different for this controlled analysis, b
the qualitative features of states withf̄s50 and f̄sÞ0 for
h50 are recovered exactly, as illustrated in Fig. 9.

B. Effects of fluctuations

A more complete description including fluctuations is o
tained by a transformation of the formf5f̄0(s)1hph,
wheref̄0(s) is the average value off at h50 andh repre-
sents the fluctuations about this value. The power law of
scaling for the fluctuations is determined by the requirem
that the distribution of fluctuationsP(h,s,h)5hpP(f,s,h)
→P(h,s), which is independent ofh. Inverting the result in
terms of f gives the well-defined asymptotic behavior f
small h @11#. Here, attention is limited to states near t

FIG. 9. Plot of the order parameter in the deterministic lim

f̄0s, as a function ofj* . The dashed line is the maximum entrop

estimatef̄s5j* 221 of Sec. II.
5-8
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stationary statef̄0s so the chosen scaling isf5f̄0s1hph.
The distribution function is no longer sharp, as in Eq.~49!,
but instead has a width proportional tohp. The choice ofp is
governed by the requirement that the Kramers-Moyal eq
tion for the distribution ofh should truncate exactly forh
50. The details are given in Appendix B, where the statio
ary solution in the normal phase is found to be

Ps~f!5
3

hh̄s
S 3f

2hh̄sp
D 1/2

e23f/2hh̄s, j* ,1, ~52!

and the width of the distribution is characterized by

h̄s5
n1* ~0!

12j*
5

3^v3&

4^v2&^v&

1

12j*
. ~53!

Since f̄0s50 in this phase, the order parameter isf̄s

5hh̄s. This agrees with the result of Ref.@3#, where the
distribution is recognized as a Maxwell-Boltzmann distrib
tion for the velocity of the impurity particle, but with a dif
ferent temperature from that of the fluid. In the present
tation the impurity temperature identified from th
Maxwellian is

T05T
11a0

2
h̄s, ~54!

whereT is the granular temperature of the fluid. The pha
transition is seen to occur with a diverging kinetic tempe
ture for the impurity particle. If a maximum entropy distr
bution is assumed for the fluid, then the right side of Eq.~53!

can be evaluated to getf̄s5h/(12j* ), which agrees with
the phenomenological theory of Sec. II, Eq.~12!.

In the ordered phase a qualitatively different distributi
is obtained, as expected. It is now Gaussian inf ~quartic in
velocity! and centered about a nonzero value,

Ps~f!5
1

A2B~f̄s!hp
e2(f2f̄s)

2/2B(f̄s)h, j* .1, ~55!

with

B~f!5
1

g* 8~f!
F2

3
n1* ~f!1

4

5
fn2* ~f!G . ~56!

The functionB(f) is plotted in Fig. 10. The width of the
distribution isDfs5@B(f̄s)h#1/2, so that ash→0 the distri-
bution becomes sharply peaked about the stationary v
f̄s5f̄0s, wheref̄0s is the stationary order parameter in th
deterministic limit. At a fixed small value ofh the ~absolute!
width Dfs increases, but the relative widthDfs/f̄s de-
creases, asj* 21 ~and, consequently,f̄s) increases.
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C. Critical domain

The above results distinguish the cases ofh→0 for j*
,1 and for j* .1. A uniform description of the critical
domain for smallh andj* '1 can be obtained by noting tha
f̄s vanishes at the critical point from both phases, and s
ing the Kramers-Moyal equation according toj* 21
5h1/2d and f5h1/2h. In addition a new time variable is
defined byt5h1/2s. Then ath50 the equation is

]tP~h,t!5
]

]h F2dh1g* 8~0!h2

2
1

3 S 322
]

]h
h Dn1* ~0!GP~h,t!. ~57!

The stationary distribution function is found to be

Ps~h!5Ch1/2expF2
1

2B~0! S h2
d

g* 8~0!
D 2G , ~58!

where B(0)52n1* (0)/3g* 8(0).2.22 is the value atf50
of the function defined in Eq.~56!. The scaled order param
eter in this critical domain is then obtained from

h̄s~d!5AB~0!

E
0

`

du u3/2exp@2~u22z!2/2#

E
0

`

du u1/2exp@2~u22z!2/2#

, ~59!

wherez[d/2g* 8(0)AB(0). Its explicit expression is

h̄s~d!5AB~0!
C1~z!

4zC2~z!
, ~60!

where

FIG. 10. Plot of the functionB(f) defined in Eq.~56!.
5-9
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C1~z!5H ~314z2!C2~z!12z2@K7/4~z2!1K21/4~z2!2K5/4~z2!2K23/4~z2!#, z,0,

~316z2!C2~z!12z2@ I 7/4~z2!1I 27/4~z2!1I 5/4~z2!1I 25/4~z2!#, z.0,
~61!

C2~z!5H K1/4~z2!2K3/4~z2!, z,0,

I 3/4~z2!1I 23/4~z2!1I 1/4~z2!1I 21/4~z2!, z.0,
~62!
e
tri

by

-

pa
d

d

no

c-

s, as
al

r,
ge

-

I n(z) andKn(z) being the modified Bessel functions of th
first and second kind, respectively. The width of the dis

butionDh5Ah̄22h̄2 in the steady state can be obtained
taking moments in Eq.~57! as

Dhs~d!5Fn1* ~0!1dh̄s~d!

g* 8~0!
2h̄s

2~d!G 1/2

. ~63!

The asymptotic behaviors ofh̄s(d) andDhs(d) are

h̄s~d!→H n1* ~0!udu21, d→2`,

Al1, d→0,

d/g* 8~0!, d→`,

~64!

Dhs~d!→H A2/3n1* ~0!udu21, d→2`,

Al2, d→0,

AB~0!, d→`,

~65!

where l1[2B(0)@G(5/4)/G(3/4)#2.2.43 and l2
[3B(0)/22l1.0.90. In the limit d→2` we have
Dhs/h̄s→A2/3, which is consistent with a Maxwell
Boltzmann distribution. In contrast,Dhs/h̄s→0 when d
→`, so that the distribution is sharp around the order
rameter in that limit. The dependence of the scaled or
parameterh̄s(d) on the scaled control parameterd is shown
in Fig. 11, where the width of the distribution is also plotte

It is worth noting that the scaling relationsf5h1/2h,
j* 215h1/2d are successfully captured by the phenome

FIG. 11. Plot ofh̄s(d) ~solid line! and Dhs ~dotted line!. The

dashed line represents the phenomenological approximationh̄s(d)
→d1Ad212, Eq. ~14!.
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logical theory of Sec. II, except that there the scaling fun
tion is approximated byh̄s(d)→d1Ad212, Eq.~14!. While
this function is not quantitatively correct, especially ford
.0 ~cf. Fig. 11!, it is qualitatively consistent with the limits
in Eq. ~64!, the numerical coefficients being replaced byl1

.2.43→2, g* 8(0).0.3→ḡ* 8(0)51/2.
Let us now go back to the unscaled variablef. The cor-

responding distribution in the critical domain is

Ps~f!}f1/2expF2
1

2B~0!h S f2
j* 21

g* 8~0!
D 2G ~66!

and the equation of state is

f̄s~j* ,h!5h1/2h̄sS j* 21

h1/2 D . ~67!

This result encompasses the normal and ordered phase
well as the critical point. The normal phase in the critic
domain is defined byh!12j* ~i.e., d→2`), the ordered
phase is recovered in the caseh!j* 21 ~i.e., d→`), while
the critical point corresponds toj* 51 (d50). Thus, the
asymptotic behaviors~64! translate into

lim
h→0

f̄s~j* ,h!5H hn1* ~0!/~12j* !, j* &1,

Al1h, j* 51,

~j* 21!/g* 8~0!, j* *1.

~68!

In the normal phase,f̄s;h!12j* , so that the distribution
~66! becomes

Ps~f!}f1/2expF2
3f~12j* !

2hn1* ~0!
G , ~69!

which agrees with Eq.~52!. In the ordered phase, howeve
the width of the distribution is much smaller than the avera
value f̄s5(j* 21)/g* 8(0) @which is the solution toj*
5g* (f̄s) in the critical region#, so that the prefactorf1/2 in
Eq. ~66! can be replaced byf̄s

1/2 with the result

Ps~f!}e2(f2f̄s)
2/2B(0)h. ~70!

As expected, Eqs.~70! agrees with Eq.~55! particularized to
the critical region. Finally, at the critical point the distribu
tion is

Ps~f!}f1/2e2f2/2B(0)h. ~71!
5-10
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As anticipated from the behavior ofDhs/h̄s, there exists
a crossover in the critical domain from the Maxwe
Boltzmann distribution~69! to the sharp distribution~70!
through ~71!. Of course, the distribution function~66! is
more general than the three limiting cases described by
~69!–~71!. To focus on theshapeof the distribution function
around its average value, define the normalized distribu
Ps* (x)5f̄sPs(f5xf̄s)5h̄sPs(h5xh̄s). From Eq.~58! we
have

Ps* ~x!}x1/2expF2
1

2 S x
h̄s

AB~0!
22zD 2G ,

~72!

z[d/2g* 8~0!AB~0!.

By construction, this distribution is normalized to^x&51,
regardless of the value of the scaled control parameterd. The
asymptotic forms ofPs* (x) are

Ps* ~x!→5
3A3x

2p
e23x/2, d→2`,

2
@G~5/4!#3/2

@G~3/4!#5/2
x1/2expH 2FG~5/4!

G~3/4!
xG2J , d→0,

A2

p
z exp@22z2~x21!2#, d→`.

~73!

The crossover of the normalized distributionPs* (x) from the
Maxwell-Boltzmann form corresponding tod→2` to the
sharp distribution corresponding tod55 is illustrated in Fig.
12.

D. Critical dynamics

To study the dynamics in the critical domain define
deviation from the stationary solution by

P~h,t!5Ps~h!@11y~h,t!#. ~74!

FIG. 12. Plot of the normalized distribution functionPs* (x) for
d[(j* 21)/h1/252` (•••), 21 ( –••–), 0 ( –•–), 2 ~– –!, and
5 ~—!.
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Equation~57! becomes

]ty~h,t!5
2

3
n1* ~0!

1

Ps~h!

]

]h
Ps~h!h

]

]h
y~h,t!. ~75!

Now we defineF @y# by

F @y#5E
0

`

dh Ps~h!@y~h,t!#2. ~76!

Then, from Eq.~75! we have

]tF @y#52
4

3
n1* ~0!E

0

`

dhPs~h!hF ]

]h
y~h,t!G2

. ~77!

Thus,F @y# has the required properties of a Lyapunov fun
tional for the dynamics ofy(h,t), namely@13#,

F @y#>0, ]tF @y#<0, ~78!

the equality being satisfied fory50 only. This implies that
for any initial condition the solution to Eq.~75! evolves in
time towardy(h,t)→0.

The dynamics forh̄(t) is given by

~]t2d!h̄1g* 8~0!h 2̄5n1* ~0!. ~79!

This is not a closed equation so in principle it is necess
first to solve Eq.~57! for the distribution function and then
calculateh̄. However, an estimate can be obtained from E
~79! using the approximationh2;(hs

2/h̄s
2)h̄2. Then the lin-

earized equation forx5h̄2h̄s obtained from Eq.~79! for
small x is

]tx1F d1
2n1* ~0!

h̄s
Gx50. ~80!

Of course,d12n1* (0)/h̄s.0 for d>0. It can be verified
from Eqs.~61! and~62! thatC1(z)/C2(z)>23 for z,0, so
that d12n1* (0)/h̄s>udu for d,0. This confirms the above
stability analysis. Equation~80! is consistent with Eq.~B18!
for the ordered phase and Eq.~B23! for the normal phase
The finite relaxation timeh̄s/2n1* (0) at the critical point is
not in conflict with the divergent relaxation time in Eq.~31!
since the unit of time is different~i.e., t5Ahs).

V. DISCUSSION

Detailed application of statistical mechanics methods
the model granular fluid of hard spheres with inelastic co
sions exposes important differences from normal fluids. F
among these is the replacement of the equilibrium Gib
state with the time dependent homogeneous cooling stat
the case of mixtures, the absence of detailed balance in
lisions leads to a breakdown of the usual equipartition th
rem for normal fluids. This is interesting~e.g., the HCS for a
binary mixture has two kinetic temperatures! but is perhaps
not too surprising. In the case of a single, mechanically d
ferent, impurity particle in a one-component granular flu
this effect is easily understood as a competition between
5-11
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ANDRÉS SANTOS AND JAMES W. DUFTY PHYSICAL REVIEW E64 051305
average impurity-fluid collision ratenc , responsible for
‘‘equilibration,’’ and the cooling rate for the fluid,j, con-
stantly changing the reference state. This competition is m
severe for conditions such that the average impurity-fl
collision rate decreases at constantj, as occurs when the
impurity mass is much larger than that of the fluid partic
This requires that a nonlinear dependence of the ac
impurity-fluid collision rate on impurity mean square velo
ity is activated to increase the true collision rate. As a c
sequence, the joint HCS for the fluid and impurity is ma
tained but with a much higher speed for the impurity relat
to that for the fluid particles. In the limit of infinite impurity
mass an extreme breakdown of equipartition occurs with
single impurity particle attaining a finite fraction of the tot
kinetic energy.

This peculiar feature distinguishes the conditions ofj/nc

5j* ,1, where the distribution of energies is similar to th
for a normal fluid, fromj* .1, where the distribution is
anomalous. A surprising feature of the description given h
for these two cases is the exact analogy to a second o
phase transition in a normal fluid. The order parameter is
ratio of impurity to fluid particle mean square velocities,f̄s,
the conjugate field ish ~a measure of the mass ratio!, and the
role of the inverse temperature is the relative cooling ratej* .
To summarize the primary results obtained here the follo
ing comments are offered.

~1! The nonlinearity of the impurity-fluid particle colli
sion rate, expressed by the dimensionless friction cons
g* (f), is essentially the same as that for an impurity in
normal fluid. In the latter casef!1 for a heavy impurity
particle and the relevant values areg* (f)'g* (0)51.
However, when the background fluid is cooling it is nece
sary thatg* (f)'j* so values off of order 1 are selected
when j* .1. The details of the mechanism by which th
host fluid cools are unimportant for this qualitative effect.
fact, even if all collisions were elastic, the same two pha
would occur if the fluid were cooled by an external therm
stat.

~2! The thermodynamic analogy originates from
‘‘equation of state’’ h5h(f̄s,j* ), obtained from the
‘‘equilibration’’ condition for the HCS. The phenomenolog
cal estimate in Sec. II and the exact asymptotic kinetic the
analysis of Sec. IV are essentially the same. The ‘‘Gibbs f
energy’’ obtained from integrating the equation of state ha
Landau-like form near the critical point with critical expo
nents associated with the various first and second derivat
In particular, the susceptibility diverges, indicating a seco
order phase transition.

~3! The approach to the HCS is stable in both phases.
dynamics is governed by a Ginzburg-Landau equation
fined in terms of the Gibbs free energy. Near the phase t
sition there is critical slowing, with the characteristic rela
ation time diverging in proportion to the susceptibilit
Alternatively, this can be viewed as a change of time sc
from s to t5Ahs.

~4! The diffusion coefficient is finite in the normal phas
but diverges on approaching the transition. It remains div
gent in the ordered phase. In terms of the velocity autoc
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relation function this is seen to be a divergent relaxation ti
for the decay of correlations, and consequently the m
square displacement is characterized by ballistic rather t
diffusive dynamics.

~5! The HCS velocity distribution in both phases and
the critical region is obtained from an exact asympto
analysis of the Enskog-Lorentz equation. In the normal ph
away from the critical point it is a Maxwellian with a tem
perature different from that of the fluid. In the ordered pha
it is a quartic function of the velocity centered about a no
zero average speed. The distribution function in the criti
region exhibits a continuous crossover between these di
butions as the cooling rate changes fromj* <1 to j* >1.

The most direct and controlled observation of the ph
nomena described here would be via Monte Carlo simula
of the Boltzmann-Lorentz equation or molecular dynam
simulation. The qualitative change in the distribution fun
tion for the ordered phase has already been seen in M
Carlo simulation, Fig. 6 of Ref.@4#. In principle, the Monte
Carlo simulation could provide access to the longer ti
behavior associated with critical dynamics and diffusion n
the critical point. Experimental conditions for real fluids a
more difficult to imagine, since a cooling medium for th
impurity particle is required. However, as noted above,
cooling does not have to be associated with inelastic co
sions. Thus an impurity particle in a continuously and hom
geneously quenched fluid should exhibit the same ph
transition.

The extreme breakdown of equipartition discussed in t
paper extends to the case of a mixture as well, where a m
fraction x0 of impurity particles exists instead of just on
impurity particle. In that case a phenomenological desc
tion similar to that of Sec. II shows that the critical value
the control parameterj* in the limit h→0 at finitex0 /h is
jc* 512(x0 /h)(12a0

2)/4, so that the HCS of the mixture i
always in an ordered state (jc* 50) if x0 /h>4/(12a0

2). The
details of this case will be published elsewhere.
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APPENDIX A: COOLING RATES AND COLLISION
FREQUENCY

The cooling ratesj and j0 for a fluid and the impurity
particle are defined by Eq.~2!, while the diffusion coefficient
in Sec. III is expressed in terms of a related frequencyvD .
They can be written as

j52
] t^v2~ t !&

^v2~ t !&
, j052

] t^v0
2~ t !&

^v0
2~ t !&

, vD52
1

2
j01n0 ,

~A1!

where the impurity-fluid particle collision frequency is
5-12
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n052
] t8^v0~ t !•v0~ t1t8!&

^v0
2~ t !&

U
t850

. ~A2!

The subscript 0 denotes the velocity for the impurity parti
and the angular brackets denote an average over the in
ensemble. The time derivatives can be expressed in term
the generatorL for the inelastic hard sphere dynamics@9,14#,

] tX~ t !5LX~ t !, ~A3!

L5v0•“01(
i 51

N

vi•“ i1(
i 51

N

T~ i ,0!1
1

2 (
i 51

N

(
j Þ i

N

T~ i , j !.

~A4!

The binary collision operators for fluid-fluid and fluid
impurity pairs are defined by

T~ i , j !52s2E dVQ~2vi j •ŝ!~vi j •ŝ!d~r i j 2s!~bi j 21!,

~A5!

T~ i ,0!52s̄2E dVQ~2vi0•ŝ!~vi0•ŝ!d~r i02s̄!~bi021!,

~A6!

wheres5sŝ, s̄5s̄ŝ, andbi j and bi0 transform the rela-
tive velocity for the pairs into their scattered velocities a
leave the center of mass invariant,

bi j vi j 5vi j 2~11a!~vi j •ŝ!ŝ, bi j Gi j 5Gi j , ~A7!

bi0vi05vi02~11a0!~vi0•ŝ!ŝ, bi0Gi05Gi0 . ~A8!

The various velocities and reduced masses are given by

vi05vi2v0 , Gi05mvi1m0v0 ,
~A9!

m5
m

m1m0
,

m05
m0

m1m0
,

vi j 5vi2vj , Gi j 5
1

2
~vi1vj !, ~A10!

vi5Gi01m0vi0 , v05Gi02mvi0 , vj5Gi j 2
1

2
vi j .

~A11!

In terms of the binary collision operators the cooling ra
and collision frequencies become

j52
~N21!^T~2,1!v1

2&1^T~1,0!v1
2&

^v2&
,

~A12!

j052N
^T~1,0!v0

2&

^v0
2&

,
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n052N
^v0•T~1,0!v0&

^v0
2&

. ~A13!

In the following it is assumed that terms of relative order 1N
can be neglected. Substitution of the definitions forT(2,1)
andT(1,0) leads to

T~2,1!v1
252s2E dVQ~2v21•ŝ!~v21•ŝ!2d~r212s!

3F ~11a!~G21•ŝ!2
1

4
~12a2!~v21•ŝ!G ,

~A14!

T~1,0!v0
252s̄24hE dVQ~2v10•ŝ!~v10•ŝ!2d~r102s̄!

3~hg101v0!•ŝ, ~A15!

v0•T~1,0!v052s̄22hE dVQ~2v10•ŝ!~v10•ŝ!2

3d~r102s̄!v0•ŝ. ~A16!

Since these are all two-particle functions the averages in E
~A12! and ~A13! can be reduced to integrals over the tw
particle reduced distribution functionsf (2) and f 0

(2) defined in
terms of theN-particle distribution functionrs as

f (2)~x1 ,x2!5V2E dx0dx3•••dxNrs~G!, ~A17!

f 0
(2)~x0 ,x1!5V2E dx2•••dxNrs~G!. ~A18!

Here V is the volume andxi denotes a point in the six
dimensional phase space of particlei, i.e., xi⇔$qi ,vi%. The
frequencies then become

j5
1

4
ns2~12a2!v fE dv1* dv2* E dV

3 f (2)* ~v1* ,v2* ,r2152s!Q~v21* •ŝ!~v21* •ŝ!3,

~A19!

j0524hns̄2v f

1

f̄
E dv0* dv1* E dV

3 f 0
(2)* ~v0* ,v1* ,r10

52s̄!Q~v10* •ŝ!~v10* •ŝ!2~hv10* 1v0* !•ŝ, ~A20!

n0522hns̄2v f

1

f̄
E dv0* dv1* E dV

3 f 0
(2)* ~v0* ,v1* ,r1052s̄!Q~v10* •ŝ!~v10* •ŝ!2v0* •ŝ.

~A21!

All velocities have been scaled relative tov f5A^v2& and
5-13
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f (2)5v f
26f (2)* , f 0

(2)5v f
26f 0

(2)* . ~A22!

The results at this point are still exact. It follows direct
from these results thatj andvD are manifestly positive.

1. Neglect of velocity correlations

If velocity correlations in the reduced distribution fun
tions are neglected on the precollision hemispheres@15,16#
they simplify to

f (2)* ~v1* ,v2* ,r2152s!5g f* ~v1* ! f * ~v2* !,

f 0
(2)* ~v0* ,v1* ,r1052s̄!5g0f 0* ~v0* ! f * ~v1* !, ~A23!

where g and g0 are the fluid-fluid and fluid-impurity pair
correlation functions for particles at contact. The angular
tegrals can now be performed to give

j5
1

8
nps2v fg~12a2!E dv1* dv2* f * ~v1* ! f * ~v2* !v21*

3 ,

~A24!

j05
8p^v* &

3
hns̄2v fg0

1

f̄
@^v0*

2g* ~v0*
2!&2h^n1* ~v0*

2!&#,

~A25!

n05
4p

3
^v* &hns̄2v fg0

1

f̄
^v0*

2g* ~v0*
2!&, ~A26!

where the dimensionless functionsg* (v0*
2) and n1* (v0*

2)
have been introduced for connection with the discussion
Appendix B,

g* ~v0*
2!5

3

4v0* ^v* &
E dv1* f * ~v1* !v01* v̂0•v01* ,

~A27!

n1* ~v0*
2!5

3

4^v* &
E dv1* f * ~v1* !v10*

3 .

2. Maximum entropy ensemble

The HCS distributions are not known exactly, althou
approximate evaluations suggest they are close to M
wellians. Therefore, to obtain an estimate for the cool
rates and collision frequency the maximum entropy~infor-
mation! ensemble is assumed in this section. This is
Gaussian whose density, momentum, and kinetic energy
constrained to have the same values as for the HCS,

f * ~v* !5S 3

2p D 3/2

e23v* 2/2, f 0* ~v0* !5S 3

2pf̄
D 3/2

e23v0*
2/2f̄.

~A28!

This gives the results
05130
-

in

x-
g

e
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j5
4

3
Ap

3
ns2v fg~12a2!, j052n0S 12h

11f̄

f̄
D ,

~A29!

n05
8

3
A2p

3
hns̄2v fg0~11f̄ !1/2. ~A30!

APPENDIX B: ASYMPTOTIC KINETIC EQUATIONS

The analysis here is based on the Enskog-Lorentz eq
tion to describe the distribution function for the impuri
particle. Interest is restricted to the case of small ratios
fluid particle mass to impurity particle mass. To obtain
asymptotic form for the kinetic equation, first a Kramer
Moyal expansion is performed to second order in the m
ratio. This accounts for the dependence of the collisio
changes on the mass ratio. Subsequently, two different
pansions are performed for the final asymptotic form d
pending on the value of a control parameterj* .

1. Kramers-Moyal expansion

The Kramers-Moyal expansion of the Enskog-Loren
equation has been obtained in Appendix A of Ref.@3#. The
result is

] t f 0~v0 ,t !5
]

]v0
•@hv0g~v0! f 0~v0 ,t !#

1
1

2

]2

]v0i]v0 j
H h2Fn1~v0!d i j 1n2~v0!S v0iv0 j

2
1

3
d i j v0

2D G f 0~v0 ,t !J 1O~h3!. ~B1!

The friction g(v0) and noisen1(v0),n2(v0) are

g~v0!5
nc

2h
g* ~f!, n1~v0!5

nc

3h
v f

2n1* ~f!,

~B2!

n2~v0!5
3nc

5h
n2* ~f!,

wherenc5 8
3 hnps̄2g0^v& is the characteristic impurity col

lision frequency introduced in Eq.~3!. Also g* (f) and
n1* (f) have been defined in Eq.~A27!, and

n2* ~f!5
15

16̂ v* &f
E dv1* f * ~v1* !v01* F ~v01* • v̂0!22

1

3
v01*

2G .
~B3!

The dimensionless variables are

f5v0*
2 , v0* 5v0 /v f , v1* 5v1 /v f ,

~B4!

v01* 5f1/2v̂02v1* , v f5A^v2~ t !&.
5-14
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The analysis of the deterministic limit in the text mak
use of the propertyg* (f)>g* (0)51. To prove this, first
perform the angle integrations to get

g* ~f!511
1

5^v* &
Ff^v* 21&2pfE

0

Af
dv* f * ~v* !v*

3S 41
v*

Af
D S 12

v*

Af
D 4G>11

1

5^v* &

3Ff^v* 21&24pfE
0

Af
dv* f * ~v* !v* G , ~B5!

where the inequality results from 4>(41x)(12x)4 for x
<1. Next, writing out the contribution from̂v* 21& explic-
itly gives the desired result

g* ~f!>11
4pf

5^v* &
E

Af

`

dv* f * ~v* !v* >g* ~0!51.

~B6!

Analogously, it is possible to prove thatg* 8(f)>0:

g* 8~f!5
1

5^v* &
F ^v* 21&2

p

2E0

Af
dv* f * ~v* !v*

3S 819
v*

Af
13

v* 2

f D S 12
v*

Af
D 3G

>
1

5^v* &
F ^v* 21&24pE

0

Af
dv* f * ~v* !v* G

5
4p

5^v* &
E

Af

`

dv* f * ~v* !v*

>0. ~B7!

The remaining analysis of the text and below does not
quire the explicit forms forg* (f), n1* (f), and n2* (f).
However, for the illustrations in the graphs an excellent
proximation is obtained using the maximum entropy e
semble~A28! for the fluid; no assumption is required regar
ing the impurity particle distribution. The resulting integra
can be performed, with the results

g* ~f!5
1

8f
~113f!e23f/22

1

16f3/2
A2p

3

3~126f29f2!erf~A3f/2!, ~B8!

n1* ~f!5
1

8
~513f!e23f/21

1

16
A2p

3f

3~3118f19f2!erf~A3f/2!, ~B9!
05130
-

-
-

n2* ~f!5
5

48f2
~2112f13f2!e23f/21

5

96f5/2
A2p

3

3~123f19f219f3!erf~A3f/2!. ~B10!

In the following only solutions that depend on the mag
tude of v0 are considered. Since the order parameter is
average off,

f̄~ t !5E dv0v0*
2f 0~v0 ,t !, ~B11!

it is appropriate to change variables fromv0 to f. In addi-
tion, the dimensionless time scale of Eq.~5! is introduced.
This is accomplished by defining the new distribution fun
tion P(f,s) by

P~f,s![4p f 0~v0 ,t !v0
2 dv0

df
52pv f

3f1/2f 0~v0 ,t !

~B12!

or

f 0~v0 ,t !5
1

2pv f
3
f21/2P~f,s!. ~B13!

The Kramers-Moyal equation~B1! becomes forP(f,s)

]sP~f,s!5
]

]f H f@2j* 1g* ~f!#2S 12
2

3

]

]f
f Dhn1* ~f!

1
4

5

]

]f
f2hn2* ~f!J P~f,s!1O~h2!. ~B14!

The deterministic limith50 is described in the text. In the
following an outline of the fluctuations about this determis
limit is given.

2. Expansion aroundf̄0s

The effects of finiteh represent ‘‘noise’’ which broaden
the width of the initiald function as the system evolves. T
include such effects consider solutions of the form

P~f,s,h!5h2pPS f2f̄0s

hp
,s,hD , ~B15!

such that the limit limh→0P(h,s,h)5P(h,s) is finite and
independent ofh. The choice of reference statef̄0s given by
Eq. ~51! implies initial conditions that do not deviate to
much from the stationary state. To find such solutions, de
a change of variables in Eq.~B14! by

f5f̄0s1hph, P~f,s,h!5h2pP~h,s,h!. ~B16!

In the ordered phase a nontrivial equation forP is ob-
tained with the choicep51/2,
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]sP~h,s,0!→ ]

]h H hf̄0sg* 8~f̄0s!1f̄0sF2

3
n1* ~f̄0s!

1
4

5
f̄0sn2* ~f̄0s!G ]

]hJP~h,s,0!, j* .1,

~B17!

where it has been recognized thatj* 2g* (f̄s)50 in this
phase. The average value ofh obeys the equation

]sh̄~s!52f̄0sg* 8~f̄0s!h̄~s!, ~B18!

which is the linearized form of the deterministic dynami
~50! for j* .1. Stability is assured byg* 8(f̄0s)>0, which
is seen to be the case using Eq.~B7!. The stationary solution
to Eq. ~B18! is h̄s50 so there are no corrections tof̄0s in
this limit. The stationary solution for the distribution func
tion is obtained from

F2

3
n1* ~f̄0s!1

4

5
f̄0sn2* ~f̄0s!G ]

]h
Ps52f̄0sg* 8~f̄0s!hPs,

~B19!

whose solution is

Ps~h!5
1

A2B~f̄0s!p
e2h2/2B(f̄0s),

~B20!

B~f̄0s!5
1

g* 8~f̄0s!
F2

3
n1* ~f̄0s!1

4

5
f̄0sn2* ~f̄0s!G ,

or, in terms off,
nt

05130
Ps~f!5
1

A2B~f̄0s!hp
e2(f2f̄0s)

2/2B(f̄0s)h. ~B21!

In the normal phasef̄0s50 and the change of variables i
Eq. ~B16! becomesf5hph. A nontrivial equation forP is
obtained withp51,

]sP~h,s,0!→ ]

]h F ~12j* !h2S 12
2

3

]

]h
h D

3n1* ~0!GP~h,s,0!, j* ,1. ~B22!

The average value ofh now obeys the equation

@]s1~12j* !#h̄~s!5n1* ~0!. ~B23!

The stationary solution to this equation is

h̄s5
n1* ~0!

12j*
, ~B24!

which gives the leading finite contribution tof̄s as h→0.
The stationary distribution function is

Ps~h!5
3

h̄s
S 3h

2h̄sp
D 1/2

e23h/2h̄s, ~B25!

and the corresponding distribution in terms off is

Ps~f!5
3

hh̄s
S 3f

2hh̄sp
D 1/2

e23f/2hh̄s. ~B26!
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