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Granular fluid thermostated by a bath of elastic hard spheres
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The homogeneous steady state of a fluid of inelastic hard spheres immersed in a bath of elastic hard spheres
kept at equilibrium is analyzed by means of the first Sonine approximation t¢sgagially homogeneous
Enskog-Boltzmann equation. The temperature of the granular fluid relative to the bath temperature and the
kurtosis of the granular distribution function are obtained as functions of the coefficient of restitution, the mass
ratio, and a dimensionless paramegBemeasuring the cooling rate relative to the friction constant. Comparison
with recent results obtained from an iterative numerical solution of the Enskog-Boltzmann edtitien
et al, Physica A310, 308(2002] shows an excellent agreement. Several limiting cases are also considered. In
particular, when the granular particles are much heavier than the bath pdtiidésmve a comparable size and
number density it is shown that the bath acts as a white noise external driving. In the general case, the Sonine
approximation predicts the lack of a steady state if the control parafiésdarger than a certain critical value
B, that depends on the coefficient of restitution and the mass ratio. However, this phenomenon appears outside
the expected domain of applicability of the approximation.
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[. INTRODUCTION system, it has become popular to assume that each particle is
subjected to a stochastic force with the properties of a Gauss-
The simplest model to describe the dynamics of granulaian white noise{16—23. The effect of this force is to pro-
matter in the regime of rapid flow consists of an assembly ofluce frequentand wealk random “kicks” to the particles
(smooth inelastichard spheres with a constant coefficient of between two successive collisions. On the other hand, the
normal restitutiona [1]. The Liouville operator and the white noise force is not the onlhermostatingmechanism
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy govern- proposed in the literatur24]. For instance, energy can be
ing the time evolution of the phase space density and théhjected into the system by the action of an “antidrag” force
reduced distribution functions, respectively, can be extendefGaussian thermostaf22,25 or a constant force directed
to the case of dissipative collisiofi,3]. By assuming that along the motion directior{“gravity” thermosta [22,25.
the precollision velocities of two particles at contact are un-The former thermostat is equivalent to a velocity rescaling in
correlatedmolecular chaos assumptipman approximate ki- the freely cooling statg22]. On a different vein, Barradt al.
netic equation for the one-body velocity distribution function[26] have recently proposed a model, in which the energy
can be derived, thus extending the revised Enskog theory tifjected in vertically shaken granular systems is transferred
the realm of dissipative dynamif®,4]. The Enskog equation to the horizontal degrees of freedom through collisions with
accounts for spatial correlations through the equilibrium paian effectiverandomcoefficient of restitution. Regardless of
correlation function at contagf n(r)] as a functional of the the heating mechanism, the common feature is that the
nonequilibrium density fielsh(r). On the other hand, in the granular fluid reaches a uniform nonequilibrium steady state
special case of spatially uniform states the pair correlatioftharacterized by a velocity distribution functié(v) differ-
functiong(n) becomes a constant, so that the Enskog equeent from the equilibrium Maxwell-BoltzmanMB) distribu-
tion reduces to the Boltzmann equation, except for an intion,
crease of the collision frequency proportionalgi).
The familiar concept of equilibrium is absent in a granular _ [ m 3 —mw2/2T

fluid due to the collisional dissipation of kinetic energy fue(V)=n|>—| € : 1.9)
(which is transferred to the internal degrees of freedbm

an amount proportional to-2a”. Even if the system re- |n this equationm is the mass of a particle is the number
mains in a uniform statéhe so-called homogeneous cooling density, andT is the granular temperature. The two latter

statg [5], the total kinetic energy monotonically decreasesqyantities are defined in terms of the velocity distribution
with time, unless some kind of external forcing is acted uporfynction as

the system to compensate for the collisional loss of energy,

and thus a steady state can be reached. From an experimental

point of view, a fluidized steady state is usually achieved by n:f dvf(v), (1.2
violently shaking the containg6—15]. To mimic the effects

of collisions with the vibrating walls in an otherwisaiform

_m 2
T=5(v?), 1.3
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1 among the granular particles is balanced by the energy gain
(v)= ﬁJ dvo*f(v). (1.4 due to elastic collisions of the granular particles with the
bath particles. The velocity distribution of the bath is given
by the MB expressioril.1), except thain must be replaced
by n, (number density of the bath particjesnd m must be
replaced bym, (mass of a bath particleThis system cannot
3 (v be considered as a true binary mixture, sinpe the bath is
= —1. (1.5  assumed to be unaffected by the granular fluid. The role of
5 (v?)? the bath fluid is to provide a thermostating mechanism for
the granular fluid. However, this problem retains most of the
A negative(positive) value of x implies that the distribution basic features found in a mixture, such as the effect of mass
is flatter(less flaj around the mean than the normal one anddisparity and the competition between different length and
thus the distribution is said to be platykurtieptokurtig. In time scales. Although the bath is at equilibrium, the inelastic
the cases of the white noise and Gaussian thermostats, thature of the collisions among the granular particles prevent
distribution is platykurtic <0) for «=0.7, while it is lep-  the steady state to be the equilibrium oel]. First, the
tokurtic («>0) for smaller values of the coefficient of res- equipartition of energy is broken, since the granular tempera-
titution a [19,22,27. On the other hand, the distribution is ture T differs from the bath temperaturg, (actually, T
always platykurtic when the system is heated with the grav<<Ty). Second, the kurtosis of the granular velocity distri-
ity thermosta{22]. As for the magnitude ok, it is typically ~ bution is not zero. Interestingly enough, the temperature ratio
smaller with the white noise thermostat than with the GaussT/Ty, and the kurtosis are not only functions of the coeffi-
ian and gravity thermostats. In the random coefficient of rescient of restitutiona, but also of the mass ratim/m;, and a
titution approach, the value of depends on the probability dimensionless parametes measuring the mean free path
distribution of« (through the moment&) and(a?)), butis  associated with the granular-bath collisions, relative to the
otherwise positive definite26]. Another important measure one associated with the granular-granular collisions. In Ref.
of departure from equilibrium is the high energy tail of the [44], Biben etal. solved numerically the(steady-state
distribution. The asymptotic behavior of the distribution Enskog-Boltzmann equation by an iterative method, and ob-
function for large velocities is generally of the formfijy)  tainedT/T, and « for several choices of the parameters in
~—v? wherea=1, a=32, anda=2 for the white noise, the range 6&ca<1, m/m,=1, w<1. In addition, they ob-
Gaussian, and gravity thermostats, respectivelyserved that their numerical results were consistent with a
[19,22,27,28 In the case of the random coefficient of resti- Gaussian high energy tail, fiv)~ —v?, although this
tution, the values of the exponeamteem to be highly depen- asymptotic behavior was reached for extremely large veloci-
dent on the probability distribution of, ranging froma ties only[44].
~0.8 toa~2 [26]. The same system as in R¢#4] has been studied by
The lack of an equilibrium state in granular fluids is es-Barrat and Triza¢36] by approximating the granular veloc-
pecially evident in the case of a mixture. According to theity distribution functionf(v) by its MB form (1.1). This
principle of equipartition of energy, a mixture of two fluids at allows one to obtain a closed cubic equation for the tempera-
equilibrium share the same temperatufig£€T,). On the ture ratioT/T,. Comparison with the iterative numerical so-
other hand, a binary granular mixture in the homogeneoulition of Ref.[44] shows that the MB approximation pro-
cooling state or in a nonequilibrium steady state exhibits twovides a good estimate @ Ty, for the values ofn/m,=1 and
different granular temperaturgd4,15,29-43 In general, =1 considered36]. On the other hand, the MB approxi-
the temperature rati@, /T, depends on the mass ratio, the mation is obviously unable to estimate the kurtosisf the
diameter ratio, the three coefficients of restitution involved,distribution function.
the mole fraction, and the volume fractif29,37]. Typically, The aim of this paper is to revisit the granular fluid ther-
the largest influence ofi, /T, is due to the mass ratio, the mostated by a bath of elastic hard spheres proposed by Biben
heaviest component having the largest temperaturet al.[44]. The main goal is to obtaiapproximate alge-
[14,15,37,4% An extreme example of this breakdown of the braic expressions allowing one to gefT, and« in terms of
energy equipartition occurs in the homogeneous cooling ofr, m/m,, andw from the Enskog-Boltzmann equation in the
an infinitely heavy impurity particle in a sea of inelastic par- (first) Sonine approximation. This approximation consists of
ticles: if the cooling rate of the granular fluid is smaller thanexpandingf(v)/fyg(v)—1 in the generalized Lagueri@r
an effective impurity-fluid collision frequency, then the Soning polynomials and retaining the first term only, whose
impurity-fluid temperature ratio divergd80,32, an effect coefficient is the kurtosis. When this approximate form is
that can be characterized as a second-order nonequilibriumserted into the second- and fourth-order moment equations,
phase transitiof32,33. and terms nonlinear ik are neglected, one obtains a closed
In a recent paper, Bibeet al. [44] have proposed an in- tenth-degree equation for the temperature r&tid, and an
teresting alternative way of uniformly heating a granularexplicit expression ok in terms of T/T,. A similar method
fluid to achieve a nonequilibrium steady state. The granulahas been used by van Noije and Erfid] to estimatec as a
particles are assumed to be immersed in a batkeladtic  function of a in the case of a granular fluid in the freely
particles kept aequilibrium at a certain temperaturg,. In  cooling regime or heated by a white noise thermostat, the
the steady state, the energy loss due to inelastic collisiongsults showing a good agreement with computer simulations

The deviation off from fyg is usually monitored by the
value of the fourth cumular(or kurtosisg

K
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[22,27]. However, the situation in the case where the ther-  Il. BASIC EQUATIONS: MAXWELL-BOLTZMANN
mostating mechanism is provided by collisions with elastic APPROXIMATION

particles is much more complex. In particular, talepen- Consider a fluid of inelastic, smooth hard sphessecies
dence ofk is strongly influenced by two independent control 1) of massm,=m, diametero;= o, and coefficient of nor-
parameters, namely, the mass ratiom, and the mean free restitutiona1;= «. The number density is;=n. The

path ratiow. _ granular fluid is kept at a stationary, homogeneous, and iso-
The organization and main results of the paper are theopic state by a thermostat modeled as a bath made of a

following. The problem and notation are presented in Sec. llnumber densityr,= n,, of hard spheres of mass,=m, and

To gain some insight into the different competing scales ofdiameters,= o, (species 2 The granular particles are as-

the problem, the MB approximation is also worked out insumed to collideelasticallywith the bath particlesi.e., a1,

Sec. Il. This suggests the use of the rat®xw(l  =1). In addition, the bath is assumed to be at equilibrium,

+m/my) ¥4 1— a?) between the cooling rate of the granular unaffected by the granular fluid. Its velocity distribution

particles and the granular-bath collision rétbe friction con-  function f,=f, is then

stan) as a control parameter more convenient than the mean s 5

free path ratiow. o _ _ fb(V)an< Mp ) ex;{— Myu ) 2.1)
The Sonine approximation is carried out in Sec. lll. As 27Ty 2Ty

mentioned before, this approximation yields a tenth-degree ] o o

equation forT/T,. A useful approximate solution to this Assummg the' vghdny of the I_Enskog—BoItzmann descnptlon,

equation is found by expanding the solution around the MBthe_ V_e'OC'W dlstrlbytlon functiorf; =T of the granular fluid

approximation and neglecting terms nonlinear in the devia-SatISerS the equation

tion. In order to get more explicit results, some limiting be- _

haviors are cogsidered, in?:luding the “colloidal” Igi]mit AV =dulvilfy, fal+dud vl fa, Pl 2.2

[m/my—oe, wor(m/my) ~*—0, Bo(m/my) ~*2—0] and the  The collision operators; [v4|f;,f;] are[29]

“white noise” limit [m/m,—, w=finite, Bo(m/m;)2 . :

—]. In the latter limit, one recovers the case of the white 5 RN -

noise thermostdtl9]. Section IV is devoted to a comparison Jijlvalfi vfj]zgij‘fijf dvzf doO (o Vi) (o Vi)

with the numerical solution of Ref[44] for O=sa<1,

m/m,=1, w<1. An excellent agreement is found, thus vali- X[y i fi(vp) — Fi(v) fi(v) ], (2.3
dating the reliability of the Sonine approximation, at least for ) ) ) ) )
o<1, whereg;; is the pair correlation function for particles of spe-

The Fokker-Planck limit f/m,—) of the Enskog- Ci€Si andj at the contact point =oy;=(0;i+0;)/2. The
Boltzmann equation is considered in Sec. V. An analysis oPTimes denote precollisional velocities
the high energy tail shows that for asymptotically large ve-

Iy Y ~
locities (> /2T,/m), the distribution function tends to a Vi=Vvi— i1+ e 7) (0 vip) o, (2.4
Gaussian, namely, r~—mw?/2T,. If the granular tempera- , PR -
ture is much smaller than the bath temperatufe<(), Vo=Vot wij(1+ aj; ") (0 Vi) o, (2.4b

. ) . o < '
there exists an mtermgd@te range of.velocméT/m v wherevy,=v, — v, and; = /(m,+m;). The first term on
</2T,/m, where the distribution function has the form of a : : ] . 175 -

the right-hand side of E¢2.2) is a nonlinear collision op-

; 32 ; iea [imi
stretched exponential, n-~y”*. In the white noise limit, erator describing the rate of changefafue to theinelastic

ionrmlﬁi?ase-\rrgb;eo’st?gtir?g dtli Goanuesnsf['igln ggggrl]segﬁgegn?m;ggollisions among granular particles, while the second term is
Y ) Xp Y 053 Jinear collision operatofBoltzmann-Lorentz operatpac-
servable asymptotic behavior.

Section VI shows that the Sonine approximation predictscountmg for the elastic collisions of granular particles

; . . . . . against bath particles. Since mass is conserved in a single
an interesting singular behavior. 4&(or, equivalentlyw) is L : :
) . " collision, we have the identity
increased for fixed values af and m/m,, a critical value
Bc(a,m/my) is reached beyond which no steady-state solu-
tion exists. While for3< B.(«,m/m,), the temperature ratio j dvyJi;[v4lfi . f1=0. 2.9
T/T, takes a well-defined stationary value, it decreases with
time (T/Ty,—0) for 8> B.(a,m/my). Therefore, the Sonine On the other hand, energy is not conserved by collisions.
approximation predicts the existence offast-orde) phase  Multiplying both sides of Eq(2.2) by v? and integrating
transition when the friction constant becomes small enouglgver velocity, we get
as compared to the cooling rate, and so the bath is unable to
thermostat the granular fluid. Since this phenomenon takes v =—(An+Ap), (2.6
place outside the domain of applicability of the Sonine ap-
proximation, it is not possible to assert in this contextwhere
whether it is an artifact of the approximation or not. The 1
gzp:.erv(lelr.lds with a summary and some concluding remarks in Aj=— HJ dvlvi‘]ij[vl“i 8 2.7
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The inelastic 1-1 collisions produce an energy loss, Ag;, In Eq. (2.15,
>0. As a matter of fact, the quantit,, is proportional to
the cooling rate of the granular fluigl

Al X

Tb 1/2
mt _(1_M)} (2.18
= 3Tm 29 T

The 1-2 collisions are elastic, so the total kinetic energy of
the two colliding partners is preserved. Therefore, the sign o'ff
A;, depends on whethd@r>T, or T<T,. Since in the steady ~ #21~
state the mean kinetic energy of the granular particles is
smaller than that of the bath particleB<T,), the granular

a parameter measuring the temperature ratio, where
(1+m/my) 1, and

partner gains energy on an averageAse<0. In thesteady _ 8\/;n o 172 E v (2.19
state both terms exactly compensate each other and one has Y=z 1812k Ty '
A11+ A12: 0. (29)

defines a characteristic rate fgcross collisions of the
granular particles with the bath particles. In the limit of one
N thermalized Brownian particlent—0, m/my—o0, T=Ty), it
9(v”)=~(ButBao), (210 5 easy to show that(v)=— y(v), soy plays the role of a
friction constant. Henceforth this terminology will be used
when referring toy. The cooling rate;(®) and the friction

1 4 constanty define the two relevant time scales of the prob-
Bijz—ﬁf dvyu3diLvalfi - (21D |em. Their ratio is

Analogously,

whereB;; are the collisional moments

In the steady state,

B+ By,=0. (2.12 B="—=2"Ppu " Y(1-0a?), (2.20

é’(O)
Y

The main objective of this paper is to determine the granular

temperatureT;=T and the fourth cumulank, which are

related to the second and fourth moments of the distributiofvhere

function by Egs(1.3) and(1.5. To this end, the first Sonine

approximation will be used in the following section. Before

that, it is instructive to get an estimate BfT, by means of no?g,

the much simpler MB approximation fdr as done in Ref. @ nT

[36]. This also will allow us to introduce the two competing b12012

rates, along with some useful dimensionless parametefs. If

is replaced byf g [cf. Eg.(1.1)] in Eqg. (2.7), one gets

(2.2)

represents the mean free path associated with cross colli-

Ay *Ai(jo), (2.13  sions, relative to the one associated with self-collisions. The
relevant dimensionless control parameters of the problem are
where[19,29 the coefficient of restitutionr, the mass ratian/my, (or,
equivalently, x), and the dimensionless parametey the
A<lc1>:§,,2_T(1_az), (2.14 Ia_tter encompassing the dependence on the den_sit?es and the
2 ' m diameters of the granular and bath particles. This is the pa-

rameter space considered in Ref4]. Alternatively, one can

2T eliminatew in favor of 8 and usex, m/my, (or u), andg as
(Ol i1 y2 ; b lOr u),
Az =3y m X(1=x%). (2.19 control parameters. This will be the point of view adopted in
this paper.
In Eq. (2.14), The MB approximation foff /T, consists of inserting Eq.
) T 12 (2.13 into the exact conditiorf2.9). This leads to a cubic
= 55( F) no2gy, (2.16 equation forx,
is an effective(self) collision frequency. In its terms, the 2x(x2—1)= 8, (2.22
cooling rate(2.8) is approximated by ~ (), where
{O=p(1-a?). (2.17  whose physical root is
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3 1 3v3 1 33 43
\/— ilg —sin~! ilg , B= i
4 3 4 9

?{ ﬁco{gsinl
e | = o
TCOS §COSh T , ,B/T

+sin

The temperature ratio is then given, on account of(Ed.8), and
by
T mm, (1 |\ 2°
T mm, 024 T, irmim, 2P| o+ Fom (229
Ty (1+m/myx2—1" ' . . o
A physically important hybrid limit corresponds tm/m,
Thus, the departure of from 1 is a measure of the break- —*, o/0p—e, and n/n,—~0 in the scaled waym/m,
down of the equipartition of energy. It is interesting to note*(o/0) <np/n, so that the mass densities of the individual
that in this MB approximation, the parametedepends only granular and bath particles, along with their volume fractions
on Bxwu” Y4(1— a?), being independent of the two other are held fixed. This case was referred to as the colloidal limit
parameters andm/my). As will be seen in Sec. Ill, this is in Ref.[44]. In this scaled limitwe u~m,/m and Boc u'?
not so in the Sonine approximation. —0, so that Eqs(2.29 and(2.26b apply again. .
Although Eq.(2.23 gives an analytical expression for the ~ As Wwill be seen later, the MB approximation provides
temperature ratio in the MB approximation, it is instructive values for the temperature ratio in good agreement with
to consider some limiting cases where E2.23 simplifies ~ those obtained from the iterative numerical solution of the
considerably. Let us consider first the limit where the coolingEnskog-Boltzmann equatiopd4]. On the other hand, this
rate is much smaller than the friction constant, i@-0. approximation is unable to estimate the deviation of the dis-
This limit includes as particular cases the quasielastic limitribution function from the MB form, as measured by the
(a—17), the limit of a vanishing mole fraction of granular fourth cumulant(or kurtosig «. This requires the use of a
particles /n,— 0= w—0), and the limit of small granular Sonine approximation, as done in the following section.
particles @/o,—0=w—0). In either case, Eq(2.22

yields I1l. THE SONINE APPROXIMATION
1 3 A. Description of the approximation
14 _—p_ " p2
x~1+ 4'3 32/3 . B0, (2.29 The Sonine approximatidri9,29 worked out in this sec-
tion consists of expanding(v)/fyg(v) in the Sonine poly-
and Eq.(2.24) becomes nomials and then truncating the series after the first nonzero
term:
T 1 -1
7.7 5 (m/m+1)B) . B0, (2.263 k[15 mv? [mv?)\?
b ~ bl g~ e
f(v)~fyg(v)i 1+ 5|2 5 >T +( >T ) J (3.1
1
~1-5(my/m+1)B,  B—0. (2.26b  This Sonine approximation is expected to be reliable as long

as| k| remains relatively smallsay|«|=<0.1). When the ap-
Equation(2.263 is more general than E@2.26b, since the ~ Proximation(3.1) is used in Eqs(2.7) and (2.11), Ay, and
latter requires tham/my, is kept fixed, in which case the Bi> become linear functions ok, while A;; and By, are
granular temperature is slightly below the bath temperatureguadratic functions ok. However, their quadratic terms are
However, if in addition to3—0 we havem/m,—0, Eq. further neglected, in consistency with the spirit of the Sonine
(2.263 still holds, but Eq(2.26b only applies if the product approximation(3.1). Therefore,
(my/m)B goes to 0. On the other hand, if/0,—0 and (©) 1 A(1)
m/my (ol )3, then (,/m) B ay,/o— and Eq.(2.263 A=A A K, (3.29
yields

Bij~B{”+B{"«. (3.2
TITy=2(m/my) B txoloy, oloy—0. (2.27)
Inserting Eq«(3.2) into Egs.(2.9) and(2.12), and after elimi-

In the opposite limit of a cooling rate much larger than thenatingx, one gets the following closed equation for the tem-
friction constant 3—o), one gets perature ratiol/Ty,:

1 \» [AQ+AQBY+BEHT=[BQ+BOIAL + AD]
~| — 11 12 11 12171LP11 12 11 12 1+
X (23) , B (2.28 3.3
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OnceT is determined, the cumulart is simply given by 163 2x(x2— 1) — ]
K= . (3.11
3 _ 2_ 2
- A(1(1)+A(1%) o B(ﬁ)+ 5(1%) 34 3BX+Au(4—3u)x—4u
AP+AE  BE+BY The physical solution to the tenth-degree equaiidr® is

generally very close to the MB approximati@23. In par-
Equation(3.4) provides arestimateof the cumulani within  ticular, oncew is eliminated in favor of the parametg,
the first Sonine approximation. Obviously, the smaller thedefined in Eq.(2.20, the remaining dependence »fon «
value of the magnitude of the estima®4), the more reli- and w is generally rather weak. On the other hand, it is

able it is expected to be. precisely the difference between the MB and Sonine esti-
The expressions foA{§Y andB{}Y have been derived by mates ofT/T,,, no matter how small it is, which is respon-
van Noije and Erns19]: sible for the prediction of a nonzera This is obvious from

Eqg. (3.11) and the MB approximatiof2.22).

o 3 0) An approximate solution to Eq3.3) can be obtained by
A1l :EAM , (3.5 writing
2T (9 X~Xg(1+e€), (3.12
O=— §+a2 A9, (3.6

wherexy(B) is the MB solution(2.23), and then neglecting
terms nonlinear ire. The resulting expression faris given
in the Appendix. In consistency with the assumptiGril2),

(0)
Ay, 3.7 Eq. (3.11) becomes

BO=2T12 60+ 1002+
1 |32 .
whereA(9 is given by Eq.(2.14). The quantitiesA{3Y and 32x5(3x5—1)

B{%Y were evaluated by Garzand Dufty in Appendixes A K~ 3 ~ 2, 2¢
and B of Ref.[29] from the Sonine approximation in the 3ot Ap(4=3u)x—4p

general case of arbitrary coefficients of normal restitution
aq, and a,,. Particularizing tow1,=1 we get Eq.(2.15,

(3.13

Equations(3.12 and 3.13, with x, given by Eq.(2.23 and
€ given by Egs(A1)—(A3), provideexplicit expressions for
3 2T the temperature paralmebeland the kurtosisc as functio_ns
A(llz)zg7ﬁX73M[X2(4—3M)—M], (3.8  ofa, u=(1+m/my) ", andp. They are useful for practical
purposes in the conditions where the MB approximation pro-
o712 vides a good estimate of the temperature ratio, and
0)_ 1 2 4, o2 relatively small. These include the physically relevant cases
B(lz)_ay(ﬁ) XA ABEXA(5=8p) + ], of mM/my,=1 andw=<1 considered in Refl44]. Whenk is
(3.9  not small, the numerical solution of E.3) can differ sig-
nificantly from Eq.(3.12 and so the Sonine approximation
and may not be applicable any more. This point will be addressed
more extensively in Sec. VI. For the sake of completeness,
1) 3 [2T\? s 6 5 3 the results presented in the remainder of this paper corre-
Bis “8"'m X" 7[4x°(10— 33w+ 48u”—30u”) spond to the solution of the full equatid®.3), unless stated
otherwise.
+ ux*(64—87u+48u?) +x2u?(9u—17)+3u°].
(3.10 B. Limiting behaviors

In the limit 8—0 (i.e.,a— 1" or w—0), Eq.(3.3) yields

Given the values of the three independent parameterg the asymptotic behavior

=(1+m/my) "1, andg (or, alternatively, u, andw), Eq.
(3.3 yields an algebraic equation of tenth degree for the x~1+hgB, B—0, (3.14
unknownx. The high degree of this equation is due to the

highly nonlinear dependence of the cross collisional integral§yhere

A1, and B4, on the temperature parameteras shown by

Egs. (2.15 and (3.8—(3.10. The algebraic equatiofB.3) _ 2 2
has generally two or four negative real rogtghich are un- = i 20~ (23+2a7)p+ 304 (3.1
physica) and two positive real roots, both larger than 1. The 16 5-6u+7u’

largest positive root diverges in the elastic limi#&-G1),

while the smallest real root tends to 1 in that limit. Therefore Although the coefficienh is not a constant, it is very close to
the physical value ok is the smallest positive root of Eq. the numerical valué— % corresponding to the MB approxi-
(3.3). Oncex is determined, the temperature ratio is given bymation(2.25. The temperature ratio, according to E2.24),
Eq. (2.24) and the cumulank is obtained from Eq(3.4): is given by

051101-6



GRANULAR FLUID THERMOSTATED BY A BATH OF . ..

Tl~[1+2h(mb/m+ 18]t pB—0, (3.163
b

~1-2h(m,/m+1)8, B—0, (3.160

where in the last step it has been assumedrtaim is finite.
According to Eq.(3.11), the cumulantx is in this limit

_ 4h—1 0
AL

provided that the mass ratio is kept fixed. Equati¢®id4)
and (3.17 can be obtained as well from Eg&.12 and
(3.13, respectively, by making use of Eq2.25 and(A4).

Equation(3.17) cannot be applied in the colloidal limit
B ut?>-0. In this case, it is necessary to evaluatéo
second the order i8. The result is

(3.17

1 3(39+2a%

x~1+ Z'B_ Tso,g ) (3.18a
T 1 1 3(79+2a% 318
T, 2Pt e A B8

The leading term ix coincides with that of the MB estimate

(2.25. On the other hand, the subleading term differs from

— % and is needed to evaluaie from Eq. (3.11) with the

result

1-2a?
20

K~ B. (3.19
Again, Egs(3.183 and(3.19 can also be derived from Egs.
(3.12 and(3.13, complemented with Eq$2.25 and (A7).
More in general, it can be easily checked from E@13
and (A6) that Eq.(3.19 holds wheng—0 andu—0, re-
gardless of the scaling law betwegrand w. It is interesting
to note that, according to E¢3.19, the velocity distribution
is platykurtic for a>2/2=0.71, while it is leptokurtic for

a<\/2/2. The same happens in the case of the homogeneous
cooling state, as well as in the case of the white noise ther-

mostat[19].
In the combined limitr/ oy,— 0 with m/myec (ol 0)3, i.e.,

PHYSICAL REVIEW E 67, 051101 (2003

qualitatively correct, may not be quantitatively accurate in
this limit. It is worth noting that EQ.(3.13 yields «
~2%(4h—1) in this limit u—1, B—0.

In the (noncolloida) limit of heavy granular particles at
constantw (so n~ny, o~op), we havem/my—wo=pu
—0=B—. In this case, the solution to E¢3.3) behaves
asymptotically as

x~(A\B)Y3 B, (3.22

where the amplituda is

16+ (45+6a?)(1— a)
A=2 . (3.23
64+ (177+30a)(1— a)

This parameter is very close to the numerical value 3
given by the MB approximatior(2.28. In this limit, the
temperature rati@/ Ty, goes to zero as

.
T—b~(x/3)‘2’3. B—», (3.249

and the cumulant tends to tiiemal) constant value

16(1— a)(1—2a?)
64+ (177+30a%)(1— )

16
K~§(2)\—1)= ,  m/my—oo,

(3.29

Interestingly, this expression coincides with the one derived
by van Noije and Ernst for the white noise thermosfi].
For this reason, we will call this limit the “white noise”
limit. We will come back to this point in Sec. V. In this white
noise limit, Eq.(3.13 becomesc~ €/16, with € given by Eq.
(A8).

The expressions fof/T, and « in the limits discussed
above are summarized in Table I.

C. Transient regime

The Sonine approximatiofB8.1) not only allows one to
get the steady-state values of the temperature Wdfig and
the cumulantx, but also their time evolution. Let us intro-

the granular particles are much smaller than the bath patquce the scaled time variable

ticles, but the mass densities of the individual particles are

comparable in both speci¢sr more generally if3—0 and
my/m—co with (m,/m)B—c], Eq. (3.163 yields

TITy=(1/2h)(m/my) B txaloy, oloy—0, (3.20

where in this casgi—1 and soh=(27—24a?)/96. In this

t
T(t)ZJOdt’v(t'), (3.26

which counts time essentially as the average number of self-
collisions experienced by a granular particle. In this case,
Egs.(2.6) and(2.10 can be rewritten as

limit, Eq. (3.17 cannot be used and the cumulant is instead

given by

16(4h—1)  8(3-2a%)
T 5+2(4h—1) §3-242 '

olop—0. (3.2

K

This value of k cannot be considered very smalf; &

2
0.T==ZA"T, (3.27a

4 4
9.k=— —B* +=(k+1)A*, (3.27H

15 3

<Z), so the Sonine approximation, while possibly still where
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TABLE |I. Summary of the expressions for the temperature rétib, and the kurtosis in the Sonine approximation for some limiting
situations, wherg3 tends to 0 ore. The parameteB is a measure of the cooling ragerelative to the friction constang, and is a function
of the coefficient of restitutiom, the size ratiar/o,, the number densitiesandn,, and the mass ratim/m, [cf. Egs.(2.20 and(2.21)].
The coefficientdr and\ are given by Eq93.15 and(3.23, respectively. Case 1 represents the quasielastic limit. In cases 2 and 3, the mean
free path associated with cross collisions is much smaller than the one associated with self-collisidhs put the masses of the granular
and bath particles are comparable. In case 4, the granular particles are much smaller and much lighter than the bath particles. In case 5, the
granular particles are much larger and much heavier than the bath particles, but both species occupy a comparable volutoelloatzion
limit). Finally, in case 6, the granular particles are much heavier than the bath particles but the mean free pails fatite (white noise
limit).

Case a oloy n/ny m/m, B T/T, K
1+m/my)?
1 —1"  Fixed Fixed Fixed ~(1-a)—0 1-2h(my,/m+1)8 (4h—1)%
b
1+mmy)?
2 Fixed Fixed —0 Fixed ~n/n,—0 1-2h(my,/m+1)8 (4h—1)%
b
1+mmy)?
3 Fixed —0 Fixed Fixed ~(olo)?—0 1-2h(my,/m+1)8 (4h—1)%
b
) ) 3 5 1 3-2a?
4 Fixed —0 Fixed ~(oloy)*=0  ~(oloy?=0  ————(m/my 10 8 2a?
: -3 3 —312 1 1-2a?
5 Fixed —x ~(olop) °>—0 ~(olop)®—»  ~(oloy) *“—0 1-38 0
6 Fixed Fixed Fixed S ~(m/my) Y2 o0 (\B)"?*-0 Lon-1)
. AuntAgp ., ButBy the MB .apprOX|mat|on pracncally llndlgtlngwshable from
A*= B*= (3.28  that predicted by the Sonine approximation. The sequence of

v(2T/m) v(2T/m)? increasing values af/m, at fixed w in Fig. 2 leads to the

white noise limit discussed in the preceding section. In fact,
the asymptotic expressiof8.25 describes very accurately
ghe curve ofx for m/my=1000.

Equationg3.27) are exact, but they do not form a closed set.
On the other hand, if the approximati@8.2) is used, Egs.
(3.27) become a set of two nonlinear autonomous equation . . o
that can be solved numerically by specifying the initial val- A sequence Iead.mg.to the colloidal limitwgmy/m,

ues of T/T, and « only. As an illustration, Fig. 1 shows the /My—) is shown in Fig. 3, wher&/T, and« are plotted
time evolution of T/T, and k for @=0.5, w=1, andm/m,  for fixed (m/my)w=1 with m/m,=10 and 100. Again, the
=1, 10, and 100, starting from an initial condition with agreement with the numerical solution is excellent. For
T/T,=1 andx=0. We observe that after a few collisions M/My=10 and 100, the temperature ratio is already very
per particle, the steady state has been reached. Figure 1 aM@!l described by the asymptotic laW T,=1— 3B [cf. Eq.
shows the time evolution of the temperature ratio in the MB(3.18D]. As for «, the asymptotic behavidB.19 has been
approximation for the casen/m,=1. For the other two Ppractically reached fom/my,=100.

cases, the MB curves are indistinguishable from the Sonine Let us consider now the dependencel 6T, and« on the
ones, in consistency with the fact thatis rather small in mean free path ratia for fixed values ofm/m, and a.

these two cases. Figure 4 shows the results for equal massesnf,=1) and
three values of the coefficient of restitutiom€ 0.9, 0.5, and
COMPARISON WITH THE NUMERICAL SOLUTION 0). Near the origin, 8> w is small and then the asymptotic
OF BIBEN et al. [44] laws (3.160Q and (3.17) apply. As the inelasticity increases,

the range of values aob for which the temperature decays

By an iterative numerical scheme, Bibest al. have linearly shrinks. On the other hand, since, as remarked by
solved the(steady-state Enskog-Boltzmann equatio(®2.2) Bibenet al.[44], the cumulant is practically a linear function
for several choices of the mean free path ratiss1l, the of o, the asymptotic law3.17) keeps being rather accurate
mass ratiom/m,=1, and the coefficient of restitution even neaw=1.
<1. Figure 2 compare$/T, and « in the Sonine approxi- As is apparent from Figs. 2—4, the Sonine approximation
mation with the numerical solution fow=1 and m/my, yields excellent estimates for the temperature r&ti6, and
=1, 10, 100, and 1000. As can be seen, the agreement ike kurtosis«k for the cases considered in Rp44]. Even the
excellent, except for a small tendency of the Sonine approxiMB approximation does a good job in estimatimgT,, as
mation to underestimate for m/my=1 and large inelastic- first noted by Barrat and Trizal386]. Because of this, the
ity. For the other three values of the mass ratio, the cumularonine curves plotted in Figs. 2—4, which have actually been
« is small enough to make the temperature ratio predicted bgbtained from Eq(3.11) and the numerical solution to Eq.
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FIG. 1. Time evolution of the temperature rafiéT, and the FIG. 2. TemperatL_lre ratl_d'/'_l'b and cur_nulantx versusa for
cumulant k, according to the Sonine approximation, fer=0.5, =1 andm/m,=1 (thick solid lines and circles 10 (dashed lines

w=1, andm/my=1 (thick solid line, 10 (dashed ling and 100 and squares 100 (dash-dotted lines and up triandlesind 1000
(dash-dotted ling The initial condition isT/T,=1 andx=0. The (dotted lines and down trianglesThe lines correspond to the So-

thin solid line in the upper panel represents the time evolution of thé'"€ approximation, while the symbols cprrespond to the numerical
temperature ratio in the MB approximation for the casén,=1. solution of the Enskog-Boltzmann equatight]. (The values of the

For the other two cases, the MB curves are indistinguishable frorﬁe_mpergtu_re r_atlo fom/m,= 1000 are not given in Ref44]. T_he_
the Sonine ones. thin solid line in the top panel represents the temperature ratio in the

MB approximation for the casm/m,=1. For the other two cases,
the MB curves are indistinguishable from the Sonine ones and are

(3.3), are practically indistinguishable from those obtained,,q; plotted.

from the approximate solution8.12) and(3.13. Does the
good performance of the Sonine approximation mean that V. FOKKER-PLANCK LIMIT: HIGH ENERGY TAIL
the distribution function is accurately described by the trun-
cated expansioni3.1)? Not necessarily so ik is not very
small, as illustrated in Fig. 5, where the reduced distribution A physically important situation arises when the granular
function particles are much heavier than the bath particles. This in-
cludes tlr}ze colloidal limit [m/mp—, woemy/m=7
-1 32 A= «(m,/m)~'“—0], as well as the white noise lim[tm/my
(e =n""2T/m)*(v), c=v/y2T/m (4.D — o, w=finite= Bx(m/my)*°—=]. The predictions of the
Sonine approximation in these limits have been analyzed in
is plotted for the case with the largest deviation from equithe preceding section. Nonetheless, it is worth studying the
librium considered in Ref[44], namely, equal masses |imit m/m,—c at the level of the kinetic equation itself.
(m/m,=1), equal mean free paths&1), and totally in- If m/mp—o=u~m,/m—0, the Enskog-Boltzmann
elastic collisions (Y:O) Figure 5 shows that the Sonine C0||isi0n Operator‘]li\/“l’fz] can be approximated by the

approximation(3.1) partially accounts for the departure of Fokker-Planck operatofsee, for instance, Appendix A of
the true distribution function from the equilibrium one. The Ref. [30]),

remaining difference is due to the Sonine polynomials of

order higher than two. Notwithstanding this, the truncated Ty @
expansion(3.1) is still useful for estimating the collisional Jidvify, fal—y T
integrals(2.7) and(2.11). Of course, for other choices of the

control parameters such thatis smaller than in the case wherey is given by Eq.(2.19. This confirms the interpre-
considered in Fig. 5, the approximate distributithl) is  tation of y as a friction constant. In the Fokker-Planck limit
expected to be much more accurate. (4.1) the quantitiesA;, andB;, can be evaluatedxactly

A. Limit m/my— o

Ty 0
Vit

St 6.

051101-9



ANDRES SANTOS PHYSICAL REVIEW E57, 051101 (2003

1.00 1.0
0.98 09
TIT,0.96 T,
0.8
0.94
} } } } 0.7
0.008 0.12} 7
.'A"..
0.004 0.08} ©
K K B
0.04} an ]
0.000
A 1 " L e 1 i 1 r O(X) (a)
00 02 04 06 08 10 09 ]
o
(O]

FIG. 3. Temperature ratid@/T, and cumulantx versusa for
(m/my) =1 with m/m,= 10 (thick solid lines and circlesand 100
(dashed lines and squaye¥he lines correspond to the Sonine ap- 3 N . )
proximation, while the symbols correspond to the numerical solu-“nes correspond to the Sonine approximation, _Wh”e the_symbols n
tion of the Enskog-Boltzmann equatip#4]. The temperature ratios the bottom panel correspond to the numerical solution of the
predicted by the MB approximation are practically indistinguish- ENSkog-Boltzmann equatiof#4]. (The values of the temperature
able from the Sonine ones and are not plotted. The thin solid Iine§,atlo f_or cased@—(c) are not given in Ref[44].) The t_h'n_ solid
represent the asymptotic behaviors given by the leading term of Edl_nes In the_ top panel repre_sent_the temperature ratio in the M'_‘D’
(3.18B (top panel and by Eq.(3.19 (bottom panél for the case gpproxmatpn. The dotted lines in both panels are the asymptotic
m/m,=10. Form/m,= 100, the asymptotic behaviors are indistin- INéar behavior¢3.16h and (3.17).
guishable from the Sonine curves and are not plotted.

FIG. 4. Temperature rati@/T, and cumulantk versusw for
m/my=1 and(a) «=0.9, (b) «=0.5, and(c) «=0. The thick solid

Moreover, Eq.(3.11) reduces to

T \/Tb Ty 16
A=3y—\ T\ 1~ T/ (5.2a = @[Zx(xz— 1)-B1. (5.4
2
By,= 15;/(2T) E 1— D)JFK _ (5.2b The physical root _of Eq(5.3 can be 0btair_1ed _analyti(_:ally.
m T T Nevertheless, a simpler practical expression is provided by

Eq. (3.12 with e given by Eq.(A5).

The above results apply in the limit/m,— oo, regardless
of the magnitude of3. In particular, 3 remains finite ifw
—0 asm/my— in the scaled way e (m,/m)*2. This may
correspond ton,/no (o ap)® and m/myec(a/ o), so that
the volume fractions of both species are comparable but the
mass density of a granular particle is much larger than that of
a bath particle. Below, the more interesting cases of the col-
loidal limit and the white noise limi{where 3—0 and g
€, %, respectively are considered.

This means that in this limit, the Sonine approximati{8rR)

for (i,j)=(1,2) becomes exact. In fact, Eq&.2) can be
reobtained from Eqs(2.15 and (3.8—(3.10 by taking the
limit ©—0, in which casex— (T,/T)Y2 On the other hand,
the self-collision operatal, is obviously not affected by the
limit m/my,— o, so that Eqs(3.2) for (i,j)=(1,1) are still
approximate. In the MB approximation, the parameger
=(T,/T)*2 keeps obeying the cubic equatith22). On the
other hand, in the Sonine approximation, the tenth-degre
equation(3.3) simplifies to a quartic equation

320(1— a)x?(x?— 1)+ B[ 64+ (177+ 30a?)(1— a) Ix(X? B. Colloidal limit
—1)—1608(1— a)x— 28216+ (45+ 6a2)(1— Let us assume that the heavy granular particles are made
) 0B(1=a) Al ( a)(1-a)] of a material with a mass density comparable to that of the
=0. (5.3 bath particles, i.em/myx (o/oy)3. If, in addition, the partial
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0.3 Y T T be interpreted as representing the effect of an external white
noise forceF(t) with the propertie$16-19

(F(1))=0, (F(O)F(t"))=m?&ls8(t—t"), (5.7

wherel is the 3xX 3 unit matrix. Now we see that this white
noise thermostat can be obtained as a limiting case of a ther-
mostat consisting of a bath of elastic particles. The stochastic
force F(t) can be interpreted as arising from collisions of the
granular particles with a comparable number of much lighter
(and hotter bath particles. The first line of E@5.6) relates

the strength of the force correlations with the size, mass,
density, and temperature of the bath particles, and with the
size and mass of the granular particlet Eq. (2.19]. The

c second line holds in the steady state and relgfesith the
properties of the granular fluid only.

0.2

FIG. 5. Reduced velocity distribution functiof¥ (c) for w
=1, m/my,=1, ande=0. The solid line is the numerical solution
of the Enskog-Boltzmann equatip#4], while the dashed line is the
Sonine approximatiofB.1) with x=0.129 84. The dotted line is the The Fokker-Planck limit5.1) allows us to speculate on
MB distributionf*(c)=7r’3’2e*°2. the high energy tail of the velocity distribution function of

the granular particles. Let us assume that
volume fractions of both species are comparable, we have
n/nyx(op/0)®. Consequentlywsm,/m and B (m,/m)*? f(v)~Ke k"  u>\2T/m, (5.8
—0. In this case, Eq$5.3) and(5.4) reduce to Eqs(3.18a ]
and (3.19, respectively. Therefore, the same results are obWhereK, k, anda are unknown constants. #<2, it can be
tained in the colloidal limit following two routesti) first ~ argued thaf19,2§
m/m,— at fixed 8 and theng—0; (ii) m/m,—« and B

D. High energy tail

~_ 2 s oT/m
—0 simultaneously, with(m/m,)*? fixed. Julvt.fl= = mno’gwf, v=y2T/m. (5.9
_ o Inserting Eq.(5.8) into the Fokker-Planck operat.1), we
C. White noise limit have

The Fokker-Planck limit(5.1) assumes thain/my— o,

but otherwise the parametes, essentially measuring the J Th 9 Th -2
/ e p , tially 9 — | v+ ——|f(v)~akv? —akv® *—1]|f,

concentration raticn/ny,, remains arbitrary. Now we con- v m dv m
sider thatw is finite, so thatBo(m/my)Y?— . In this situ-
ation where the concentration of the heavy granular particles kva>1. (5.10

is comparable to that of the bath particles, the cooling rate of ) )
the granular fluid is much larger than the friction constant, 10 fix ideas, let us consider the cases such that in the steady

and, as a consequence, the steady state is reached witSt@teT<Ty (i.e., 8>1). This happens, for instance, in the
granular temperature much smaller than the bath temperé(vhlte noise limit. Then, there exists an intermediate regime
ture. In this case, Eq€5.3) and (5.4) yield Egs.(3.22 and  of velocities with J2T/m<uv < 2T,/m. Let us assuméto
(3.25, with A given by Eq.(3.23 and the temperature is Pe checked by consistency latethat in this case
given by Eq.(3.24. As mentioned in Sec. Ill, the result (Tp/m)akv®?>1, so the balance betweely; and Jy,
(3.25 coincides exactly with that obtained in the case of ayieldsa=3 and

granular gas heated with a white noise thermogtat. To

understand this, note that singg/T>1, the drift term can K= 4mrmno’gy; 2\ 2w m |32 51
be neglected versus the diffusion term in the Fokker-Planck _9Ty(Tb/T)3’2_ 3N(1—a?) 2T) (513

operator(5.1) (for v<<2T,/m) with the result
where in the last step use has been made of E}46),

53( J )2 (2.17), and(3.24). The conditionkv?>1 is consistentl t-
JidV|f1 . fol— = | —| f(v), 5. -0 2. v y sa&
14V[f,fo] 7\ av) V) ©9 isfied if v>\2T/m becausekv®~ (mv?/2T)%*. As for the
consistency of the assumed conditiof,(m)akv® ?>1,
where we have
2T Tb>3/2 2T T mou?\ ¥4 mp?)| ~1
2= | = =— 0, 5.6 b ka-2
S~ y( T et 4 (5.6 —aky 5T AR (5.12

where in the last step use has been made of(EQ4 and so this quantity is indeed large in the intermediate regime
the definitiong= ¢(®)/ y. The right-hand side of Eq5.5 can  (mv?/2T)>1>(mv?/2T,). In summary, we get
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f(v)~Ke ¥ \2Tim<v<2T,/m, (5.13

with k given by Eq.(5.11). 100'_ """" -

On the other hand, in the true regime of asymptotically " F e
large velocitiesy > B+/2T,/m, the termJ;; can be neglected o
versus the diffusion and drift terms of the Fokker-Planck I
operatord;, and therefora=2, k=m/2T,. Thus, Bo 10 3

f(v)~K'e ™2y 82T, /ms2T/m. oo
(5.14 .

Strictly speaking, the asymptotic behavi@.9 does not
hold if a=2, but it is still plausible that|J;,[v|f,f]|
<y\Tp/T(mv?/2T)f if v>B2T,/m (i.e., the most ener-
getic granular particles are not affected by self collisjons
The crossover from the stretched exponenttal3d to the
Gaussian decagb.14) takes place around a velocity, that
can be estimated from the condition 2 /2T~ kv, with k
given by Eq.(5.11). This yields

E . 20

2T AN(1-ad)\ T

(5.19

This crossover velocity is indeed much larger than the ther- |7 T
mal velocity becaus@ <T,,. T
The above analysis is not strictly valid if there is nogreat [~
disparity between both temperatures, so that the intermediate 0.8f .
regime (5.13 does not exist. It is reasonable to conjecture
that the high energy tail is of the foris.8) with a=2 but

k#m/2T,, since in this case E@5.9) does not hold and one S

may expect thatJ,[v|f,f]|~v(mv?2T)f instead. More- 0.6r |
over, if m=my but the masses are not very disparate, the

Fokker-Planck limit(4.1) is not valid either. On the other

hand, the results obtained here, along with the evidence of 0.4 : . . .

the numerical solution of Ref44] (see Fig. 8 of Refl44]), 0.0 0.2 0.4 0.6 0.8 1.0

give support to the following scenario: For velocities
>/2T,/m, the distribution function reaches an asymptotic
form (5.8) with a=2, i.e., it is a Gaussian; if, in addition, FIG. 6. The top panel shows the threshold valiyeversusa for
T<T,, there exists a window of velocities much larger thanm/m,=0.1 (solid line), 1 (dashed ling and 10(dotted ling. At a
the thermal velocity/2T/m but much smaller thag2T,/m,  given mass ratian/m,, the values of the temperature obtained
where the asymptotic Gaussian form has not been reachd@m the Sonine and MB approximations differ less than 10% for

yet and the distribution function can be approximated by thdhose points lying below the corresponding curve. The middle and
stretched exponentidb.13). bottom panels show the temperature ratio and the cumulant, respec-

tively, on the threshold curves.

o

VI. RANGE OF APPLICABILITY OF THE SONINE

APPROXIMATION: CRITICAL BEHAVIOR threshold value of the control parametgj,(a,m/m,), such

that if B<B(a,m/my), then the temperature ratio obtained

It is not feasible to knova priori the range of validity of in the Sonine approximation differs less than 10% from that
the Sonine approximation. In principle, it is expected to beobtained in the MB approximation. The values of the tem-
valid as long as the value dk| remains small. But how perature and the cumulant at the threshold will be denoted by
small must|«| be to trust the Sonine approximation? As Ty,(a,m/my) andxy,(a,m/my), respectively. Figure 6 shows
comparison with numerical solutions have shown in Sec. IVthe « dependence 08y, Ti/Ty, andxy, for m/my,=0.1, 1,
the Sonine approximation gives excellent results ever if and 10. We observe that the threshold vaigegrows as the
=0.1 (cf. Figs. 2 and % Since the Sonine approximation inelasticity decreases. Moreovedy, is very sensitive to the
assumes that the velocity distribution function is close to thenass ratio. As the granular particles become heavier, the
MB distribution, a consistency test is that the values for therange of values of the control paramei@rfor which the
temperature ratio obtained from both the approximations ar&onine approximation is expected to be reliable widens sig-
close each other. As a criterion to measure the range of amificantly. Figure 6 also shows that the validity criterign
plicability of the Sonine approximation, let us define a < gy, is compatible with values relatively large for the cu-
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; X(a,m/my) and k(a,m/my). Figure 7 showB., T./Ty,
1000 L i and «; versusa for the same values of the mass ratiom,,

: as in Fig. 6. We observe that at giverim,,, 8. increases as
the inelasticity decreasgi fact, lim,_ ;- B.=). Analo-
gously, at giverw, B; increases with the mass ratia/m,,.

1 For B<pB{a,m/my), a linear stability analysis of Eqgs.
(3.27 shows that the steady-state solutiogx) is linearly
stable. On the other hand, > B.(a,m/m,), a steady state
is absent, sac monotonically increases arid T,, monotoni-
cally decreases with time. Therefore, the dynamical system
(3.27 presents dfirst-orde) phase transitiorin the Sonine
_________ approximation: a stable fixed point exists foB
~~~~~~~~~~~ < B{a,m/my) (with the “order” parametef/T,#0), while
0.06 . no fixed point exists fo3> B(a,m/m,) (with T/T,—0).
It is difficult to assert whether the prediction of this phase
~ transition is physically correct or it is just an artifact of the
: - Sonine approximation employed. On one hand, as the bath
particles become more and more dilute, so that the friction
constant becomes smaller and smaller versus the cooling
] rate, it is possible that a certain critical value is reached
beyond which the bath is unable to thermostat the granular
fluid and, in addition, the velocity distribution of the granular
particles strongly deviates from the MB forpd5]. On the
other hand, the predicted critical behavior takes place clearly
outside the range of validity of the Sonine approximation,
since the values of the cumulant at criticaliig(a, m/my),
are too high, as seen in Fig. 7. These values are so high that
- the Sonine description cannot piantitatively accurate.
Whether it isqualitatively correct when predicting the exis-
tence of a critical behavior remains an open question.
In any case, it is clear that a situation where the tkue
i were small(so the Sonine approximation should then be re-
) ) . ) liable), while the Sonine prediction ot were large, is not
0.0 0.2 0.4 0.6 0.8 1.0 self-consistent. Thus, one can assert that, irrespective of
whether a steady state witf> 3. exists or not, the true
o kurtosis must be quite large, indicating that the granular dis-

FIG. 7. The top panel shows the critical valyig vs « for  yipytion function must be highly distorted with respect to the
m/my=0.1 (solid line), 1 (dashed ling and 10(dotted ling. At a MB distribution.

given mass ratian/m,, the Sonine approximation predicts that
there does not exist a steady stat@¥ B.. The middle and bottom
panels show the temperature ratio and the cumulant, respectively,

VIl. SUMMARY AND CONCLUSION

on the critical curves. The intrinsic nonequilibrium nature of granular fluids ap-
_ pears clearly in the case of uniformly heated systems. The
mulantx, especially for largen/my,. system considered in this paper was originally proposed by

In the MB approximation, the asymptotic behavi@r28 Biben et al. [44] and consists of a fluid of inelastic hard
takes place wheB—, irrespective of whether this corre- spheregof massm, diametero, and coefficient of restitution
sponds tom/my— or w—o. On the other hand, in the «) immersed in a bath of elastic hard sphefesmassm,
Sonine approximation the behavi(8.22 reflects the limit and diametew,) kept at equilibrium at a fixed temperature
B—x, provided thatm/m,—o at constantw. In other T,. The granular particles are subjected to two competing
words, Eq.(3.22 does not hold in the Sonine approximation effects: on one hand, they experience dissipative collisions
at finite mass ratio wheB—» (=w—»=n/n,—=), i.e., among themselves with an effective collision frequengy
in the limit of a vanishing concentration of bath particles.on the other hand, they collide elastically against the bath
What happens then in that limit? particles with a characteristic rater friction constant y.

The analysis of the tenth-degree equati@?3) shows The first effect tends to produce a decrease of the granular
that, asg increases for fixed values ef<1 andm/m,, a  particle T with an associated cooling ra® = r(1— a?),
critical value B(a,m/my) is reached at which the two posi- while the second effect tends to thermalize the granular fluid
tive real roots coalesce and no solution with positive seal to the bath temperatui®,. When both mechanisms compen-
exists for B> pB.. However, asB— B, , the mathematical sate each other, a steady state is reached,Witfi,, (break-
solution of the problem tends to well-defined valuesdown of energy equipartitionand a nonequilibrium velocity
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distribution is obtained, with a nonzero kurtosis The sta-  with the numerical data of Ref44] shows an excellent per-
tionary values ofT/T, and x depend on the ratio of time formance of the results obtained from the Sonine approxima-
scalesp= {9/ v, the mass ratian/m,, and the coefficient tion. On the other hand, the numerical solutions considered
of restitution a. in Ref. [44] were restricted tam/m,=>1 and B<2 %41

In order to obtain T/T, and x from the Enskog- +M/my 12 and did not explore the whole parameter space.
Boltzmann equation, we have considered tfiest) Sonine  The results presented in this paper show that, for fixed values
approximation, which is possibly the simplest approach al°f @ andm/m,, the quantitative accuracy of the Sonine ap-
lowing one to estimate the kurtosis of the distribution. As aProximation worsens ag increases. For largg, the distri-
consequencex is expressed in terms 6f/T,, the latter bution function |s.h|.ghly distorted from the MB dlstrlbuuqn
quantity being given as the physical root of a tenth-degre@nd so the kurtosis is not small enough to make the Sonine

equation. Explicit analytical results have been obtained iva?tSZOd re“r":‘]?rlﬁ' gﬁgﬁ tlr?:ta?rt?]setlg%lr{intehzre r?)):!israsati):rflgitlzsl
several limiting situations. In the limit of large friction con- Be(a, b) PP

. . P to provide a steady-state solution 8F B.(a,m/m,). Since
stant relative to the cooling rateB(-0) with finite mass . ¢ , T
. . . - his phenomenon r nd th main of licabili
ratio, as well as in the colloidal limif m/my—«, B this phenomenon appears beyond the domain of applicability

12 P of the Sonine approximation, it might be an artifact of the
(m/my) ~*—0], the breakdown of energy equipartition is 555roximation. Nevertheless, it is also possible that the So-
weak (1-T/Ty= ) and the distribution function is close t©0 pine prediction of a phase transition is qualitatively correct
the MB form (k). However, ifm/my—0 andB—0 with  ang the bath of elastic particles is unable to thermalize the
(m,/m)B—o, as well as in the white noise limtm/my,  granular fluid if the ratio between the cooling rate and the
—o0, Bo(m/mp) 2], the steady-state granular tempera-friction constant is larger than a certain critical valus).
ture is much smaller than the bath temperature, and the ctrhe investigation of this possibility will be the subject of a
mulant remains finite. future work.

In the limit of heavy granular particlesr/my,—«), the
Enskog-Boltzmann operator representing the collisions of
granular particles with bath particles becomes a Fokker-
Planck operator. Its high energy analysis shows that the dis- | wish to thank T. Biben for kindly providing me the data
tribution function has a Gaussian tailfils —mv?/2T, for ex-  of the numerical solution of Ref44] and to V. Garzdor a
tremely large velocities u>By2T,/m). If g is large critical reading of the manuscript. Partial support from the
enough so that <T,,, then there exists an intermediate win- Ministerio de Ciencia y Tecnologi(Spain through Grant
dow of velocities (2T/m<v<2T,/m), where the distri- No. BFM2001-0718 is gratefully acknowledged.
bution function has the stretched exponential formf In
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~—kv®?, the coefficienk being given by Eq(5.11). If the APPENDIX: EXPRESSION FOR €
concentration and size of the granular particles are compa- , ) .
rable to those of the bath particles, thge (m/my)Y2— o If x=xo(1+€), xo(B) being given by Eq(2.23), is in-

and, consequentlyT/ T, (m/m,)~Y3-0. This implies that serted into Eq(3.3) and terms nonlinear ia. are neglected,
the drift term can be neglected versus the diffusion term irPN€ géts a linear equation ferwhose solution is

the Fokker-Planck operatdfor v <+2T/m), so the effect 1—a) N

of collisions with the bath particles is indistinguishable from e= — (1~ a) N(a,p,p) B (A1)
that produced by a white noise stochastic force. Thus the 32 D(a,u,B)™’

well-known case of a white noise thermostat is recovered

from the more general case of a thermostat made of a bath @fhere

elastic hard spheres in the limi/m,—o, while keeping

fixed the concentrations and sizes of the particles. The fact N(a,u,B)=[16uxg+(1—2a?—16u)x5+2u]

that a granular fluid uniformly heated by a Gaussian white 3 o 2
noise can be interpreted as a particular case of a granular X[64u(1—u)xo+4B(3+8u—6u")Xp
f_Iuiq heated by el_astic coIIision_s, w_ith particles of an equi- +1282x,+38%], (A2)
librium bath, highlights the physical interest of the latter sys-
tem. While this system does not intend to represent faithfully, _ 12 2
the heating mechanism by vibrations usually employed inD (2, 8)=24Q1 = @) uxg"= B[ 2(1~ a) (Sa”+52u) +59

real experiments, it embodies most of the relevant nonequi- — 431X+ [6(1— a) (1502 + 223 — 962
librium steady-state properties of a binary granular fluid.
For finite mass ration/m,, and collision frequency ratio +48u®) + 22799 1x3—[2(1— @) (343

B, one must solve numerically the tenth-degree equation for

162 a2
T/T,. Even so, this represents a formidable simplification of +46u—16u7) +2(1- @) a”(15+ 16u

the problem with respect to the iterative numerical solution —12u2) + 33— a X8+ 2(1— a) u[42+ 149
of the Enskog-Boltzmann equation carried out in Ré#].

Moreover, an approximate explicit solution to the tenth- —34,u2+2a2(8—5,u)]xg—2(1—a),u2(23
degree equation can be obtained by neglecting nonlinear 5 ) 5

terms in the deviation from the MB solution. Comparison +2a°+18u)xp+8(1—a)u”. (A3)
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In the limit 83— 0 with fixed « and u, one simply has

1
ew(h— Z),B, (A4)

whereh is given by Eq.(3.15. On the other hand, ift—0 with fixed « and 8, we get

32 (1—a)(1-2a?)
T 8x2 10(1— a)[ 16— 3a2(x2— 1)(1—2x2)]+ (x2— 1)[ 127+ 354 — 3a(53+ 86x2)] (A0)
0 0 0 0 0 0

If both 8 and u go to 0, Eq.(Al) reduces to The same result is obtained by making— 1 in Eq. (A5).
) Finally, in the white noise limit Boc i~ 12— ), Eq. (A1)
—2a .
€~ o0 (3B+4mB. (Ap) ~ Vields
1280 5
1 (1-a)(1—2a%) (A8)
. . . . . 1/2 E~=— .
In particular, in the colloidal limit B« u~'“—0), one gets 4 16+ (43+100%)(1— a)
2 . . .
e~ 3(1-2a”) 2 (A7) Comparison with Eq(3.25 shows that Eq(A8) is close to
1280 ' e~(2N—1)/3.
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