
PHYSICAL REVIEW E 68, 011305 ~2003!
Exact steady-state solution of the Boltzmann equation:
A driven one-dimensional inelastic Maxwell gas
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The exact nonequilibrium steady-state solution of the nonlinear Boltzmann equation for a driven inelastic
Maxwell model was obtained by Ben-Naim and Krapivsky@Phys. Rev. E61, R5 ~2000!# in the form of an
infinite product for the Fourier transform of distribution functionf (c). In this paper we have inverted the
Fourier transform to expressf (c) in the form of an infinite series of exponentially decaying terms. The
dominant high-energy tail is exponential,f (c).A0 exp(2aucu), wherea[2/A12a2 and amplitudeA0 is given
in terms of a converging sum. This is explicitly shown in the totally inelastic limit (a→0) and in the
quasielastic limit (a→1). In the latter case, the distribution is dominated by a Maxwellian for a very wide
range of velocities, but a crossover from a Maxwellian to an exponential high-energy tail exists for velocities
uc2c0u;1/Aq around a crossover velocityc0. ln q21/Aq, whereq[(12a)/2!1. In this crossover region
the distribution function is extremely small, lnf(c0).q21 ln q.

DOI: 10.1103/PhysRevE.68.011305 PACS number~s!: 45.70.2n, 05.20.Dd, 51.10.1y
er
ns
pr
Th
ye
in
d

s

l-
n,
z-
o

hi

te
ar

fs

o

fo
ed
s

ing

by
d
o
orm

nd

in
y
ing
ere
on-

tial

for
an

h
o

ite

is-
y
ear
an
n

I. INTRODUCTION

In kinetic theory there is a long standing interest in ov
populated high-energy tails of velocity distribution functio
@1# because of chemical reactions and other activated
cesses that occur only at energies far above thermal.
interest has been considerably increased in the past ten
because of research in granular fluids with dissipative or
elastic interactions. The velocity distributions in fluidize
systems have been studied theoretically@2–8# and measured
in Monte Carlo@8–10# and molecular dynamics simulation
@11#, and in numerous laboratory experiments@12#.

Very recently, a revival in this field occurred when Ba
dassarriet al. @13,14# discovered an exact scaling solutio
with an algebraic high-energy tail, of the nonlinear Bolt
mann equation for an inelastic one-dimensional freely co
ing gas ~without energy input! with a collision frequency
independent of the energy of the colliding particles. T
model, called inelastic Maxwell model~IMM !, was intro-
duced by Ben-Naim and Krapivsky@15#. It is in fact an in-
elastic modification of Ulam’s stochastic model to illustra
the velocity relaxation of elastic one-dimensional point p
ticles towards a Maxwellian@16#. A three-dimensional ver-
sion of it has been constructed by Bobylevet al. @17,18#. For
a recent review on inelastic Maxwell models, see Re
@19,20#.

Baldassarriet al. have demonstrated the importance
this type of solutions in Ref.@13# with the help of Monte
Carlo simulations of the nonlinear Boltzmann equation
one-dimensional and two-dimensional IMM’s. It appear
that solutionF(v,t) for large classes of initial distribution
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F(v,0) ~e.g., uniform or Gaussian! and for all values of the
inelasticity could be collapsed for large times on a scal
form v0

2d(t) f „v/v0(t)…, wherev0(t)5^v2&1/2 is the rms ve-
locity. In one dimension, the scaling form was given
f (c)5(2/p)(11c2)22, which has a heavily overpopulate
algebraic tail;c24 when compared to a Maxwellian. In tw
dimensions the solutions also approached a scaling f

with an algebraic tail,f (c);c2d2a with an exponenta(q)
that depends on degree of inelasticityq5 1

2 (12a), wherea
is the coefficient of restitution. Soon after, Ben-Naim a
Krapivsky @21# and Ernst and Brito@22# obtained asymptotic
solutions with algebraic tails for the velocity distribution
d-dimensional freely cooling IMM’s from self-consistentl
determined solutions of the Boltzmann equation. Us
methods previously developed for the inelastic hard sph
case, the asymptotic solutions were also extended to n
equilibrium steady states~NESS! in d-dimensional systems
driven by Gaussian white noise and other thermostats@5,23#.
There the tails exhibited overpopulations of exponen
type, ;exp(2aucu), for all d-dimensional IMM’s @23#. For
inelastic hard spheres, which is the prototypical model
granular gases, the velocity distribution function shows
overpopulated exponential tail in free cooling@5,8,9# and a
stretched exponential tail;exp(2aucu3/2) when driven by
white noise@5,8,10#.

For the case ofd-dimensional free IMM’s, the approac
of F(v,t) to a scaling form with an algebraic tail has als
been rigorously proven, for initial distributions in theL1
function space, satisfying the physical requirements of fin
mass and energy, i.e.,*dv$1,v2%F(v,0),` @24#.

What about exact and/or more explicit results for the d
tribution function in the one-dimensional IMM, driven b
Gaussian white noise? The exact solution of the nonlin
Boltzmann equation for this case is given in the form of
infinite product for the Fourier transform of the distributio
©2003 The American Physical Society05-1
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function @15#. Nienhuis and van der Hart@25# made an ex-
tensive numerical analysis of this solution and demonstra
exponential decay, in agreement with the predictions of R
@23#. More numerical evidence for exponential high-ener
tails in the one-dimensional driven IMM was given recen
by Marconi and Puglisi@26#, and by Antalet al. @27#. In a
recent paper@20#, Ben-Naim and Krapivsky have also use
the Fourier transform method to show that the high-ene
tail is exponential for any inelasticity, but with an amplitud
that diverges in the quasielastic limit. On the other hand,
problem of determining for what range of velocities the e
ponential tail actually applies remains open. This is one
the points addressed in this paper.

The plan of the paper is as follows. In the remainder
this section we present the nonlinear Boltzmann equation
velocity distribution functionF(v) or f (c), driven by Gauss-
ian white noise, and we discuss qualitatively the physi
properties of the model in different limiting cases. In Sec
the exact solutionf(k)5*dc e2 ikcf (c) of the Fourier trans-
formed Boltzmann equation in the NESS is presented in
form of an infinite product and its large- and small-k prop-
erties are analyzed. In Sec. III we determine inverse Fou
transformf (c) in the form of an infinite series of exponen
tially decaying terms. In the limit of totally inelastic colli
sions (a→0), substantial simplifications occur. The rath
singular quasielastic limit (a→1) is studied in Sec. IV,
where the crossover from Maxwellian to exponential dec
is also analyzed. We end with some comments in Sec. V
some technical details are moved to Appendixes A and B

Before concluding this introduction we present the Bol
mann equation for the one-dimensional IMM@15# driven by
Gaussian white noise and discuss some of its important p
erties. The time evolution of a spatially homogeneous iso
pic velocity distribution functionF(v,t)5F(uvu,t) is de-
scribed by the nonlinear Boltzmann equation

]F~v !

]t
2D

]2F~v !

]v2
5E dv1F 1

a
F~v9!F~v19!2F~v !F~v1!G

52F~v !1
1

pE duF~u!FS v2qu

p D
[I ~vuF !. ~1.1!

All velocity integrations extend over interval (2`,1`).
The diffusion term represents the~heating! effect of the
Gaussian white noise with noise strengthD. The nonlinear
collision term represents the inelastic collisions, wherev9
5v2 1

2 (11a21)(v2v1) and v195v11 1
2 (11a21)(v2v1)

denote restituting velocities. Here,a52p215122q with
0,a,1 is the coefficient of restitution. The mass is norm
ized as*dvF(v)51 and the mean square velocity or tem
perature aŝv2&(t)5*dvv2F(v)[v0

2(t). Rate equation

] t^v2&52D22pq^v2&, ~1.2!

obtained from Eq.~1.1!, describes the approach to the NES
with width ^v2&5D/pq, where heating rateD caused by
01130
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the random forces is balanced by loss ratepq^v2&
5 1

4 (12a2)^v2& caused by the inelastic collisions.
To understand the physical processes involved, we

discuss in a qualitative way the relevant limiting cases. Wi
out the heating term (D50), Eq.~1.1! reduces to the freely
cooling IMM, whose exact solution has been discussed
Refs. @13,14#. If one takes, in addition, the elastic limit (a
→1 or q→0), the collision laws reduce in theone-
dimensionalcase tov95v1 , v195v, i.e., an exchange of par
ticle labels, the collision term vanishes identically, eve
F(v,t)5F(v) is a solution, there is no randomization o
relaxation of the velocity distribution through collisions, an
the model becomes trivial at the Boltzmann level of descr
tion whereas the distribution function in the presence ofin-
finitesimaldissipation (a→1) approaches a Maxwellian.

If we turn on the noise (DÞ0) at vanishing dissipation
(q50), the exact solution of Eq.~1.1! in Fourier represen-
tation is F̂(k,t)5exp(2Dk2t)F̂(k,0) and granular tempera
ture v0

2(t)5v0
2(0)12Dt increases linearly with time. With

stochastic heatingand dissipation ~even in infinitesimal
amounts! the system reaches a NESS and it is the goal of
paper to determine the NESS distribution function.

To expose the universality of this NESS it is convenient
measure velocitiesc5v/v0(`) in units of its typical size
v0(`), i.e., the rms velocity or width of the velocity distri
bution v0(`),

F~v,`!5v0
21~`! f @v/v0~`!#, ~1.3!

which obeys normalizations*dc$1,c2% f (c)5$1,1%. Differ-
ent normalizations have been used as well@28#.

The rescaled velocity distribution in the NESS is then t
solution of scaling equation

I ~cu f !52
D

v0
2~`!

f 9~c!52pq f9~c!, ~1.4!

where primes denotec derivatives. The first equality may
suggest thatf (c) may depend on noise strengthD and pos-
sibly on the initial distribution viav0(`). By eliminating
v0(`) with the help of Eq.~1.2! in the NESS we have show
that the scaling form of distribution functionf (c) is a uni-
versal function that does not depend on strengthD of this
thermostat, nor on any property of the initial distribution.
only depends on the type of thermostat used.

II. FOURIER TRANSFORM OF IMM BOLTZMANN
EQUATION

The nonlinear Boltzmann equation for characteristic fun
tion f(k)5*dce2 ikcf (c) is obtained by Fourier transforma
tion of Eq. ~1.4! with result

~11pqk2!f~k!5f~pk!f~qk!. ~2.1!

The simple structure of the equation for Fourier transfo
f(k) follows because the nonlinear collision operator f
~in!elastic Maxwell models is a convolution in the veloci
variables@1#. Equation~2.1! is a nonlinear finite difference
5-2



t

.
t

d

a
e

a

ier

s,

-

an
o

tic
n

of

ers

to

q.

lf

ng
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equation that can be solved by iteration. A simple way
construct the exact solution is to introducec(k)[ ln f(k),
which satisfies

c~k!5c~pk!1c~qk!2 ln~11pqk2!. ~2.2!

The normalization of mass and energy implies thatf(k)
'12 1

2 k2 and c(k)'2 1
2 k2 at smallk. The solution to Eq.

~2.2! can be found iteratively starting fromc0(k)52 ln(1
1pqk2) and insertingcn(k) on the right-hand side of Eq
~2.2! to get cn11(k) on the left-hand side. By taking limi
c(k)5 limn→`cn(k), one finally obtains

c~k!52 (
m50

`

(
,50

m

nm, ln@11p2,q2(m2,)pqk2#,

f~k!5 )
m50

`

)
,50

m

@11p2,q2(m2,)pqk2#2nm,, ~2.3!

wherenm,5(,
m). These solutions satisfy the required boun

ary conditions atk50. We further note thatc̄(k)5c(k)
2luku with l being an arbitrary complex number is also
solution of Eq. ~2.2! but in general does not satisfy th
boundary conditions at smallk. This property is a reflection
of the Galilean invariance of the original Boltzmann equ
tion.

Equations~2.3! provide an exact representation in Four
space of the solution of the Boltzmann equation~1.1!. Series
~2.3! converges rapidly, even for largek. By expanding the
logarithm in powers ofk2 and summing a geometric serie
we obtain

c~k!5 (
n51

`
~21!n

n

~k2pq!n

12p2n2q2n
. ~2.4!

It converges fork2<1/pq andc(k) has a branch point sin
gularity atk2521/pq, as is apparent from Eq.~2.2!. Equa-
tion ~2.4! allows one to get cumulantsC2n defined by

c~k!5 (
n51

`
~21!n

~2n!!
C2nk2n, ~2.5!

with result

C2n5
~2n!!

n

~pq!n

12p2n2q2n
. ~2.6!

In particular, C25^c2&51. Since 12p2n2q2n.0, it fol-
lows that all cumulants are positive, indicating already
overpopulation of the high-energy tails. So far, a summary
the results obtained in Ref.@15#. We note that the Stirling
approximation shows that the cumulants at fixeda or q and
n.e/(2Apq) are rapidly diverging with increasingn, as

C2n;2Ap/n(2nApq/e)2n.
The exact solutionf(k) in Eq. ~2.3! has an infinite se-

quence of poles of multiplicitynm, in the complexk plane,
all of which contribute to the amplitude of the asympto
high-energy tail off (c). This makes a numerical inversio
01130
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of f(k) to obtain f (c) a bit tricky. To determinef (c), sev-
eral authors@25,27# have performed numerical inversions
f(k), starting from the infinite product~2.3! or from the
more convenient series expansion~2.4!. However, the latter
one is only convergent forpqk2,1. To facilitate such nu-
merical procedures, we have derived an expansion in pow
of k22, convergent in the complementary regionpqk2.1 of
the complexk plane. This rather technical part is deferred
Appendix A. The results can be found in Eqs.~A2!, ~A4!,
and ~A7!.

III. HIGH-ENERGY TAIL

On account of Eq.~2.3!, characteristic functionf(k) can
be written as

f~k!5 )
m50

`

)
,50

m

~11k2/km,
2 !2nm,, ~3.1!

wherekm,[ap2,q2(m2,) with a[1/Apq. Thus,f(k) has
poles atk56 ikm, with multiplicity nm, . Velocity distribu-
tion

f ~c!5
1

2pE2`

`

dk eikcf~k! ~3.2!

can then be obtained by contour integration. Asf (c) is an
even function, we only need to evaluate the integral in E
~3.2! for c.0. Replacementc→ucu then gives the result for
all c. By closing the contour through an infinite upper ha
circle and applying the residue theorem, we obtain

f ~c!5 (
m50

`

(
,50

m

e2km,ucu (
n50

nm,21

ucunAm,n , ~3.3!

where

Am,n5
i n11km,

2nm,

n! ~nm,212n!!
lim

k→ ikm,

S ]

]kD nm,212n

3~k1 ikm,!2nm,f̃m,~k!, ~3.4!

with

f̃m,~k![ )
m850

`

)
,850

m8

~11k2/km8,8
2

!2nm8,8(12dmm8d,,8).

~3.5!

Note that the factor labeled (m8,,8)5(m,,) is absent. The
dominant terms in Eq.~3.3! for large ucu correspond to the
smallest values ofkm, . The two smallest ones arek005a
and k115a/p. Consequently, the leading and subleadi
terms are

f ~c!'A0e2aucu1A1e2aucu/p1•••, ~3.6!

where

An[Ann05~a/2pn!f̃nn~ ia/pn!. ~3.7!
5-3
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We calculate the first two explicitly, i.e.,

A05
a

2
expF (

m51

`
p2m1q2m

m ~12p2m2q2m!
G , ~3.8!

A15
2ap3

2~12p2!~p2q!
expF (

m51

`
p22m~p2m1q2m!2

m~12p2m2q2m!
G .

~3.9!

In the last equalities we have followed steps similar to th
used to obtain Eq.~2.4! from Eq. ~2.3!. Results~3.3!–~3.9!
exhibit the full analytical structure of the dominant and su
dominant high-energy tails of the velocity distribution in th
NESS, as already demonstrated numerically for the o
dimensional case in Refs.@25–27# and derived in Ref.@23#
for d-dimensional IMM’s on the basis of self-consistent s
lutions. Moreover, we have obtained here explicit expr
sions for amplitudesA0 andA1 in the form of sums that are
rapidly converging whenq is not too small. CoefficientsA0
[A000 andA1[A110 are shown in Fig. 1 as functions ofa,
whereA110}1/(p2q)51/a diverges according to Eq.~3.9!.
The next term to those explicitly given in Eq.~3.6! corre-

sponds either tok225a/p2 if p2.q ~i.e., if a.A522
.0.236) or tok105a/q if p2,q. Note that amplitudeA100
of exp(2k10ucu) can be obtained fromA1 in Eq. ~3.9! by
interchangingp↔q. Figure 2 compares asymptotic form
f (c)'A0e2aucu with function f (c) obtained by numerically
inverting f(k) for a50 and a50.5. We observe that th
asymptotic behavior is reached foraucu*4 if a50 and for
aucu*8 if a50.5. Asa51/Apq, this corresponds to veloci
ties far above the rms velocity.

There are two interesting limiting cases: thequasielastic
limit ( a→1,q→0) and the totally inelastic limit

FIG. 1. Logarithmic plot of amplitudesA0[A000 ~solid line! and
2A1[2A110 ~dashed line! as functions of coefficient of restitution
The arrow indicates the valueA0.2.958 389 ata50. The dotted
lines represent asymptotic form~4.11! for small q.
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(a→0,p→ 1
2

1,q→ 1
2

2). We start with the latter. In the to
tally inelastic limit (a→0), subdominant termsA110e

2aucu/p

and A100e
2aucu/q become equally important, i.e., the sing

poles in Eq.~3.1! at k115a/p andk105a/q coalesce and Eq
~3.6! no longer describes the subdominant large-c behavior
correctly. Moreover,A110.2A100}1/a, as can be seen in
Fig. 1 forA110. In fact, poleskm,→km[2ma coalesce for all
,, some of coefficients Am,n diverge, e.g., Amm0

}(1/a)2m21, and the expansion makes no sense anym
So, we analyze casea50 separately. In this case the cha
acteristic function is according to Eq.~2.3!:

f~k!5 )
m50

`

~11k2/km
2 !2nm, ~3.10!

wherenm[2m and km[2ma with a51/Apq52. Then, the
distribution function is

f ~c!5 (
m50

`

e2kmucu (
n50

nm21

ucunAmn , ~3.11!

where the residues or amplitudes are given by

Amn5
i n11km

2nm

n! ~nm212n!!
lim

k→ ikm

S ]

]kD nm212n

~k1 ikm!2nmf̃m~k!

~3.12!

and f̃n(k) is defined as

f̃n~k![ )
m50

`

~11k2/km
2 !2nm(12dnm). ~3.13!

For largeucu, the distribution function becomes

f ~c!'A00e
22ucu1~A101A11ucu!e24ucu1•••. ~3.14!

FIG. 2. Logarithmic plot of f (c) vs aucu for a50 and a
50.5. The dotted lines are asymptotic formsf (c)'A0e2aucu at a
50 anda50.5, with A0 obtained from Eq.~3.8!.
5-4
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To calculate the amplitudes of the dominant terms, we de
from Eq. ~3.13!,

ln f̃0~k!52 (
m51

`

2m ln~11222mk2/a2!

5 (
n51

`
~21!n

n

~k/a!2n

22n2121

ln f̃1~k!52 ln~11k2/a2!12(
n51

`
~21!n

n

~k/2a!2n

22n2121
.

~3.15!

Definitions ~3.12!–~3.13! with km52ma(a52) then yield

A005
1

2
af̃0~ ia !5eS0.2.958 389,

A115a2f̃1~2ia !52
4

3
A00

2 .211.669 422,

A105
1

2
af̃1~2ia !2 ia2f̃18~2ia !5

4

3 S S12
11

12DA00
2

.3.138 267, ~3.16!

where we have used the rapidly converging sums

S05 (
n51

`
1

n
~22n2121!21.1.084 645,

S15 (
n51

`

~22n2121!21.1.185 597. ~3.17!

In fact, results~3.14! could have been derived directly from
Eqs. ~3.3!–~3.9! after lengthy calculations, by expandin
A110 andA100 in powers ofa, with the result

A1s05~21!s11A11/~8a!1
1

2
A101O~a! ~3.18!

with s50,1. Insertion of these results in Eq.~3.3! yields Eq.
~3.14!. Limit a→1 is discussed in the following Section.

IV. QUASIELASTIC LIMIT

As already mentioned in the introduction, the velocity d
tribution approaches a NESS even in the presence of anin-
finitesimal dissipation (a→1, q→0), balanced by a ditto
amount of stochastic heating. This limit is referred to as
quasielastic limit. For the rescaled functionsf (c) andf(k) it
simply refers to limitq→0.

Once we havefirst taken the large-ucu limit at fixed a
,1, as has been done in the preceding section, we cannext
take the quasielastic limita→1. When the limits are taken
in that order, the asymptotic behavior is still of forme2aucu,
where the decay constants arekmm5a/pm→a and the am-
plitudes may diverge. On the other hand, if the limits a
01130
e
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e

taken in the reverse order, firsta→1 at fixed ucu and next
ucu→`, the behavior is in general totally different.

First consider the second case and observe thatc(k) in
Eq. ~2.4! has, at small q, form c(k)52 1

2 k2

1(n52
` a2n(q)k2n with rapidly decreasing coefficientsa2n

.(21)nqn21(12 1
2 q)/(2n2) for n>2. Consequently,f(k)

5ec(k) can be expanded as

f~k!5e2 ~1/2! k2F11 (
n52

`

m2n~q!k2nG , ~4.1!

where the relation betweena2n and m2n is the same as be
tween cumulants and moments after settinga25m250. Co-
efficientsm2n are, to dominant order inq2, given by

m45a45
1

8
qS 12

1

2
q2

3

4
q2D1O~q4!,

m65a652
1

18
q2S 12

1

2
qD1O~q4!,

m85
1

2
a4

21a85
1

128
q2~113q!1O~q4!,

m10.a4a652
1

144
q31O~q4!,

m12.
1

6
a4

35
1

3072
q31O~q4!, ~4.2!

and in general,m4n22;m4n;O(qn) for n>2. The series
above can be Fourier inverted termwise, using the follow
relation:

E
2`

` dk

2p
eikce2 ~1/2! k2

k2n

5~21!nS d

dcD
2n

expS 2
1

2
c2D Y A2p

5~21!nHe2n~c! f 0~c!

52nn!Ln
(21/2)S 1

2
c2D f 0~c!, ~4.3!

where f 0(c)5exp(21
2c

2)/A2p is the Maxwellian. In the last
two equalities Rodrigues’ formula for the Hermite polynom
als has been used, as well as their relation to the genera
Laguerre or Sonine polynomials@see Ref. @29#, Eqs.
~22.11.88!, ~22.5.18! and ~22.5.40!#. The resulting Sonine
polynomial expansion of the velocity distribution in th
NESS then reads

f ~c!5 f 0~c!F11 (
n52

`

~21!nm2n~q!He2n~c!G . ~4.4!

Similar expansions of the NESS-distribution function in lo
order Hermite or Sonine polynomials have also been deri
5-5
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A. SANTOS AND M. H. ERNST PHYSICAL REVIEW E68, 011305 ~2003!
for inelastic hard spheres ind dimensions@5# and for a three-
dimensional IMM in Ref.@18#.

Next, we consider the case wherefirst ucu→` at finite
a,1 andnexta→1, orq→0. The large-c behavior at fixed
a has already been discussed in Eq.~3.3!–~3.9!, and we
observe that the terms in Eq.~3.3! at largec, associated with
all poles of formkn,5a/p,qn2,(,,n) decay rapidly asq
→0 and only poles withknn5a/pn need to be considered:

f ~c!5 (
n50

`

Ane2knnucu. ~4.5!

We will analyze the behavior of associated amplitudesAn by
combining Eq.~3.7! with Eq. ~3.5!, i.e.,

ln An5 ln~a/2pn!2 (
m50

`

(
,50

m S m
, D ~12dmnd,n!

3 ln@12p22(n2,)q2(m2,)#

[Bn
(1)1Bn

(2)1Bn
(3)1 ln~a/2pn!, ~4.6!

where

Bn
(1)52 (

m50

n21

(
,50

m S m
, D ln@12p22(n2,)q2(m2,)#,

Bn
(2)52 (

,50

n21 S n
, D ln@12~q/p!2(n2,)#,

Bn
(3)52 (

m5n11

`

(
,50

m S m
, D ln@12p22(n2,)q2(m2,)#.

~4.7!

Now we take limitq→0 atfinite nand retain terms to orde
q. The dominant small-q contribution toBn

(1) comes from,
5m, i.e.,

Bn
(1)52 (

m51

n

ln~12p22m!1o~q!

52 ln@~22q!nn! #2
1

2
n~n12!q1o~q!, ~4.8!

where we used relation 121/p2m.22mq@11(m1 1
2 )q#,

ando(qk) denotes terms which are negligible with respect
qk. Note that complex numberBn

(1) is only determined
modulo $2p i %, but exp(Bn

(1)) is single valued. Furthermore
we observe thatBn

(2)5O(nq2). The analysis ofBn
(3) in Eq.

~4.7! is more involved and given in Appendix B. The result

Bn
(3)5

p2

12q
1

1

2
ln q2K01

1

2 S n1
13

12
2

p2

72Dq1o~q!,

~4.9!

where
01130
K05
3

4
1

p2

24
2

1

2
ln 22R.0.733 598. ~4.10!

Combining the small-q results~4.8! and ~4.9! for Bn
(1) and

Bn
(3) with Eq. ~4.6!, yields, forAn ,

An5
a

2pn
exp@Bn

(1)1Bn
(3)1o~q!#5

~21!n

2n! ~2q!n

3expF p2

12q
2K02

1

2
n~n21!q1K1q1o~q!G ,

~4.11!

where

K15
25

24
2

p2

144
.0.973 127 8. ~4.12!

To describe the crossover between the two different l
iting behaviors, i.e., Eq.~4.4! with first q→0, next c→`,
and Eqs.~4.5! and ~4.11! with first c→`, next q→0 we
need to couple these limits, which will be discussed next

By an extension of the steps followed in Appendix B,
can be verified that the terms denoted byo(q) in Eq. ~4.11!
have form nk1qk2 with k1<k211 and k2>2. Therefore,
those terms can be neglected against the terms of orderq if
n!q21.

RatioR(c) between distribution functionf (c) in Eq. ~4.5!
and its asymptotic high-energy formA0e2aucu define across-
over function

R~c![ f ~c!/A0e2aucu5 (
n50

`

bnr n , ~4.13!

wherer n andbn5An /A0 follow from Eq. ~4.5! and~4.11! as

r n5exp@2aucu~p2n21!#,

bn5
~21!n

n! ~2q!n
expF2

1

2
n~n21!q1o~n2q!G . ~4.14!

Here we have writteno(q)→o(n2q) to emphasize the
fact that Eq.~4.14! remains valid ifn!q21. So, there is a
crossover behavior inR(c) from a large-c behavior of
O(exp@2c2/2#).0 in the small-q Sonine polynomial expan
sion ~3.4!, to the small-q behavior ofR(c) of O(1) in Eq.
~4.13!. The transition region is characterized by a crosso
velocity c0 such thatR(c0)' 1

2 . The interesting questions ar
how doesc0 scale withq in the quasielastic limit and what i
the width of the crossover region? To address these q
tions, note that series~4.13! converges for all velocities and
the signs of the terms are alternating. Therefore, when bre
ing off the infinite sum atn5N, the maximum error is
ubN11ur N11:

R~c!5 (
n50

N

bnr n1D (N)~c![R(N)~c!1D (N)~c!,

uD (N)~c!u<ubN11ur N11 . ~4.15!
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This suggests that the pure exponential high-energy
A0e2aucu qualitatively describes the large-c behavior off (c)
if

ub1ur 15
e2aucuq/p

2q
.

e2Aqucu

2q
<

1

2
. ~4.16!

Of course, the bound12 may be replaced by any number
the order of 1 in this estimate. Equation~4.16! implies that
w[ucuAq/ ln q21>1. Therefore, we can estimate the cros
over velocity to bec05(ln q21)/Aq or equivalently,w051.
To confirm this and get a closed form for crossover funct
R(c), consider a value ofw in range 0.5,w,1 and take
N5bqw21, whereb*1. In that case,N@1 butN2q!1, so
that r n.qnw and bn.(21)n/n!(2q)n for n&N and
ubN11ur N11.(2b/e)2N/2bA2pN. Therefore, with this
choice ofN,

R(N)~c!. (
n50

N
~21!n

n! S qw21

2 D n

,

uD (N)~c!u<
1

2bA2pN
S 2b

e D 2N

. ~4.17!

If b.e/2.1.36 thenD (N)(c)!1 andR(c) can be approxi-
mated byR(N)(c). By the same arguments, the upper limit
the summation of Eq.~4.17! can be replaced by infinity
ChoiceN5bqw21 is justified by the fact that forw,1, term
ubnur n reaches a high maximum valueubn0

ur n0

.exp(n01
1
2)/A2pn0 at n0. 1

2 (qw2121) and then decays
rapidly. If w.1, however,ubnur n decreases monotonicall
and thusD (N)(c)!1 for any choice ofN. In conclusion, the
crossover function forw.0.5 in the quasi-elastic limit be
comes

R~c!.exp~2qw21/2!, w[ucuAq/ ln q21. ~4.18!

At w51 we haveR(c5c0).1/Ae.0.6, thus confirming the
estimate of crossover velocityc0 made below Eq.~4.16!.
Figure 3 represents crossover functionR(c) versus scaled
velocity w for q50.01, 0.001, and 0.0001. To measure t
width of the crossover region, letw1 and w2 denote the
values ofw at whichR50.1 andR50.9, respectively. From
Eq. ~4.18! we obtain w1.121.5/lnq21 and w2.1
11.6/lnq21, so the width scales asw22w1;1/lnq21. Going
back to unscaled velocities, the crossover takes place
tweenc15c021.5/Aq andc25c011.6/Aq with a width c2

2c1;1/Aq. For q50.01, 0.001, and 0.0001, one hasc0
.46, 218, and 921 andc22c1.31, 98, and 310, respec
tively. For these high values of the velocity, the distributi
function is extremely small. For instance, atc5c0 , f (c0)
. 1

2 exp@(q2111
2)ln q1p2/12q2K02 1

2 #. This yields f (c0)

;102166, 1022645, and 10236 431 for q50.01, 0.001, and
0.0001, respectively. These values are beyond the accu
of any numerical or simulation method, so the high-ene
tail in the quasielastic limit would look like a Maxwellian fo
the domain of velocities numerically accessible. On the ot
01130
il

-

n
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hand, our asymptotic analysis of the exact solution sho
that the true tail is actually exponential.

V. CONCLUSION

The exact nonequilibrium steady-state solution of t
nonlinear Boltzmann equation for a driven one-dimensio
inelastic Maxwell gas was obtained in Ref.@15# in the form
of an infinite product for Fourier transformf(k) of distribu-
tion function f (c). The main goal of this paper has been
show that this relatively simple exact solution in the on
dimensional case also possesses the generic propertie
overpopulation of high-energy tails and exhibits a rich ma
ematical structure, especially in the different limiting case

We have inverted the Fourier transform to expressf (c) in
the form of an infinite series of exponentially decayin
terms, as given by Eq.~3.3! with velocity c measured in units
of the rms velocity~i.e., ^c2&1/251). For all values of the
coefficient of restitution 0<a,1, the high-energy tail is ex-
ponential, namelyf (c).A0 exp(2aucu), where a[1/Apq
52/A12a2 and amplitudeA0 is given by Eq.~3.8! and plot-
ted in Fig. 1.

Special attention has been paid to two complement
limiting cases: the totally inelastic limit (a→0) and the
quasielastic limit (a→1). In the former case some pole
coalesce and the dominant high-energy term is still expon
tial but the subdominant term becomes an exponential tim
a linear function of the velocity, where the numerical val
of the associated amplitudes is given by Eq.~3.16!.

The quasielastic limit is much more delicate and requi
some care. If we first takea→1 at fixed ucu and nextucu
→` ~order A!, the high-energy tail has a Maxwellian form
On the other hand, if the limits are taken in the reverse or
i.e., first ucu→` at fixeda,1 and thena→1 ~orderB), the
asymptotic high-energy tail is exponential. The crossover

FIG. 3. Plot of the ratio between velocity distribution functio
f (c) and its high-energy tailA0e2aucu as a function of scaled veloc
ity w[ucuAq/ ln q21 in the quasielastic limit forq50.01, 0.001, and
0.0001.
5-7
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TABLE I. Asymptotic behavior of the distribution functionf (c) for one-dimensional systems in th
quasielastic limit. In general, the result depends on the order of limits. OrderA corresponds to take firsta
→12 and thenucu→`, whereas orderB refers to the reverse order, i.e., firstucu→` and thena→12. The
first/second footnote in the second column gives the reference where the result for orderA/B was obtained.

State System OrderA OrderB

Free cooling Hard spheresa,b 1
2 @d(c21)1d(c11)# e2aucu

Maxwell modelc,c c24 c24

White noise Hard spheresa,d
e2aucu3 e2aucu3/2

Maxwell modele,f
e2ac2 e2aucu

Gravity thermostat Hard spherese,g 1
2 @d(c21)1d(c11)# e2ac2

Maxwell modele,h 1
2 @d(c21)1d(c11)# e2aucu

aReference@8#. eThis work.
bReference@5#. fReference@8,23#.
cReference@13,15,22#. gReference@10#.
dReference@5,8#. hReference@23#.
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tween both limiting behaviors is described by the coup
limit c→` and q→0 with scaling variable w
5ucuAq/ ln q21 fixed with q[ 1

2 (12a)!1, and occurs atw
.1. If w,1 ~more specifically, 12w*1/lnq21), the distri-
bution function is essentially a Maxwellian while the tru
exponential high-energy tail is reached ifw.1 ~more spe-
cifically, w21*1/lnq21).

It is of interest to emphasize that the results for the sca
form in the quasielastic limit not only depend sensitively
the order in which both limits are taken but also depe
strongly on the collisional interaction, i.e., on the energy
pendence of the collisional frequency, as well as on the m
of energy supply to the system. To illustrate this, we ha
collected in Table I what is known for the different inelas
models in one dimension, i.e.,~i! hard spheres and~ii ! Max-
well models, and for different modes of energy supply, i.
~i! no energy input or free cooling,~ii ! energy input or driv-
ing through Gaussian white noise, represented by forc
term 2D]2F(v,t)/]v2 in the Boltzmann equation, and~iii !
energy input through anegative friction force }gv/uvu
acting in the direction of the particle’s velocity but indepe
dent of its speed. This driving, referred to as gravity therm
stat, can be represented as the forcing te
g(]/]v)@(v/uvu)F(v,t)# in the Boltzmann equation. The re
sults corresponding to orderA with the gravity thermosta
have been obtained by the same method as followed in
@8#. It is worthwhile noting that in the quasielastic limit
bimodal distribution 1

2 @d(c11)1d(c21)# is observed in
inelastic hard sphere systems, both for free cooling and
driving through the gravity thermostat whereas in inelas
Maxwell models this bimodal distribution is only observe
for the gravity thermostat.

It is important to note that in the normalization whe
velocities are measured in units of the rms velocity, the hi
energy tail in the driven inelastic Maxwell model is on
observable for very large velocities, as illustrated in Fig
for strong (a→0) and intermediate (a5 1

2 ) inelasticity. In
the quasielastic limit, where (a→1), the tail is even pushed
further out towards infinity, as analyzed at the end of Sec.
This also explains how to reconcile the paradoxical result
01130
d

g

d
-
e

e

.,

g

-

ef.

or
c

-

.
f

exponential large-c behavior with the very accurate represe
tation ~4.4! of the distribution function in the thermal range
in the form of a Maxwellian multiplied by a polynomia
expansion in Hermite or Sonine polynomials with coef
cients related to the cumulants. The validity of these poly
mial expansions, over a large range of inelasticities (0<a
,1) had been observed before, in Ref.@5#, for inelastic hard
spheres and in Ref.@18# for inelastic Maxwell models. On
the other hand, the high-energy tail is}e2aucu, and not
}cNe2c2/2, whereN is some large number and yields diver
ing momentsM2n5^c2n& and cumulantsC2n in limit n
→`, as shown in Sec. II.

The exact solutions of the nonlinear Boltzmann equat
for the freely evolving@13# and the driven@15# inelastic
Maxwell models~extended in this paper! as well as the rig-
orous proof of Ref.@24# for the long time approach of the
distribution function to a scaling form validate the se
consistent method developed in Ref.@5# for analytical studies
of possible over- or underpopulations of the high-energy
of velocity distributions, not only for inelastic Maxwell mod
els but, more importantly, also for inelastic hard sphe
where exact solutions are not known. This possibility of a
sessing the validity of general kinetic theory methods
means of exact solutions of the nonlinear Boltzmann eq
tion is one of the main reasons why the study of inelas
Maxwell models is of interest.
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APPENDIX A: LARGE- k EXPANSION

The asymptotic behavior ofc for largek can be obtained
by inserting ansatzc52luku1 ln(Ak2)1(n51

` ank
22n with

unknown coefficients$A,an% into Eq. ~2.2! and equating the
coefficients of equal powers of lnk andkn with result
5-8
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c~k!52luku1 ln~k2/pq!2 (
n51

`
~21!n

n

~k2pq!2n

p22n1q22n21
,

~A1!

where l is as yet undetermined. The series converges
k2>q/p. However, forc(k) mentioned above to qualify as
solution of Eq.~2.2!, the radius of convergence is furthe
restricted to (qk)2>q/p or pqk2>1. Constantl must be
chosen such thatc(k) satisfies boundary conditionc.
2 1

2 k2 at smallk. This can be done by matching Eq.~A1!
with Eq. ~2.4!. The latter satisfies already the small-k bound-
ary condition. Matching atpqk251 then yields

l

Apq
522 ln~pq!1 (

n51

`
~21!n11

n S 1

12p2n2q2n

1
1

p22n1q22n21
D . ~A2!

Both terms can be combined into a singlen-sum with n5
61,62, . . . . Theabove result is not only convenient fo
numerical evaluation, as shown in Fig. 4, but also for a
lytic evaluation in two limiting cases. We first consider th
totally inelasticlimit ( a→0 or p5q5 1

2 ). There, expansion
~A1! can be cast into a simpler form:

c~k!52luku1 ln~4k2!2
1

2 (
n51

`
~21!n

n

k22n

1222(2n11)

52luku1 ln~4k2!1
1

2 (
m50

`
1

2m
lnS 11

1

22mk2D
52luku1

1

2 (
m50

`
1

2m
ln~1122mk2!. ~A3!

FIG. 4. Coefficientl as a function of the coefficient of restitu
tion. The arrow indicates the valuel5p/2 ln 2 ata50. The dotted
line represents the asymptotic form Eq.~A7! for small q.
01130
r

-

Matching this expression ink251/pq54 with the exact so-
lution in Eq. ~2.3!, c(2)52(m50

` 2m ln(11222m), yields the
following nice result:

l5
1

2 (
m52`

`

2m ln~11222m!5
1

4 ln 2E0

`

dxx23/2 ln~11x!

5
p

2 ln 2
. ~A4!

One can verify using the Euler-MacLaurin summation fo
mula@see Eq.~23.1.30! of Ref. @29## that all correction terms
to the integral are vanishing, and the integral is listed in E
~4.293.3! of Ref. @30#.

In the quasielastic limit (a→1 or q→0) the sum origi-
nating from the second term inside (•••) in Eq. ~A2! is of
order ofO(q2) and will be neglected. To evaluate first ter
T for small q, we expand it as follows:

T5 (
k51

`
~21!k11

k

1

12p2k F11
q2k

12p2k
1O~q2(2k21)!G

5 (
k51

`
~21!k11

k F 1

2kq
1

2k21

4k
1

q2k

~2kq!2
1O~q!G

52
1

2q
Li2~21!2

1

2
Li1~21!1

1

4
Li2~21!1

1

4
1O~q!,

~A5!

where the polylogarithmic functions are defined as

Li k~x!5 (
n51

`

xn/nk ~A6!

with Li2(21)52 1
12 p2 and Li1(21)52 ln 2 @31#. The final

result forl at smallq is then

l5
1

Aq
Fp2

24
22q ln q1

1

2
qS ln 21

1

2
2

p2

12D
1q2ln q1O~q2!G . ~A7!

APPENDIX B: ASYMPTOTICS IN QUASIELASTIC LIMIT

To calculateBn
(3) in Eq. ~4.7! for small q we expand the

logarithm and perform the (m,,) summation. The result is,

Bn
(3)5 (

k51

`
p2k

k~12p2k!

~11q2k/p2k!n11

12q2k/~12p2k!

5 (
k51

`
p2k

k~12p2k!
F11

q2k

12p2k
1

q4k

~12p2k!2

1
~n11!q2k

p2k G1o~q!
5-9
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[S~x!1dS~n,x!1o~q!, ~B1!

where all contributions}q0 and}q have been included. Th
dominant term is

S~x!5 (
k51

`
e2kx

k~12e2kx!
~x522 ln p!. ~B2!

In the remaining contributions to Eq.~B1! only term k51
needs to be taken into account and yields

dS~x,n!5
1

4
1

1

2
qS n1

3

4D.
1

4
1

1

4
xS n1

3

4D . ~B3!

To study the small-x behavior of Eq.~B2! we construct an
asymptotic series forS(x) by expanding 1/(12e2kx) in
powers ofx. This can be done most conveniently by usi
the small-x expansion ofx cothx or equivalently the gener
ating function for the Bernoulli numbers B2k5
(21)k11uB2ku @see Eqs.~23.1.1-2! of Ref. @29##, which we
write as

1

12e2x
5

1

x
1

1

2
1 (

m51

`
B2m

~2m!!
x2m21. ~B4!

Substitution of Eq.~B4! with x→kx into Eq. ~B2! yields

S~x!5
1

x
Li2~e2x!2

1

2
ln~12e2x!

1 (
m51

`
x2m21

~2m!!
B2mLi222m~e2x!. ~B5!

We have used definition~A6! of the polylogarithmic func-
tions, which are all singular inx50. To determine the be
havior of dilogarithm Li2(e2x), we use functional relation
@see Eq.~5! of Ref. @31##

Li2~e2x!5
p2

6
2 ln~e2x!ln~12e2x!2Li2~12e2x!

5
p2

6
1xS lnx2

1

2
xD2S x2

1

4
x2D1O~x3!.

~B6!

Here, the small-x expansion of the sum in Eq.~B5! can be
obtained from the relation

Li2n~e2x!5 (
k51

`

kne2kx5S 2
d

dxD
n

Li0~e2x!

5S 2
d

dxD
n

~ex21!21

5S 2
d

dxD
nH 1

x
2

1

2
1 (

m51

`
B2m

~2m!!
x2m21J
01130
5
n!

xn11 F12
1

2
xdn01o~x!G . ~B7!

The small-x expansion of 1/(ex21) has been obtained from
Eq. ~B4! with x→2x.

By combining relations~B6! and ~B7! with the small-x
expansion of ln(12e2x), we obtain from Eq.~B5!,

S~x!5
p2

6x
1

1

2
ln~12e2x!2

1

x
Li2~12e2x!

1 (
m51

`
B2m

2m~2m21! S 12
1

2
xdm1D

5
p2

6x
1

1

2
ln x211R02

x

24
1O~x2!, ~B8!

where R0[(m51
` B2m /@2m(2m21)#. As uB2ku

;2(2k)!/(2p)2k for k→` @see Eqs.~23.2.16! and~23.2.18!
of Ref. @29##, the series is a divergent asymptotic series w
alternatingsigns. One obtains the greatest accuracy, deno
by R0

(m0) , if one breaks off the series just before the small
term in the series, which is defined to be the (m011)th term.
Then the maximum error isuB2m012 /(2m011)(2m012)u
@30#. In the present case, one can simply verify thatm0
53, and the best possible estimate for the remainder in
limit where q→0 is given by,

R05R0
(3)6

1

56
uB8u.0.081 349 260.000 595 2. ~B9!

The inaccuracy inS(x), caused by the inaccuracy i
asymptotic seriesR0, can be substantially reduced, if so d
sired, by restricting them-sum in Eq.~B5! to m053 terms
and calculating the difference

D~x!5 (
k51

`
e2kx

k F 1

12e2kx
2

1

kx
2

1

2

2 (
m51

3
B2m

~2m!!
~kx!2m21G , ~B10!

in the small-x limit as an integral. The result, for instance,
seven decimal points isD520.000 287 7. Hence,

R05R0
(3)1D.0.081 061 5. ~B11!

Combination of results~B1!, ~B3!, and~B8! gives the domi-
nant small-x behavior ofBn

(3) in the form

Bn
(3)5

p2

6x
1

1

2
ln x2

3

4
1R01

1

4
xS n1

7

12D . ~B12!

Final elimination ofx52q(11 1
2 q1 1

3 q21•••) in favor of q
gives Eq.~4.9! in the main text.
5-10



.

s.

.

ga
,

i,

i,

l.

t

ys.

efs.

l

,

d

EXACT STEADY-STATE SOLUTION OF THE . . . PHYSICAL REVIEW E 68, 011305 ~2003!
@1# A.V. Bobylev, Dokl. Akad. Nauk SSR225, 1041~1975! @Sov.
Phys. Dokl.20, 820 ~1976!#; M. Krook and T.T. Wu, Phys.
Rev. Lett. 36, 1107 ~1976!; M.H. Ernst, Phys. Rep.78, 1
~1981!.

@2# D.R.M. Williams and F.C. MacKintosh, Phys. Rev. E54, R9
~1996!.

@3# D.R.M. Williams, Physica A233, 718 ~1996!.
@4# S.E. Esipov and T. Po¨schel, J. Stat. Phys.86, 1385~1997!.
@5# T.P.C. van Noije and M.H. Ernst, Granular Matter1, 57

~1998!; e-print cond-mat/9803042.
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