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Class of dilute granular Couette flows with uniform heat flux
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In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010).] we presented a preliminary
description of a special class of steady Couette flows in dilute granular gases. In all flows of this class the viscous
heating is exactly balanced by inelastic cooling. This yields a uniform heat flux and a linear relationship between
the local temperature and flow velocity. The class (referred to as the LTu class) includes the Fourier flow of
ordinary gases and the simple shear flow of granular gases as special cases. In the present paper we provide
further support for this class of Couette flows by following four different routes, two of them being theoretical
(Grad’s moment method of the Boltzmann equation and exact solution of a kinetic model) and the other two
being computational (molecular dynamics and Monte Carlo simulations of the Boltzmann equation). Comparison
between theory and simulations shows a very good agreement for the non-Newtonian rheological properties,
even for quite strong inelasticity, and a good agreement for the heat flux coefficients in the case of Grad’s method,
the agreement being only qualitative in the case of the kinetic model.

DOI: 10.1103/PhysRevE.83.021302 PACS number(s): 45.70.Mg, 47.50.−d, 51.10.+y, 05.20.Dd

I. INTRODUCTION

The development of the kinetic theory of nonuniform gases,
extending the results by Boltzmann [1] and Maxwell [2] to
near-equilibrium systems, started out with the seminal works,
in the early 20th century, by Hilbert [3], Enskog [4], Chapman
[5], and Burnett [6]. Their results allow for an accurate
description of nonequilibrium states of gases (in particular,
neutral gases) in the limit of Newtonian hydrodynamics [5]
(that is, small gradients, scaled with the typical microscopic
length scale, of the average fields). These theoretical works
have been recently extended to the more general frame of
granular gases where the interparticle collisions are inelastic
[7–9]. The prototypical model of a granular fluid consists of
a system of smooth inelastic hard spheres with a constant
coefficient of restitution α. This parameter distinguishes
ordinary gases (α = 1) from granular gases (α < 1).

Granular matter is certainly involved, not only in many
industrial processes [10], but also in biological processes
[11,12]. This explains the growing interest in the study of
granular matter. Moreover, granular flows are also challenging
from a more fundamental point of view [13,14]. For instance,
in the low-density regime, the Boltzmann equation can be
generalized to granular gases. For all these reasons there
is currently a great interest in the study of granular matter
and a large number of research works have been recently
published in this field (see, for instance, Refs. [8,9,11,15–18]
and references therein). In particular, the Navier-Stokes (NS)
constitutive hydrodynamic equations for granular gases have
been derived from the Boltzmann and Enskog equations
[19–27]. This has allowed the description of important
phenomena in granular matter, some of which were found
to persist with the same qualitative behavior even beyond
the range of Newtonian hydrodynamics (basic segregation
mechanisms [18], for instance).

Unfortunately, the ranges of interest of the physics of gran-
ular gases fall frequently beyond Newtonian hydrodynamics
since the strength of the spatial gradients is large in most
situations of practical interest (for example, in steady states),
due to the coupling between inelasticity and gradients [14,28].

In these states, a hydrodynamic description is still valid but
with constitutive equations more complex than the NS ones.
On the other hand, the derivation of these non-Newtonian equa-
tions from the inelastic Boltzmann equation is an extremely
complex mathematical task. For this reason, one is forced to
resort to approximate schemes (such as Grad’s 13-moment
method or the use of simplified kinetic models) to be tested
against computer simulations such as the direct simulation
Monte Carlo (DSMC) method [29] and event-driven molecular
dynamics (MD) simulations [30]. In this context, analytical
solutions of the Bhatnagar-Gross-Krook (BGK) model kinetic
equation, and its extension to inelastic collisions, have been
found for steady nonlinear shear flows, both for elastic [31] and
granular gases [32–35]. Comparison with numerical solutions
of the Boltzmann equation by means of the DSMC method
shows that this kinetic model is able to describe the general
properties of nonlinear shear flows in elastic and granular
gases.

One of the well-known examples of steady states is the
simple or uniform shear flow (USF) problem [14,28]. This state
is characterized by a linear velocity field (that is, ∂ux/∂y =
const), constant density n, and constant temperature T . The
presence of shearing induces anisotropies in the pressure
tensor Pij , namely, nonzero shear stress Pxy and normal stress
differences Pxx − Pyy and Pyy − Pzz. On the other hand,
the heat flux vanishes due to the absence of density and
thermal gradients. The steady-state condition requires that the
collisional cooling (which is fixed by the mechanical properties
of the granular gas particles) is exactly balanced by viscous
heating (which is fixed by the shearing). This relationship
between the shear field and dissipation sets the strength of the
scaled velocity gradient for a given value of the coefficient of
restitution. This implies that the corresponding hydrodynamic
steady state is inherently non-Newtonian (that is, beyond the
scope of the NS equations) in inelastic granular gases [28].

Let us consider the more complex case of a generic planar
Couette flow problem, which is depicted in Fig. 1. In this state,
the temperature is in principle not uniform and, consequently,
a heat flux vector q coexists with the pressure tensor Pij [33].
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FIG. 1. The planar Couette flow is driven by two horizontal
plates separated by a distance h. Both act like sources of tem-
perature and shear on a low-density granular gas filling the space
between them.

In fact, the energy balance equation (in the steady state) reads

∂qy

∂y
= −d

2
ζnT − Pxy

∂ux

∂y
, (1)

where ζ is the inelastic cooling rate and d is the dimensionality
of the system. The first term on the right-hand side is an energy
sink term reflecting the dissipation due to collisions, while the
second term [note that sgn(Pxy) = −sgn(∂ux/∂y)] is an energy
source term due to viscous heating. The competition between
these two terms determines the sign of the divergence of the
heat flux [36]. As for the conservation equation for momentum,
it implies

Pxy = const, (2)

Pyy = const. (3)

In general, Eq. (1) applies to any state that (i) is stationary,
(ii) has gradients only along the y direction, and (iii) has a
flow velocity vector along the x direction. Thus, Eq. (1) is also
valid for the familiar Fourier flow of ordinary gases (α = 1) as
well as for the (steady-state) USF of granular gases (α < 1).
In the first case ζ = 0 and ∂ux/∂y = 0, so the nonzero heat
flux vector is uniform. In the second case, there is no heat flux
and, as said before, the condition

ζ = − 2

d

Pxy

nT

∂ux

∂y
(4)

establishes the relationship between the inelastic cooling and
the shear field. These two clearly distinct states share the
common features of uniform heat flux and a local balance
between inelastic cooling and viscous heating. The interesting
question is, does there exist a whole class of Couette flows
also sharing the same features? This class would include the
Fourier flow of elastic gases and the USF of inelastic gases as
special limit situations.

The aim of this paper is to provide numerical and analytical
evidence on the existence of such a class of Couette flows. On
the numerical side, we have solved the inelastic Boltzmann
equation by means of the DSMC method [29] and have carried
out MD simulations of dilute granular gases. On the analytical
side, we have solved this special class of Couette flows from a
simplified model kinetic equation as well as by the application
of Grad’s 13-moment method to the Boltzmann equation. A
further theoretical support for this class has recently been
found from an exact solution of the Boltzmann equation

for inelastic Maxwell models [37]. Apart from the condition
q = const, this class of Couette flows is macroscopically
characterized by a uniform pressure,

p = nT = const, (5)

and

ν−1∂yT = A = const, (6)

ν−1∂yux = a(α) = const, (7)

where ν ∝ nT 1/2 is an effective (local) collision frequency.
As a consequence of Eqs. (6) and (7), while neither ux(y) nor
T (y) are linear, a parametric plot of T vs ux shows a linear
relationship. For this reason, we refer to this class of flows
as “linear T (ux)” flows, or simply, “LTu” flows. The slope
of the linear plot T (ux) goes from zero in the inelastic USF
limit (constant temperature) to infinity in the elastic Fourier
flow (zero macroscopic velocity). As we will see, the transport
properties in the LTu class are highly non-Newtonian and can
be characterized by a generalized shear viscosity, normal stress
differences, a generalized thermal conductivity, and a cross
coefficient associated with the x component of the heat flux. A
preliminary report of the LTu has been published recently [38].

The paper is organized as follows. In Sec. II we present
the formal description at a kinetic theory level of the LTu
flows, derive the relation between the Reynolds number and
the relevant parameters, and define the generalized transport
coefficients. We find in Sec. III two analytical solutions of the
problem introduced: in Sec. III A an approximate analytical
solution is obtained by means of Grad’s 13-moment method,
whereas in Sec. III B we find an exact solution of a model
kinetic equation (BGK-type kinetic model adapted to the
granular gas [39]). In Sec. IV the simulation techniques (both
DSMC and MD) used in this work are described. Theory and
simulation results are shown and compared in Sec. V. Finally,
in Sec. VI we give a brief summary of results and discuss them.

II. BOLTZMANN DESCRIPTION OF THE LTU FLOW

A. Couette flow

Let us consider a granular fluid modeled as a gas of
inelastic hard spheres. A constant parameter, the coefficient of
normal restitution α, accounts for the inelasticity in collisions.
Its values range from α = 0 (purely inelastic collision) to
α = 1 (purely elastic collision). In the low-density regime,
the one-particle velocity distribution function f (r,v; t) obeys
the inelastic Boltzmann equation [9,20],

(∂t + v · ∇)f (r,v; t) = J [v|f,f ], (8)

where the Boltzmann collision operator J [v|f,f ] is given by

J [v1|f,f ] = σd−1
∫

dv2

∫
dσ̂ � (g · σ̂ ) (g · σ̂ )

× [
α−2f (v′

1)f (v′
2) − f (v1)f (v2)

]
. (9)

Here, σ is the diameter of a sphere, �(x) is Heaviside’s step
function, σ̂ is a unit vector directed along the centers of the two
colliding particles, g = v1 − v2 is the relative velocity, and the
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primes on the velocities denote the initial values {v′
1,v

′
2} that

lead to {v1,v2} following a binary collision:

v′
1 = v1 − 1

2 (1 + α−1)(σ̂ · g)σ̂ ,
(10)

v′
2 = v2 + 1

2 (1 + α−1)(σ̂ · g)σ̂ .

At a hydrodynamic level, the relevant quantities are the
number density n, the flow velocity u, and the granular
temperature T . They are defined as moments of the velocity
distribution as

n =
∫

dv f (v), (11)

u = 1

n

∫
dv vf (v), (12)

T = m

dn

∫
dv V 2f (v), (13)

where m is the mass of a particle and V = v − u(r) is the
peculiar velocity.

The Boltzmann collision operator conserves the number
of particles and the momentum, but the kinetic energy is not
conserved. The corresponding balance equations are obtained
by multiplying both sides of Eq. (8) by 1, v, v2, and integrating
over velocity. The result is

Dtn + n∇ · u = 0, (14)

Dtu + 1

mn
∇ · P = 0, (15)

DtT + 2

dn
(∇ · q + P : ∇u) = −ζT . (16)

Here, Dt ≡ ∂t + u · ∇ is the material time derivative,

Pij = m

∫
dv ViVjf (v) (17)

is the pressure tensor,

q = m

2

∫
dv V 2Vf (v), (18)

is the heat flux, and

ζ = − m

dnT

∫
dv V 2J [v|f,f ] (19)

is the cooling rate characterizing the rate of energy dissipated
due to collisions.

In the planar Couette flow the granular gas is enclosed
between two parallel, infinite plates (normal to the y axis)
at y = ±h/2 in relative motion along the x direction, and
kept, in general, at different temperatures (cf. Fig. 1). The
resulting flow velocity is along the x axis and, from symmetry,
it is expected that the hydrodynamic fields only vary in the
y direction. Consequently, the velocity distribution function is
also assumed to depend on the coordinate y only. Moreover,
we focus on the steady state, so Eq. (8) becomes

vy∂yf = J [v|f,f ]. (20)

Under the above conditions, the mass conservation
equation (14) is identically satisfied, the momentum con-
servation equation (15) reduces to ∂yPiy = 0 [cf. Eqs. (2) and
(3)], while the energy balance equation (16) becomes Eq. (1).

It must be noted that Eqs. (1)–(3) are exact consequences of
the geometry of the problem and the steady-state condition.
Therefore, they are valid whether a hydrodynamic description
applies or not, even near the walls where boundary effects are
not negligible.

Now we assume that the separation h between the walls
is large enough (that is, it comprises a sufficient number
of mean free paths) as to identify a bulk region where a
hydrodynamic description is expected to apply. Here the term
“hydrodynamics” is employed in a wide sense encompassing
both Newtonian and non-Newtonian behavior. In the context of
the Boltzmann equation, a hydrodynamic description is linked
to a normal solution, namely, a special solution where all the
space and time dependence of the velocity distribution function
takes place via a functional dependence on the hydrodynamic
fields [21]:

f = f [v|n,u,T ]. (21)

B. LTu flow

In the general Couette flow problem, the imposed velocity
and temperature gradients can be controlled independently of
the coefficient of restitution via the boundary conditions. This
problem was studied by means of a simple kinetic model in
Ref. [33]. Here, however, as said in the Introduction, we focus
on a special class of Couette flows. More specifically, we
assume that there exists a normal solution of the Boltzmann
equation (20) with a uniform heat flux component qy . As a
consequence, the shear rate ∂ux/∂y is not a free parameter
but it is fixed by the value of the coefficient of restitution [cf.
Eq. (4)].

As indicated by Eq. (21), we need to specify the form of
the hydrodynamic fields in order to characterize the normal
solution corresponding to the class of Couette flows with
uniform heat flux. This is a nontrivial risky task since the
proposed spatial dependence of the fields must be consistent
with Eqs. (2) and (3) and, moreover, the state is expected to lie
outside the realm of the NS regime.

We take two basic assumptions (which have already been
shown to be fulfilled for generic Couette granular flows [33]).
First, the exact condition (3) is extended to the remaining
diagonal elements of the pressure tensor, so that its trace is
also uniform. This first assumption is displayed in Eq. (5).
Note that in the NS description, p = Pyy , so Eq. (5) is a
straightforward consequence of the conservation of momen-
tum. Here, however, we assume Eq. (5) even though, as will
be seen below, p �= Pyy . The second assumption is subtler
and refers to the y component of the heat flux. According
to the concept of a normal solution qy = qy[n,u,T ] is a
functional of the hydrodynamic fields. We assume that such
a functional dependence has the same form as in the NS
description, namely, qy ∝ (p/nT 1/2)∂yT . Note, however, that
the proportionality constant is in general different from the
NS one. Since p has already been assumed to be uniform
and qy = const defines the LTu state, it follows Eq. (6) with
ν ∝ nT 1/2. Therefore, Eqs. (5) and (6) define the assumed
hydrodynamic profiles. The energy balance equation (4) yields
Eq. (7), where we take into account that ζ ∝ ν as well
as Eqs. (2) and (5). The constant a(α) is a dimensionless
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FIG. 2. (Color online) Each point of this diagram represents a
Couette flow steady state. The surface defines the LTu class, which
contains the lines representing the Fourier flow for ordinary gases
(that is, no shearing and no inelasticity) and the USF for granular
gases (that is, no thermal gradient).

parameter that plays the role of the Knudsen number (Kn)
associated with the shearing. As indicated by the notation,
a(α) is not a free parameter but depends on the coefficient of
restitution through Eq. (4). On the other hand, the constant
parameter A defined by Eq. (6) is not constrained by the
value of α. Note that A is not a dimensionless number, the
corresponding Knudsen number associated with the thermal
gradient being ε ≡ A/

√
mT .

As said in Sec. I, from Eqs. (6) and (7) one obtains

∂T

∂ux

= A

a(α)
= const. (22)

This means that if the spatial coordinate y normal to the moving
plates is eliminated between temperature and flow velocity the
resulting profile T (ux) is linear, thus justifying the acronym
LTu used here to refer to this class of flows.

It is interesting to get the explicit spatial dependence of T

and ux [36]. From Eq. (6) it is easy to obtain

T (y) = T0

[
1 + 3Aν0

2T0
(y − y0)

]2/3

, (23)

where y0 is an arbitrary reference point in the bulk region,
and T0 and ν0 are the local values of T and ν, respectively,
at y = y0. Integrating Eq. (22), with the aid of Eq. (23), we
simply get

ux(y) = a(α)

A
T0

[
1 + 3Aν0

2T0
(y − y0)

]2/3

+ u0 − a(α)

A
T0,

(24)

where u0 is the local value of ux at y = y0. The expression of
the (local) thermal Knudsen number is

ε(y) = A√
mT0

[
1 + 3Aν0

2T0
(y − y0)

]−1/3

. (25)

In the particular case of elastic particles (α = 1 or, equiva-
lently, ζ = 0), Eq. (4) implies a = 0, so we recover the Fourier
flow of ordinary gases [40]. On the other hand, in the absence
of thermal gradients (A → 0) but in the presence of inelastic
collisions (α < 1), Eqs. (23) and (24) become T = T0 and

ux = u0 + a(α)ν0(y − y0), that is, we recover the conditions
of USF. For general values of α and A, Eqs. (5)–(7) define a
whole class of Couette flows with uniform qy . This manifold of
Couette states is sketched in Fig. 2. On the LTu surface one has
∂yqy = 0, while the points above (below) the surface represent
Couette-flow states where the dominant term in Eq. (1) is
the viscous heating (inelastic cooling) one and thus ∂yqy > 0
(∂yqy < 0). For an analysis of the curvature of the temperature
profiles within the NS domain, see Ref. [36].

C. Reynolds number for LTu flows

So far, we have not needed to specify the explicit form of the
effective collision frequency ν, except for the scaling relation
ν ∝ nT 1/2. Henceforth, we will adopt for ν the conventional
choice of effective collision frequency in shear flow problems
involving ordinary gases, namely,

ν = p

η0
NS

, (26)

where η0
NS is the NS shear viscosity of a gas of elastic hard

spheres. With this choice, one has (in the leading Sonine
approximation) [5]

ν = 8π (d−1)/2

(d + 2)�
(

d
2

)n

√
T

m
σd−1. (27)

It is instructive to express the Reynolds number of the
LTu flow in terms of the reduced shear rate a(α), the wall
temperatures T±, the slab width h, and a nominal mean free
path �̄. The Reynolds number Re is defined as [41]

Re = mn̄(U+ − U−)h

η̄0
NS

, (28)

where n̄ and η̄0
NS are characteristic values for density and shear

viscosity, respectively. Here we take n̄ as the average number
density and η̄0

NS = p/ν̄, where ν̄ is given by Eq. (27) by setting
n = n̄ and T = T−.

Neglecting velocity slips and temperature jumps near the
walls, and choosing y0 = −h/2 in Eqs. (23) and (24), one
obtains

U+ − U− = a(α)

A
(T+ − T−)

= 3

2


T

(1 + 
T )3/2 − 1
a(α)ν(−h/2)h, (29)

where 
T ≡ T+/T− − 1 and, without loss of generality, we
have assumed T+ � T−. Insertion of Eq. (29) into Eq. (28)
yields

Re = 3

2


T

(1 + 
T )3/2 − 1
a(α)

(
h

�̄

)2

, (30)

where �̄ ≡ √
T−/m/ν̄ is the nominal mean free path. Upon

derivation of Eq. (30) use has been made of the relation
ν(−h/2)/ν̄ = n(−h/2)/n̄ = p/n̄T−. Equation (30) expresses
the Reynolds number in terms of the relative temperature
difference 
T , the shear-rate Knudsen number a(α), and the
system-size Knudsen number �̄/h. We observe that Re is
essentially the ratio between the shear-rate Knudsen number
and the square of the system-size Knudsen number. The
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pre-factor depends on 
T and ranges from 1 in the limit

T → 0 to 0 in the opposite limit 
T → ∞.

D. Non-Newtonian transport coefficients

As said above, the LTu flow is in general non-Newtonian.
This can be characterized by the introduction of generalized
transport coefficients measuring the relationship between
momentum and heat fluxes with the hydrodynamic gradients.
First, we define a non-Newtonian shear viscosity coefficient
η(α) by

Pxy = −η(α)
∂ux

∂uy

. (31)

Since, by dimensional analysis, η ∝ p/ν, Eq. (31) is consistent
with Eqs. (2), (5), and (7). Equation (31) can be seen as a
generalization of the NS constitutive equation for the shear
stress in the sense that it is assumed that Pxy is independent
of the thermal gradient A. On the other hand, the generalized
shear viscosity coefficient η(α) is expected to differ from the
NS shear viscosity coefficient ηNS(α) of an inelastic dilute gas
[21]. The energy balance equation (4) establishes a relationship
between the reduced shear rate a(α), the generalized shear
viscosity η(α), and the cooling rate ζ (α):

a2(α) = d

2

ζ ∗(α)

η∗(α)
, (32)

where ζ ∗ ≡ ζ/ν and η∗ ≡ η/(p/ν).
While Pxx = Pyy = p in the NS regime, normal stress

differences are expected to appear. They can be measured
though the coefficients

Pxx

p
= θx(α),

Pyy

p
= θy(α). (33)

For d � 3, one could define a coefficient θz = Pzz/p but it is
related to θx and θy by the condition θx + θy + (d − 2)θz = d.
The quantities θx and θy represent directional temperatures
Tx = Pxx/n and Ty = Pyy/n (relative to the granular temper-
ature T ) along the x and y directions, respectively.

In the case of the heat flux, the assumed scaling relation
qy ∝ (p/ν)∂yT suggests the introduction of a generalized
thermal conductivity coefficient λ(α) as

qy = −λ(α)
∂T

∂y
. (34)

This equation has the same form as Fourier’s law, except that
the coefficient λ(α) is expected to differ from the correspond-
ing NS thermal conductivity coefficient of an inelastic dilute
gas [21]. Moreover, while qx = 0 in the NS description, here
we assume the existence of a nonzero x component of the
heat flux due to a non-Newtonian coupling between shearing
and temperature gradient. To characterize this non-Newtonian
effect, we introduce a cross coefficient φ(α) as

qx = φ(α)
∂T

∂y
. (35)

Dimensional analysis shows that λ ∝ p/ν and φ ∝ p/ν, so
that Eqs. (34) and (35) imply that q is uniform.

It must be borne in mind that in this section we have
assumed the existence of Couette flows with (a) qy = const

and (b) profiles given by Eqs. (5)–(7), but there is no a priori
guarantee that the Boltzmann equation (20) admits such states.
In the next section we will provide support for the existence
of this LTu class by solving Eq. (20) through the approximate
Grad 13-moment method and by an exact solution of a model
kinetic equation of the inelastic Boltzmann equation. Further
support will be given by computer simulations, showing a good
agreement with some of the theoretical results.

III. THEORETICAL APPROACHES

A. Grad’s moment method

In order to check the consistency of the hydrodynamic
profiles (5)–(7), as well as of the momentum and heat fluxes,
here we will solve the Boltzmann equation by the classical
Grad moment method [42]. This in turn will provide explicit
expressions for the generalized transport coefficients η, θi , λ,
and φ.

The idea behind Grad’s moment method is to expand
the velocity distribution function f in a complete set of
orthogonal polynomials (generalized Hermite polynomials),
the coefficients being the corresponding velocity moments.
Next, the expansion is truncated after a certain order k. When
this truncated expansion is substituted into the hierarchy of
moment equations up to order k one gets a closed set of
coupled equations. In the standard 13-moment method the
retained moments are the hydrodynamic fields (n, u, and T )
plus the irreversible momentum and heat fluxes (Pij − pδij

and q). More explicitly,

f → f0

{
1 + m

2nT 2

[
(Pij − pδij )ViVj

+ 4

d + 2

(
mV 2

2T
− d + 2

2

)
V · q

]}
, (36)

where

f0 = n
( m

2πT

)d/2
e−mV 2/2T (37)

is the local equilibrium distribution. In the three-dimensional
case, there are 13 moments involved in Eq. (36); hence this
method is referred to as the 13-moment method. In the case
of a general dimensionality d the number of moments
is d(d + 5)/2 + 1.

In order to have a closed set of equations for n, u, T ,
Pij − pδij , and q we need to make use of Eq. (36) to get

m

2

∫
dv ViVjVkf → 1

d + 2

(
qiδjk + qj δik + qkδij

)
, (38)

m

2

∫
dv V 2ViVjf → p

nm

(
d + 4

2
Pij − pδij

)
. (39)

Moreover, the collisional moments associated with the mo-
mentum and energy transfers are approximated by

m

∫
dV ViVjJ [f,f ] → −β1ν(Pij − pδij ) − ζPij , (40)

m

2

∫
dV V 2VJ [f,f ] → −d − 1

d
β2νq, (41)
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where

ζ = ν
d + 2

4d
(1 − α2), (42)

β1 = 1 + α

2

[
1 − d − 1

2d
(1 − α)

]
, (43)

β2 = 16 + 11d − 3(d + 8)α

16(d − 1)
(1 + α). (44)

It is important to remark that, upon writing Eqs. (40) and
(41), nonlinear terms in Pij − pδij and q are neglected. This
is the usual implementation of Grad’s method, although the
quadratic terms are sometimes retained [43,44]. Note that the
expression of the cooling rate ζ provided by Grad’s method
and given by Eq. (42) coincides with its local-equilibrium
form. The dimensionless parameters β1 and β2 measure the
impact of inelasticity on the collisional transfer of momentum
and energy, respectively. Both coefficients reduce to unity in
the elastic limit.

Now, let us apply Grad’s method to the Boltzmann
equation (20). In the geometry of the Couette flow, the
relevant moments are n, ux , T , Pxy , Pxx , Pyy , qx , and qy .
Of course, the exact balance equations (1)–(3) are recovered.
The remaining five equations are obtained by multiplying both
sides of Eq. (20) by VxVy , V 2

x , V 2
y , V 2Vx , and V 2Vy , integrating

over velocity, and applying the approximations (38)–(41). The
results are

2

d + 2
∂yqx + Pyy∂yux = − (β1ν + ζ ) Pxy, (45)

2

d + 2
∂yqy + 2Pxy∂yux = −β1ν (Pxx − p) − ζPxx, (46)

6

d + 2
∂yqy = −β1ν

(
Pyy − p

) − ζPyy, (47)

d + 4

2
∂y

(
T

m
Pxy

)
+ d + 4

d + 2
qy∂yux = −d − 1

d
β2νqx, (48)

∂y

[
T

m

(
d + 4

2
Pyy − p

)]
+ 2

d + 2
qx∂yux = −d − 1

d
β2νqy.

(49)

We have made no extra assumptions in the set of
equations (45)–(49) obtained within the Grad method, apart
from the stationarity of the system and the geometry and
symmetry properties of the planar Couette flow. Now we look
for hydrodynamic LTu solutions, that is, solutions consistent
with q = const and Eqs. (5)–(7). It is easy to check that
Eqs. (45)–(49), together with Eq. (1), indeed allow for such
a class of solutions. First, Eqs. (45)–(47) become a set of
algebraic equations whose solution yields Pxy/p, Pxx/p, and
Pyy/p in terms of α and a. The reduced shear rate a is
subsequently obtained as a function of α from Eq. (32). Once
the pressure tensor is known, Eqs. (48) and (49) provide qx/A

and qy/A as functions of α for arbitrary A. The results can
be conveniently expressed in the forms of Eqs. (31), (33),
(34), and (35) with the following explicit expressions for the
generalized transport coefficients:

η∗ = β1

(β1 + ζ ∗)2
, (50)

θx = β1 + dζ ∗

β1 + ζ ∗ , (51)

θy = β1

β1 + ζ ∗ , (52)

λ∗ = β2
(d − 1)(d + 2)[(d + 4)θy − 2] + d2(d + 4)(ζ ∗/β2)

(d + 2)2(d − 1)β2
2 − 2 d2(d+4)

d−1 a2
,

(53)

φ∗ = (d + 4)a
d[(d + 4)θy − 2] + (d − 1)(d + 2)η∗β2

(d + 2)2(d − 1)β2
2 − 2 d2(d+4)

d−1 a2
.

(54)

Here, we recall that η∗ = η/(p/ν) and ζ ∗ = ζ/ν. According
to Eq. (32), the dependence of the reduced shear rate a(α) on
the coefficient of restitution α is

a2 = dζ ∗

2β1
(β1 + ζ ∗)2. (55)

In Eqs. (53) and (54) we have introduced the reduced
coefficients λ∗ = λ/λ0

NS and φ∗ = φ/λ0
NS, where

λ0
NS = d(d + 2)

2(d − 1)

p

mν
(56)

is the NS thermal conductivity in the elastic limit. As a simple
test, note that in the limit α → 1 (that is, ζ → 0) one has
a → 0, βi → 1, θi → 1, η∗ → 1, λ∗ → 1, and φ∗ → 0.

From the symmetry relation θx + θy + (d − 2)θz = d

and from Eqs. (51) and (52) it follows that θz = θy .
Equations (50)–(55) extend to arbitrary dimensionality d our
previous results for hard spheres (d = 3) [38].

The transport coefficients (50)–(54) describe the non-
Newtonian properties of the granular gas in the LTu class
of flows in the context of Grad’s solution to the Boltzmann
equation. These coefficients clearly contrast with the ones
obtained in the NS description, where one has [21,23]

η∗
NS = 1

β1 + 1
2ζ ∗ , (57)

λ∗
NS =

β2 − 5d
2(d−1)ζ

∗(
β2 − 2d

d−1ζ ∗)(β2 − 3d
2(d−1)ζ

∗) . (58)

Upon writing Eq. (58) we have taken into account that the NS
constitutive equation q = −κNS∇T − μNS∇n becomes q =
−λNS∇T , with λNS = κNS − (n/T )μNS, under the condition
∇p = 0. In Eqs. (57) and (58), non-Gaussian corrections to the
homogeneous cooling state distribution have been neglected,
in consistency with the Grad approximation (36). Apart from
Eqs. (57) and (58), the NS description predicts θi = 1 and
φ = 0.

Figure 3 compares the non-Newtonian coefficients η∗(α)
and λ∗(α) with their NS counterparts η∗

NS(α) and λ∗
NS(α) for

hard disks (d = 2) and hard spheres (d = 3). It is apparent
that the LTu shear viscosity clearly differs from the NS shear
viscosity. In fact, while the latter increases with increasing
inelasticity, the former presents the opposite behavior [28].
On the other hand, both thermal conductivity coefficients are
rather close to each other, especially in the case of hard spheres.
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FIG. 3. (Color online) Reduced shear viscosity (η∗) and thermal
conductivity (λ∗) for inelastic hard disks (top panel) and hard spheres
(bottom panel), as obtained from Grad’s 13-moment method (solid
lines) and from the NS equations (dashed lines).

It is interesting to remark that, while the NS heat-flux transport
coefficients κNS and μNS increase with inelasticity, the effective
NS thermal conductivity λNS = κNS − (n/T )μNS decreases.
This shows the importance of the coefficient μNS (absent in
the elastic case) in granular flows beyond the quasielastic
limit.

B. BGK-type kinetic model

Now we consider the results derived for the LTu class from
a BGK-type kinetic model of the Boltzmann equation [39].
In the geometry of the Couette flow, the steady kinetic model
becomes

vy

∂f

∂y
= −β(α)ν(f − f0) + ζ

2

∂

∂v
· Vf, (59)

where ν is the effective collision frequency defined by Eq. (27).
The parameter β(α) is a free parameter of the model chosen to
optimize the agreement with the Boltzmann results. In terms
of the variable s(y) defined as ds = βν(y)dy, Eq. (59) can be
rewritten as [33]

a

(
1 − d

2
ζ̃ + Vy

∂

∂s
− ãVy

∂

∂Vx

− 1

2
ζ̃V · ∂

∂V

)
f (s,V)

= f0(s,V), (60)

where ã ≡ a/β, ζ̃ ≡ ζ ∗/β, and the derivative ∂s is taken at
constant V = v − u(s). Upon writing Eq. (60), use has been
made of Eq. (7). The hydrodynamic solution to Eq. (60) is

f (s,V) =
∫ ∞

0
dt e−(1− d

2 ζ̃ )t e−τ (t)Vy∂s eãtVy∂Vx

×f0(s,e
1
2 ζ̃ tV), (61)

where

τ (t) ≡ 2

ζ̃
(e

1
2 ζ̃ t − 1). (62)

The action of the operators e−τVy∂s and eãtVy∂Vx on an arbitrary
function g(s,V) is [33]

e
−τ

Vy

β
∂s g(s,V) = g(s − τ

Vy

β
,V), (63)

eãtVy∂Vx g(s,V) = g(s,V + ãtVy x̂), (64)

respectively. The solution (61) adopts the normal or hydrody-
namic form since its spatial dependence only occurs through a
functional dependence on the hydrodynamic fields n(s), u(s),
and T (s) via the local equilibrium distribution f0.

The objective now is twofold. First, we want to check that
the LTu profiles (5)–(7) are consistent with the solution (61).
Next, we will evaluate the fluxes and identify the generalized
transport coefficients defined by Eqs. (31), (33), (34), and (35).
In order to accomplish this twofold objective, it is convenient
to define the general velocity moments

Mk1,k2,k3 (s) =
∫

dV V k1
x V k2

y V k3
z f (s,V). (65)

Insertion of Eq. (61) yields

Mk1,k2,k3 (s) =
∫ ∞

0
dt

∫
dVe−(1− d

2 ζ̃ )t
(
Vx − ãtVy

)k1

×V k2
y V k3

z e−τ (t)Vy∂s f0(s,e
1
2 ζ̃ tV)

=
∫ ∞

0
dt

∫
dVe−(1+ k

2 ζ̃ )t
(
Vx − ãtVy

)k1

×V k2
y V k3

z e−τ1(t)Vy∂s f0(s,V), (66)

where k ≡ k1 + k2 + k3 and τ1(t) ≡ τ (t)e− 1
2 ζ̃ t = 2(1 −

e− 1
2 ζ̃ t )/̃ζ . It is now convenient to expand the operator

e−τ1(t)Vy∂s , so that Eq. (66) becomes

Mk1,k2,k3 (s) =
k1∑

�=0

(
k1

�

) ∞∑
h=0

1

h!

∫ ∞

0
dt e−(1+ k

2 ζ̃ )t [−τ1(t)]h

× (−ãt)k1−�∂h
s

∫
dVV �

x V k1+k2−�+h
y V k3

z f0(s,V)

=
k1∑

�=0

(
k1

�

) ∞∑
h=0

C�Ck+h−�−k3Ck3

h!
Ak,h,k1−�∂

h
s

×
[
n(s)

(
2T (s)

m

)(k+h)/2]
, (67)

where

C� =
{

π−1/2�
(

�+1
2

)
, � = even,

0, � = odd,
(68)

and

Ak,h,k1 ≡
∫ ∞

0
dt e−(1+ k

2 ζ̃ )t [−τ1(t)]h (−ãt)k1 . (69)

In particular, A0,0,0 = 1,

A2,0,0 = 1

1 + ζ̃
, A2,0,1 = − ã

(1 + ζ̃ )2
, (70)
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A2,0,2 = 2̃a2

(1 + ζ̃ )3
, (71)

A3,1,0 = − 2

(1 + 2̃ζ )(2 + 3̃ζ )
, (72)

A3,1,1 = 2̃a(4 + 7̃ζ )

(1 + 2̃ζ )2(2 + 3̃ζ )2
, (73)

A3,1,2 = − 4̃a2(12 + 42̃ζ + 37̃ζ 2)

(1 + 2̃ζ )3(2 + 3̃ζ )3
, (74)

A3,1,3 = 12̃a3(4 + 7̃ζ )(8 + 28̃ζ + 25̃ζ 2)

(1 + 2̃ζ )4(2 + 3̃ζ )4
. (75)

Note that because of the parity properties of the coefficients C�,
only the terms with � = even and h + k = even contribute to
the summations in Eq. (67). Moreover, the moments Mk1,k2,k3

with k3 = odd vanish.
So far, no specific spatial dependence of density and

temperature has been assumed. Only the linear s dependence
of the flow velocity has been used. Now, we assume that
n(s)T (s) = const and ∂sT (s) = const, in agreement with
Eqs. (5) and (6), respectively. These assumptions imply that
∂h
s [T (s)](k+h−2)/2 = 0 if h > (k + h − 2)/2. Therefore, the

summation
∑∞

h=0 can be replaced by
∑max(0,k−2)

h=0 and Eq. (67)
reduces to

Mk1,k2,k3 (s) = n(s)

[
2T (s)

m

]k/2 k1∑
�=0

(
k1

�

) max(0,k−2)∑
h=0

× C�Ck+h−�−k3Ck3

h!
Ak,h,k1−�

(
k+h

2 − 1
)
!(

k−h
2 − 1

)
!

×
(√

2

mT
∂sT

)h

. (76)

It is straightforward to check that M0,0,0(s) = n(s) and
M1,0,0 = M0,1,0 = M0,0,1 = 0. This proves the consistency of
the assumed density and velocity profiles in the LTu flow. The
consistency condition for the temperature is M2,0,0 + M0,2,0 +
(d − 2)M0,0,2 = dp/m. It can be checked that this condition
is satisfied provided that the reduced shear rate ã is related to
the coefficient of restitution by

ã2 = d

2
ζ̃ (1 + ζ̃ )2. (77)

This result is fully equivalent to Grad’s prediction (55), except
that β1 is replaced by β.

Once we have proven that the BGK-type kinetic
equation (59) admits an exact solution characterized by the LTu
hydrodynamic fields, we can obtain all the velocity moments
from Eq. (76). The relevant elements of the pressure tensor
are Pxx = mM2,0,0, Pyy = mM0,2,0, and Pxy = mM1,1,0. From
them one can easily identify the dimensionless coefficients
defined by Eqs. (31) and (33). The resulting expressions coin-
cide with Grad’s results (50)–(52), again with the replacement
β1 → β.

The two nonzero components of the heat flux
are qx = (m/2)[M3,0,0 + M1,2,0 + (d − 2)M1,0,2] and qy =
(m/2)[M1,2,0 + M0,3,0 + (d − 2)M0,1,2]. As expected, they are

proportional to the temperature gradient and this allows one
to identify the generalized thermal conductivities defined in
Eqs. (34) and (35). After some algebra, one gets

λ∗ = 2/β

(1 + 2̃ζ )(2 + 3̃ζ )

[
1 + 6̃a2

d + 2

12 + 42̃ζ + 37̃ζ 2

(1 + 2̃ζ )2(2 + 3̃ζ )2

]
,

(78)

φ∗ = 2̃a

d + 2

4 + 7̃ζ

(1 + 2̃ζ )2(2 + 3̃ζ )2

×
[
d + 4 + 18̃a2 8 + 28̃ζ + 25̃ζ 2

(1 + 2̃ζ )2(2 + 3̃ζ )2

]
, (79)

where we have taken into account that in the BGK model
the NS thermal conductivity in the elastic case is not given
by Eq. (56) but by λ0

NS = d+2
2 p/mν. Comparison with

Eqs. (53) and (54) shows that the transport coefficients λ

and φ predicted by the BGK model are different from those
obtained from Grad’s method, regardless of the choice of the
free parameter β.

So far, β has remained free. Henceforth, by following
arguments presented in Refs. [45] and [46], we will take, for
simplicity, β = (1 + α)/2.

IV. SIMULATION METHODS

As said in the Introduction, in order to assess the reliability
of the previously discussed theoretical results and the existence
of the LTu class, we have performed DSMC simulations of the
Boltzmann equation and MD simulations for a granular gas of
hard spheres (d = 3) [47]. In the MD simulations the global
solid volume fraction has been taken equal to 7 × 10−3 in order
to remain in the dilute regime and compare with the Boltzmann
results obtained either from DSMC simulations or from the
theoretical approaches. The gas is enclosed between two plates
moving with velocities U± and maintained at temperatures T±,
where the subscripts + and − denote upper and lower wall,
respectively (see Fig. 1).

In our simulations we have considered N = 2 × 105 par-
ticles (DSMC) and N ∼ 104–105 particles (MD). When a
particle collides with a wall its velocity is updated following
the rule v → v′ + U±x̂. The first contribution (v′) of the
new particle velocity is due to thermal boundary condition,
while the second contribution (U±x̂) is due to wall motion.
The horizontal components of v′ are randomly drafted from
a Maxwell distribution (at a temperature T±) whereas the
normal component v′

y , due to collision with a wall, is
sampled from a Rayleigh probability distribution: P (|v′

y |) =
(m|v′

y |/T±)e−mv′
y

2
/2T± .

In the traditional DSMC method [29], which we use here,
the system is split into cells whose characteristic length is
much smaller than the mean free path � (that is, macroscopic
properties do not vary significantly along a cell). Here we
define the (local) mean free path for hard spheres as � =√

T/mν−1, where the (local) effective collision frequency
ν is defined in Eq. (27). Furthermore, the time step needs
to be much smaller than the microscopic characteristic time
(inverse of the collision frequency ν). The DSMC method
consists of two steps. One is the free streaming, where the
particles move in straight lines without interparticle collisions.

021302-8



CLASS OF DILUTE GRANULAR COUETTE FLOWS WITH . . . PHYSICAL REVIEW E 83, 021302 (2011)

The boundary conditions are applied in this step. The other
one is the collision step, in which possible particle pairs
are randomly selected from the same cell and collision is
accepted with a probability �(vij · σ̂ ij )ωij /ωmax, where vij =
vi − vj is the relative velocity between particles i and j ,
σ̂ ij = (ri − rj )/|ri − rj |, ωij = (4πσ 2n)|vij · σ̂ ij |, and ωmax

is an upper bound of the probability of particle collision per
unit time.

Given the geometry of the problem, the DSMC cells need
not be three-dimensional since only the vertical coordinate y

is recorded. This is possible because collisions are sampled
independently of the particle position within the same layer,
and only relative approach velocities vij · σ̂ ij are needed in the
simulation (unit vectors σ̂ ij are randomly generated). In our
DSMC simulations we have taken a time step and a layer width
given by δt = 3 × 10−3ν̄−1 and δy = 2 × 10−2�̄, respectively,
where (as said in Sec. II C) �̄ = √

T−/mν̄−1, ν̄ being given by
Eq. (27) with T → T− and n → n̄.

In contrast to the DSMC case, a three-dimensional box is
required in the MD simulations. We have taken h × h × h

cubes with periodic boundary conditions along the directions
(x and z) parallel to the walls.

In the simulation results presented in Sec. V dimensionless
quantities are used. We choose as units of mass, length,
and time m, �(−h/2), and ν−1(−h/2), respectively, once the
steady state has been reached. As said before, we take the
condition T− � T+. Thus, and with our choice of units, the
reduced quantity A/

√
mT (−h/2) [cf. Eq. (6)] will represent

the maximum value across the system of the local thermal
Knudsen number ε [cf. Eq. (25)]. In other words, in our
work the slope of the thermal Knudsen number ε(y) is always
positive [36].

The separation between the plates has typically been set h ≈
5–20 and we have considered a wall temperature difference in
the range 
T ≡ T+/T− − 1 = 0–20. Since, as will be seen
below [cf. Fig. 9(a)], the values of the reduced shear rate are
smaller than 1 for α � 0.5, the above values of h and 
T imply
that the Reynolds number [cf. Eq. (30)] is always smaller than
about 400. For this range of Re the flow is expected to remain
laminar and this is confirmed by our simulations.

We store instantaneous values of the relevant hydrodynamic
quantities iteratively at runtime, for further processing after the
simulation run.

With respect to the processing of the steady state hydrody-
namic properties, we perform two types of averages: one in
space and the second one in time. The first one is performed
over a number of contiguous cells, forming a statistical spatial
bin, whose size must not be larger than the typical scale
over which hydrodynamic fields vary [48]. Since this scale
depends on the applied gradients (wall temperature difference
and applied shear for a system with a given height h), this
statistical bin size needs to be adjusted for each simulation. We
have observed that a bin adjustment of 
y ≈ 0.1Kn−1�̄ (where
the Knudsen number is Kn = a) is enough for preserving
all properties of hydrodynamic profiles [36,48]. The other
averaging is performed, in each spatial bin, over values at
different times of the same steady states. This double averaging
is very convenient since it allows us to obtain very smooth
hydrodynamic steady profiles, even if the system is not
large. This is especially useful in the case of DSMC, where

thermal fluctuations may result in too noisy profiles for small
systems [29,49].

V. RESULTS

A. Transient regime

We analyze here the transition to steady LTu states from
DSMC and MD simulation data, starting from an initial
equilibrium distribution at T = T−. We have found that in
general the duration of this transition to the steady state
becomes substantially longer as inelasticity increases.

Figures 4 and 5 show T (ux) and qx,y(y) profiles, respec-
tively, from DSMC data for transient states at t = 45ν̄−1 and
steady states (t > 800ν̄−1) for α = 0.99 and 0.4. In these cases
h 
 16, as indicated by the horizontal axis of Fig. 5. It is
apparent that, at a given common time, the deviations from
the steady LTu profiles are weaker for α = 0.99 (quasielastic
gas) than for α = 0.4 (strongly inelastic gas). In any case, we
have seen that over the range of α at which we perform the
simulations (α = 0.3–1.0), time values of about t = 250ν̄−1

always yield fully developed steady LTu flows. This happens
also for MD simulations, as shown in Fig. 6, where we can
see results for temperature, heat flux, and pressure for a
granular gas with α = 0.85. The degree of approach to the
steady state is perhaps a little slower but, in any case, we have
observed that the system has already reached the steady state
at t = 250ν̄−1.

Figures 4–6 show that both DSMC and MD confirm the
existence, in the steady state, of Couette flows with practically
linear T (ux) profile, uniform heat flux, and uniform pressure.

1.0 0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

3.5

ux

T
u x

10 5 0 5 10

1

2

3

4

5

ux

T
u x

(a)

(b)

FIG. 4. (Color online) Temperature vs flow velocity, T (ux), as
obtained from DSMC simulations at t = 45ν̄−1 (solid symbols,
transient state) and t > 800ν̄−1 (open symbols, steady state). In these
graphs 
T = 4 and (a) α = 0.99 and (b) α = 0.4.
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FIG. 5. (Color online) Heat flux profiles (a) qx(y) and (b) qy(y)
as obtained from DSMC simulations at t = 45ν̄−1 (solid symbols,
transient state) and t > 800ν̄−1 (open symbols, steady state). In these
graphs 
T = 4 and (a) α = 0.99 and (b) α = 0.4.

B. Identification of LTu flows

In order to identify the LTu flows, we have proceeded
analogously to a previous work [38]. For each simulation
series, we fix 
T and the applied shear (U+ − U−)/h. Once
the steady state is reached, we monitor the parametric plot of
temperature versus flow field, T (ux), looking for the typical
linear profiles of the LTu steady states in the bulk region,
that is, outside the boundary layers. More specifically, since
we observed that T (ux) never shows inflection points in the
bulk (in accordance with theory [36]), we check the sign of
the T (ux) profile curvature. If the sign is positive, that means
that cooling still overcomes viscous heating. Thus, we need
still increase the applied shear for the next simulation (while
keeping constant 
T ), in the search for a T (ux) profile with
zero curvature. The process is repeated iteratively until we
observe a change of sign in the curvature of T . Then, we look
for the LTu state between the consecutive values for which
the change of sign in the curvature is observed, by taking
smaller changes of applied shear and looking at both T (ux) and
qx,y . We take as the final LTu flow the simulation which best
approaches the conditions of both linear T (ux) and constant
qx,y (qz is always zero in our geometry). Put in other words,
we find the LTu flows by crossing vertically (in the shearing
axis direction) the surface in Fig. 2, until getting the right value
of the reduced shear rate (ath).

The degree of approach to the properties of theoretical LTu
states that we obtained in the simulations is rather good. For
illustration on this, we show MD simulation results in Fig. 7,
where one can see how the transition between states above and
below the surface in Fig. 2 occurs. Figure 7(a) shows the results
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FIG. 6. (Color online) Plots of (a) T (ux), (b) qy(y), and
(c) p(y) as obtained from MD simulations at t = 60ν̄−1 (solid
symbols, transient state) and t > 800ν̄−1 (open symbols, stationary
state). In these graphs 
T = 4 and α = 0.85.

for T (ux) profiles, whereas Fig. 7(b) shows the corresponding
results for qy(y) profiles. We have found that heat flux profiles
are more sensitive to a departure from the LTu surface, and
for this reason we usually proceed as described above: we first
search for an almost linear T (ux) profile and then we fine-tune
the LTu state by searching the flattest heat flux profiles for a
shear rate around the first selected value. Compared to results
from DSMC simulations (see Fig. 2(a) in Ref. [38]) we see that
boundary layer effects on heat flux profiles are stronger in MD
simulations. Also, this effect is more noticeable next to the
higher temperature wall. It is also to be noticed that the sign of
∂yqy(y) in the bulk domain changes from positive for a > ath

to negative for a < ath. This agrees with the interpretation that
viscous heating carries kinetic energy toward the hotter wall
whereas inelastic cooling tends to remove it from there [36].
Once this effect of inelastic cooling is sufficiently compensated
by viscous heating, we can see the traditional trend of heat
flux profiles for elastic gases between two walls at different
temperatures (that is, heat flux is directed toward the colder
wall [29]).

In Fig. 8 we show LTu heat flux profiles from DSMC data.
It is observed that at a given wall temperature difference 
T ,
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FIG. 7. (Color online) Transition to LTu profiles for MD series
with varying wall shearing at α = 0.6. Solid symbols correspond to
non-LTu states: (�) for a = 0.87ath and (�) for a = 1.25ath. Open
squares (�) stand for the LTu stationary profile.

the impact of α on qy is rather weak. On the other hand,
at a given value of α, the magnitude of qy is approximately
proportional to 
T . Although not shown, we have also found
that the influence of α on qx is much stronger than in the case
of qy .

6 4 2 0 2 4 6

1.0

0.5

0.0

0.5

y

q y
y

6 4 2 0 2 4 6

1.2

1.0

0.8

0.6

0.4

0.2

y

q y
y

(a)

(b)

FIG. 8. (Color online) Heat flux profiles qy(y) from DSMC data.
In panel (a) 
T = 5 and α = 0.4 (�), α = 0.7 (�), and α = 0.99
(�). In panel (b) α = 0.7 and 
T = 5 (�), 
T = 10 (�), and 
T =
15 (�).

0.5 0.6 0.7 0.8 0.9 1.0

0.5

1.0

1.5

2.0

α

a,
η

θ x
, θ

y

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

α

(a)

(b)
θ x

θ y

η∗

a

FIG. 9. (Color online) Plot of (a) a(α) and η∗(α) and (b) θx(α)
and θy(α) as obtained from DSMC simulations (h = 15) with 
T = 0
(©) (USF data from Ref. [50]), 
T = 2 (×), and 
T = 10 (+), and
from MD simulations (h = 7) with 
T = 2 (�) and 
T = 5 (�).
The solid and dashed lines correspond to Grad’s method and BGK
model, respectively.

C. Generalized transport coefficients

In a recent work [38], we introduced the method of
measurement of the generalized transport coefficients of the
LTu class defined by Eqs. (31), (33), (34), and (35). We have
confirmed by simulations that the values of these reduced
coefficients only depend on the value of the coefficient of
normal restitution α.

Figure 9 presents the simulation data for the reduced
shear rate a, the reduced shear viscosity η∗, and the reduced
directional temperatures θi as functions of the coefficient of
normal restitution α. The figure also includes the theoretical
predictions obtained from Grad’s method [cf. Eqs. (50)–(52)
and (55) with β1 given by Eq. (43)] and from the BGK-like
kinetic model [cf. Eqs. (50)–(52) and (55) with the replacement
β1 → (1 + α)/2]. It can be observed a consistent agreement
between DSMC and MD data. Moreover, the theoretical results
compare quite well with computer simulations, the BGK
results slightly improving the results obtained from Grad’s
approximation.

Regarding the transport coefficients characterizing the heat
flux, Fig. 10 compares computer simulation results (DSMC
and MD) with Grad’s [cf. Eqs. (53) and (54) with β2 given
by Eq. (44)] and BGK [cf. Eqs. (78) and (79)] theoretical
predictions. It is apparent that the generalized thermal con-
ductivity λ∗ exhibits a weak dependence on α, in agreement
with Fig. 8(a). On the other hand, the cross coefficient φ∗,
which vanishes in the elastic limit, starts growing rapidly
with increasing inelasticity, and then presents a much more
moderate dependence on α for large inelasticities. In particular,
φ∗ becomes larger than λ∗ for α � 0.9, what represents a
strong non-Newtonian effect. Interestingly, these features are
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FIG. 10. (Color online) Plot of λ∗(α) (�, �) and φ(α) (�,
�) as obtained from DSMC simulations (triangles) and from MD
simulations (squares). The solid (λ∗) and dashed (φ∗) lines correspond
to Grad’s method, while the dot-dashed (λ∗) and dotted lines (φ∗)
stand for the BGK model.

very well captured by the simple Grad approximation, while
the BGK approach only agrees at a qualitative level. The
contrast between the good performance of the BGK predictions
for the rheological properties seen in Fig. 9 and the quantitative
disagreement found in Fig. 10 is in part due to the fact that
the BGK model only possesses a free parameter (β) to make
contact with the Boltzmann equation.

VI. CONCLUDING REMARKS

We have presented in this work an extensive study of a class
of granular flows recently reported [38]. We refer to this class
of flows as LTu due to the linearity of T (ux) profiles. Our study
has been both theoretical and computational. In the theory
part, we have presented results from two different approaches:
Grad’s moment method and a BGK-type kinetic model used
previously in other granular flow problems and now applied
specifically to the LTu flows. In the computational part, we
have presented results also from two different methods: the
DSMC method of the Boltzmann equation of the inelastic gas
and MD simulations of a dilute gas.

The objective of the paper has been twofold. First, we have
confirmed by computer simulations the existence of LTu flows
in the bulk domain under strongly inelastic conditions. At
a given wall temperature difference and by a careful fine-
tuning of the shear rate applied by the walls, it is possible
to reach steady states with a uniform heat flux and a linear
parametric plot of T vs ux . Second, we have assessed the
theoretical predictions derived from two different approaches

(Grad’s moment method and BGK-type kinetic model) for the
generalized non-Newtonian transport coefficients.

The agreement for the reduced shear rate, rheological
properties, and transport coefficients between the DSMC and
MD simulation methods is very good, as shown in Figs. 9
and 10. Also, the evolution to stationary states and other
properties of the hydrodynamics of the LTu class are found to
be remarkably similar for both DSMC and MD. Regarding the
reliability of both theoretical solutions, we have observed that
they are excellent for the rheological properties [cf. Fig. 9].
On the other hand, in the case of the heat flux coefficients,
the quantitative agreement with simulation is only good for
Grad’s moment method. This good performance of Grad’s
method has been also observed in the case of granular binary
mixtures under simple shear flow [51,52]. Nevertheless, the
good behavior of Grad’s 13-moment method does not extend
to cases where the heat flux is not uniform, as happens in the
Couette flow for ordinary gases [31].

As it is customary in fluid mechanics, the importance of
describing entire classes of flows with clearly identifiable
hydrodynamic properties (rather than describing specific
properties of a given flow in a case-by-case basis) cannot be
overemphasized. In this sense, we have shown here that the
LTu flows are characterized by a set of interesting properties
that can be useful as a reference point for experimental studies
on granular flow at low density. More interestingly, we show
that all flows of the new class share, for the same α, the same
Knudsen number associated with transport of momentum.

To summarize, we have described in detail the properties of
a new class of flows, finding excellent agreement between
simulation and theory. The results show that this class of
flows encompasses at the same time flows of elastic and
inelastic gases, what gives solid support to the validity of a
hydrodynamic description of granular dynamics, at least in
this case and for the type of geometry studied in this work.

We expect in the future to extend these results to other
related systems, such as mixtures, inelastic rough spheres, or
driven systems. Also, we plan to carry out further studies on
the hydrodynamics of this type of flows (instabilities, pattern
formation, etc.).
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[28] A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69, 061303

(2004).
[29] G. I. Bird, Molecular Gas Dynamics and the Direct Simulation

of Gas Flows (Clarendon, Oxford, 1994).
[30] D. C. Rapaport, The Art of Molecular Dynamics Simulations,

2nd ed. (Cambridge University Press, Cambridge, 2004).
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