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Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
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Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently
been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E
83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick
(PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof
relies mainly on the Fourier transforms ĉij (k) of the direct correlation functions defined by the OZ relation. From
the analysis of the poles of ĉij (k) we show that the direct correlation functions evaluated by the RFA method
vanish outside the hard core, as required by the PY theory.
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I. INTRODUCTION

The understanding and interpretation of thermodynamic
properties and the structure of real dense gases and liquids
rely mostly on the use of models of fluids and the application
of approximate theories [1]. One of the most successful
and widely used approximate methods is the Percus-Yevick
(PY) theory. It is an integral equation theory based on the
Ornstein-Zernike (OZ) equation [2] coupled with the PY
closure [3]. Systems of rigid nonattracting hard spheres (HS),
as well as their modified forms (e.g., square-well and sticky
particles), represent useful fluid models for the study of liquids
and colloidal systems [4]. In this context, it is noteworthy that
exact solutions of the PY integral equation were early obtained
for pure [5,6] and multicomponent [7] HS fluids.

Recently, we have shown [8,9] that the thermodynamic and
structural properties of single and (additive) multicomponent
fluids of hard hyperspheres at odd dimensions can be studied
by means of an analytical technique, the so-called rational
function approximation (RFA). This method is formulated in
terms of the Laplace transform of a polynomial times the
radial distribution function and leads directly to a system of
algebraic equations that have analytical solution at low spatial
dimensionality (odd d � 7 for pure fluids and odd d � 3
for mixtures) and must be solved numerically at higher odd
dimensions.

In the single-component case, it was shown that, in its
simplest formulation, the RFA method recovers the known
solution of the PY closure to the OZ equation [8]. In the
multicomponent case, the equivalence between the solutions
of the two approximations has been shown for binary mixtures
in three dimensions [10] and five dimensions [9]. Although
compelling arguments were presented in Ref. [9] in favor of
the extension of the equivalence to general odd d, a rigorous
proof was not attempted. Therefore, whether or not the PY
integral equation is exactly solvable for mixtures of additive
hard hyperspheres with arbitrary d = odd (as well as the
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structure of the solution in the affirmative case) remained,
to the best of our knowledge, an open problem.

The purpose of the present paper is to give a formal proof
that the PY and RFA solutions are indeed equivalent for binary
mixtures in arbitrary odd dimensions. The proof is based on the
analysis of the Fourier transform ĉij (k) of the direct correlation
function cij (r), which is defined by the OZ equation and is a
key quantity to be determined by both approximations. The
equivalence between RFA and PY theories is ensured by first
deriving the functional structure of ĉij (k) as given by the RFA.
The direct correlation function cij (r) is then calculated by the
theory of residues, showing that it is strictly short-ranged, as
expressed by the PY closure.

The organization of the paper is as follows. Section II
provides a description of the fluid structure equations and
basic definitions of the two approximations. Section III
particularizes the RFA scheme to binary mixtures of HS at
odd dimensionalities. Section IV deals with the analysis of
the direct correlation function and its short-range behavior as
derived from the RFA theory. We close the paper in Sec. V
with some concluding remarks.

II. FORMULATION

A. Basic quantities

Let us consider an N -component fluid mixture of additive
d-dimensional HS. Let {xi ; i = 1, . . . ,N } be the set of mole
fractions, {σi ; i = 1, . . . ,N } be the set of diameters, and ρ be
the total number density.

The radial distribution function gij (r), the total correlation
function hij (r), and the direct correlation function cij (r)
corresponding to particle pairs of species i and j are
the primary linkage between thermodynamic and structural
properties and particle interactions of multicomponent fluid
mixtures. They are not independent quantities. In particular,
hij (r) = gij (r) − 1, while cij (r) is defined in terms of hij (r)
by the OZ equation, which is conveniently written in Fourier
space and in matrix form as

c̃(k) = I − [I + h̃(k)]−1 = h̃(k) · [I + h̃(k)]−1. (2.1)

041203-11539-3755/2011/84(4)/041203(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.011201
http://dx.doi.org/10.1103/PhysRevE.83.011201
http://dx.doi.org/10.1103/PhysRevE.84.041203
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Here I is the N × N unit matrix and c̃(k) and h̃(k) are N ×
N matrices with elements ρ

√
xixj ĉij (k) and ρ

√
xixj ĥij (k),

respectively, where the hat symbol (̂ ) denotes the Fourier
transform.

The Fourier transform of the total correlation function can
be evaluated from

ĥij (k) = ν

[
Gij (s) − Gij (−s)

sd−2

]
s=ik

, ν ≡ (−2π )(d−1)/2,

(2.2)

where i is the imaginary unit and Gij (s) is a Laplace functional
of the radial distribution function defined by [9]

Gij (s) =
∫ ∞

0
dr rgij (r)θn(sr)e−sr , (2.3)

with

θn(t) =
n∑

�=0

ωn,�t
�, ωn,� ≡ (2n − �)!

2n−�(n − �)!�!
, (2.4)

being the reverse Bessel polynomial of degree n = (d − 3)/2.
The function Gij (s) is a fundamental quantity in the sense
that it contains all the information about the thermodynamic
properties of the fluid and its knowledge gives structural infor-
mation equivalent to pair radial distributions, pair correlation
functions, and structure factors.

Since the HS particles are not allowed to penetrate each
other, the radial distribution function vanishes inside the core,
i.e.,

gij (r) = 1 + hij (r) = 0, r < σij , (2.5)

where σij = 1
2 (σi + σj ) is the contact distance for hyper-

spheres of species i and j . In addition, the exact Laplace
functionals Gij (s) for d-dimensional HS satisfy the following
asymptotic relations [9].

(i) Long wave-number limit:

lim
s→∞ s(5−d)/2eσij sGij (s) = σ

(d−1)/2
ij gij (σ+

ij ). (2.6)

(ii) Short wave-number expansion:

Gij (s) = (d − 2)!!

s2
+

∞∑
m=0

αn,mHij,m+1s
m, (2.7)

where

αn,m =
min(n,m)∑

�=0

(−1)m−�

(m − �)!
ωn,�, (2.8)

Hij,m =
∫ ∞

0
dr hij (r)rm. (2.9)

(iii) Low-density expansion:

Gij (s) = θn+1(σij s)e−σij s

s2
+ ρ

N∑
�=1

x�

∫ ∞

σij

dr rθn(sr)

×
σi�,σj�
(r)e−sr + O(ρ2), (2.10)

where 
a,b(r) is the intersection volume of two hyperspheres
of radii a and b whose centers are separated by a distance
r � a + b.

Conditions (i)–(iii) are consequences of the hard-core
interaction and therefore are directly related to the step-
function structure of gij (r) [Eq. (2.5)]. Because αn,2q+1 = 0 for
q = 0, . . . ,n − 1 [8], condition (ii) guarantees through (2.2)
that the correlation functions remain bounded at the limit of
zero wave-number,

ĥij (0) < ∞, (2.11)

and this in turn assures that the isothermal compressibility of
the fluid takes finite values [9].

B. The PY approximation

The PY approximation to a classical fluid is obtained from
the OZ equation (2.1) supplemented by a particular closure
relation between gij (r) and cij (r). For hard-hypersphere sys-
tems, the PY closure reduces to Eq. (2.5) and the assumption
that the direct correlation function is short ranged, namely,

cij (r) = 0, r > σij . (2.12)

Therefore, if an approximate radial distribution function gij (r)
satisfies the hard-core condition (2.5) and its associated direct
correlation function, as obtained from Eq. (2.1), verifies the
condition (2.12), it is necessarily a solution to the PY theory.

C. The RFA

In contrast to the PY approach, the RFA method is based on
the Laplace functionals Gij (s) rather than on the OZ equation.
Specifically, the RFA provides an analytical representation of
Gij (s) that complies with the consistency conditions (i)–(iii)
[9]. This analytical approximation reads [11]

Gij (s) = sd−2e−σij s[L(s) · B−1(s)]ij , (2.13)

where L(s) and B(s) are N × N matrices with elements

Lij (s) =
n+1∑
m=0

L
(m)
ij sm, (2.14)

Bij (s) = sdδij − νρie
−σi sLij (s) + Pij (s). (2.15)

In Eq. (2.15), δij is the Kronecker delta symbol, ρi = ρxi is
the partial number density of species i, and

Pij (s) = νρi

n+1∑
m=0

[
d−m∑
�=0

(−σis)�

�!

]
L

(m)
ij sm. (2.16)

Note that the matrices L(s) and P(s) have polynomial depen-
dencies on s of degrees n + 1 = (d − 1)/2 and 2n + 3 = d,
respectively.

The coefficients L
(m)
ij , m = 0,1, . . . ,n + 1 = (d − 1)/2

may depend on the fluid density, the particle diameters, and
the component abundances, but they are independent of s.
Those coefficients are determined from a set of n + 2 algebraic
matrix equations stemming from the requirement of condition
(2.7). The reader is urged to consult Ref. [9] for further
details.

Note that Eq. (2.13) can be rewritten as

Gij (s) = sd−2e−σij s
Fij (s)

β(s)
, (2.17)
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where

F(s) ≡ L(s) · adj[B(s)], β(s) ≡ |B(s)|. (2.18)

Here adj(A) and |A| refer to the adjoint and the determinant,
respectively, of a matrix A. Once the coefficients L

(m)
ij are

obtained as functions of ρ, {σi}, and {xi}, the functionals Gij (s)
are fully determined from Eqs. (2.13) or (2.17). Then, the total
correlation functions in k space are obtained from Eq. (2.2),
which can be rewritten using (2.17) as

ĥij (k) = ν
Rij (ik)

β(ik)β(−ik)
, (2.19)

where

Rij (s) ≡ Fij (s)β(−s)e−σij s + Fij (−s)β(s)eσij s . (2.20)

Finally, to obtain the direct correlation functions in the
configuration space, one makes use of Eq. (2.1) and the inverse
Fourier transform [9],

cij (r) = (2π )−(d+1)/2

rd−2
i

∫ ∞

−∞
dk kĉij (k)θn(ikr)e−ikr . (2.21)

It is worth noting that, as shown in Ref. [9], the Laplace func-
tionals obtained from (2.13) satisfy the asymptotic behaviors
given by Eqs. (2.6)–(2.10). In particular, the physical hard-core
requirement given by Eq. (2.5) is verified. Therefore, in order
to prove the equivalence between the PY and RFA approaches
it will be sufficient to show that the direct correlation functions
calculated with Eqs. (2.1), (2.19), and (2.21) are short ranged,
as required by Eq. (2.12).

Before closing this section, let us derive some properties
for small s that will be useful in Sec. IV. By expanding the
exponential in Eq. (2.15) and inserting Eq. (2.16), one gets

Bij (s) = sdδij − νρi

n+1∑
m=0

[ ∞∑
�=d−m+1

(−σis)�

�!

]
L

(m)
ij sm. (2.22)

Therefore, Bij (s) = sd [δij + O(s)], so that the determinant is

β(s) = sNd [1 + O(s)]. (2.23)

Next, from Eqs. (2.7) and (2.17) we get

e−σij sFij (s) = (d − 2)!!
β(s)

sd
[1 + s2Fij (s2) + O(sd )],

(2.24)

where Fij (s2) is a polynomial of degree n = (d − 3)/2 in
s2 whose explicit form will not be needed here. In fact, the
polynomial Fij (s2) cancels in Eq. (2.20), resulting in Rij (s) =
O(s2Nd ). From Eqs. (2.23) and (2.24) one obtains

Fij (s) = (d − 2)!!s(N−1)d [1 + O(s)]. (2.25)

Particularizing to the binary case (N = 2) and taking the
determinant on both sides of Eq. (2.24), we get

e−2σ12s |F(s)| =
[
β(s)

sd

]2

s2[F(s2) + O(sd−2)], (2.26)

where F(s2) is a polynomial of degree n = (d − 3)/2 in s2.
Combination of Eqs. (2.24) and (2.26) yields

e(2σ12−σij )s |L(−s)|Fij (s) = β(−s)β(s)

s3d−2
[Lij (s2) + O(sd−2)],

(2.27)

where Lij (s2) is again a polynomial of degree n = (d − 3)/2
and use has been made of the property

|F(s)| = β(s)|L(s)|, (2.28)

which follows from Eq. (2.18). Finally, Eq. (2.27) implies

e(2σ12−σij )s |L(−s)|Fij (s) + e−(2σ12−σij )s |L(s)|Fij (−s)

= β(−s)β(s)

s3d−2
O(sd−2) = O(s2d ), (2.29)

where in the last equality we have taken into account Eq. (2.23).

III. BINARY MIXTURES

Henceforth, we consider an additive system of two compo-
nents (N = 2). From Eq. (2.1), we have

ĉ11(k) = ĥ11(k) + ρ2 |̂h(k)|
D(k)

, ĉ12(k) = ĥ12(k)

D(k)
, (3.1)

with

D(k) ≡ 1 + ρ1ĥ11(k) + ρ2ĥ22(k) + ρ1ρ2 |̂h(k)|. (3.2)

The expressions for ĉ22(k) and ĉ21(k) are obtained from those
of ĉ11(k) and ĉ12(k) by exchanging the subscripts 1 and 2.

Equations (3.1) and (3.2) are general and valid for any
binary mixture. Now we particularize to the RFA. Using
Eq. (2.19), one obtains

D(k) = D(ik)

β(ik)β(−ik)
, (3.3)

ĉ11(k) = ν
R11(ik) + νρ2|R(ik)|/[β(ik)β(−ik)]

D(ik)
, (3.4)

ĉ12(k) = ν
R12(ik)

D(ik)
, (3.5)

where

D(s) ≡ β(s)β(−s) + ν[ρ1R11(s) + ρ2R22(s)]

+ ν2ρ1ρ2
|R(s)|

β(s)β(−s)
. (3.6)

Explicit calculation using Eq. (2.20) gives

|R(s)|
β(s)β(−s)

= 
(s) + 
(−s), (3.7)

D(s) = β(s)β(−s) + �(s) + �(−s), (3.8)

where


(s) ≡ |L(s)|β(−s)e−(σ1+σ2)s − F12(s)F21(−s)

+F11(s)F22(−s)e−(σ1−σ2)s , (3.9)

�(s) ≡ νβ(−s)[ρ1F11(s)e−σ1s + ρ2F22(s)e−σ2s]

+ ν2ρ1ρ2
(s). (3.10)

In Eq. (3.9) we have used Eq. (2.28).
Thus far, we have not used in this section the explicit form

of the matrix B(s), Eq. (2.15). Evaluation of Eq. (2.18) for
binary mixtures yields

F(s) =
[
F̃11(s) − νρ2|L(s)|e−σ2s F̃12(s)

F̃21(s) F̃22(s) − νρ1|L(s)|e−σ1s

]
,

(3.11)
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where

F̃11(s) ≡ L11(s)[sd + P22(s)] − L12(s)P21(s), (3.12)

F̃12(s) ≡ L12(s)[sd + P11(s)] − L11(s)P12(s). (3.13)

Of course, F̃22(s) and F̃21(s) are obtained from Eqs. (3.12) and
(3.13) by exchanging the subscripts 1 and 2. In addition, the
determinant β(s) of the matrix B(s) can be expressed as

β(s) = β̃(s) + ν2ρ1ρ2|L(s)|e−(σ1+σ2)s

− νρ1F̃11(s)e−σ1s − νρ2F̃22(s)e−σ2s , (3.14)

with

β̃(s) ≡ s2d + sd [P11(s) + P22(s)] + |P(s)|. (3.15)

We can observe that F̃ij (s) and β̃(s) are polynomials
in s of degrees 3n + 4 = (3d − 1)/2 and 2(2n + 3) = 2d,
respectively. In contrast, the functions F11(s), F22(s), β(s),

(s), and �(s) contain exponential terms. The key point,
however, is that those exponential terms compensate exactly in
the function D(s). Using Eqs. (3.9), (3.10), (3.11), and (3.14)
in Eq. (3.8), one finds, after some algebra,

D(s) = β̃(s)β̃(−s) + ν4ρ2
1ρ2

2 |L(s)||L(−s)|

− ν2
2∑

i,j=1

ρiρj F̃ij (s)F̃ji(−s). (3.16)

Thus, D(s) is an even polynomial of degree 4(2n + 3) = 4d.
The direct correlation functions in Fourier space are given

by Eqs. (3.4) and (3.5). From Eqs. (2.20), (3.7), (3.9), (3.11),
and (3.14) it is possible to get

ĉij (k) = ν

D(ik)
[P̃ij (ik)eiσij k + P̃ij (−ik)e−iσij k

+ Q̃ij (ik)ei(σi−σj )k/2 + Q̃ij (−ik)ei(σj −σi )k/2],

(3.17)

where P̃ij (s) and Q̃ij (s) are polynomials of degrees 7n + 10 =
(7d − 1)/2 and 2(3n + 4) = 3d − 1, respectively, given by

P̃11(s) = F̃11(−s)β̃(s) − ν2ρ2
2 |L(−s)|F̃22(s), (3.18)

P̃12(s) = F̃12(−s)β̃(s) + ν2ρ1ρ2|L(−s)|F̃12(s), (3.19)

Q̃11(s) = −ν[ρ1F̃11(−s)F̃11(s) + ρ2F̃12(−s)F̃21(s)]

+ ν3ρ1ρ
2
2 |L(s)||L(−s)|, (3.20)

Q̃12(s) = −ν[ρ1F̃11(−s)F̃12(s) + ρ2F̃12(−s)F̃22(s)]. (3.21)

Again, P̃22(s), P̃21(s), Q̃22(s), and Q̃21(s) are obtained by
exchanging the subscripts 1 and 2.

IV. ANALYSIS

In the derivation of the results in Sec. III we have not needed
to use either Eq. (2.16) or the conditions that the coefficients
L

(m)
ij must satisfy [which are summarized by Eq. (2.24)]. In

fact, Eq. (3.17) alone is not sufficient to prove the PY condition
(2.12).

As said before, the RFA method guarantees that ĥij (k) takes
finite values at the limit of zero wave-number, Eq. (2.11). Thus,

from Eq. (3.2), D(k) remains bounded at k = 0, and according
to Eq. (3.3), we have

lim
s→0

D(s)

β(s)β(−s)
= D(0) < ∞. (4.1)

Taking into account that, in the binary case (N = 2), β(s) =
s2d for small s [see Eq. (2.23)], we have D(s) = O(s4d ). Since,
according to Eq. (3.16), D(s) is a polynomial of degree 4d, we
conclude that the D(s) is just a pure power law, i.e.,

D(s) = D(0)s4d . (4.2)

This is the crucial result allowing one to prove Eq. (2.12) from
Eq. (3.17). Before proceeding to the proof, let us first simplify
Eq. (3.17) a little more.

As shown by Eqs. (3.18)–(3.21), P̃ij (s) and Q̃ij (s) are
polynomials of degrees 7n + 10 = (7d − 1)/2 and 2(3n +
4) = 3d − 1, respectively. Going back to the quantities Fij (s)
and β(s), Eqs. (3.18)–(3.21) can be rewritten as

P̃ij (s) = F̃ij (−s)β(s) + νFij (−s)
2∑

k=1

ρke
−σksFkk(s)

+ ν2ρ1ρ2e
−σij s[e(2σ12−σij )s |L(−s)|Fij (s)

+ e−(2σ12−σij )s |L(s)|Fij (−s)], (4.3)

Q̃ij (s) = −ν

2∑
k=1

ρkFik(−s)Fkj (s)

− ν2ρ1ρ2e
−(σi−σj )s/2[e(2σ12−σij )s |L(−s)|Fij (s)

+ e−(2σ12−σij )s |L(s)|Fij (−s)]. (4.4)

While Eqs. (4.3) and (4.4) conceal the polynomial character
of P̃ij (s) and Q̃ij (s), they show, with the help of Eqs. (2.23),
(2.25), and (2.29), that

P̃ij (s) = O(s2d ), Q̃ij (s) = O(s2d ). (4.5)

This result, along with Eq. (4.2), allows us to rewrite Eq. (3.17)
as

ĉij (k) = 1

k2d
[Pij (ik)eiσij k + Pij (−ik)e−iσij k

+Qij (ik)ei(σi−σj )k/2 + Qij (−ik)ei(σj −σi )k/2], (4.6)

where

Pij (s) = − ν

D(0)
s−2dP̃ij (s) (4.7)

is a polynomial of degree 3n + 4 = 3(d − 1)/2 and

Qij (s) = − ν

D(0)
s−2dQ̃ij (s) (4.8)

is a polynomial of degree 2(n + 1) = d − 1.
Equation (4.6) is the main result of this paper. It provides

the functional structure of the Fourier transform ĉij (k) in
the RFA approach. The direct correlations function in the
configuration space cij (r) can be calculated by application
of the residue theorem combining Eqs. (2.21) and (4.6). Since
ĉij (0) = finite, the integrand in Eq. (2.21) is regular along
the real axis, and so we can distort the integration path in
the complex k plane by going around the point k = 0 from
below. Next, the integral in Eq. (2.21) decomposes into four
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contributions with integrands headed by e−ik(r−σij ), e−ik(r+σij ),
e−ik[r+(σj −σi )/2], and e−ik[r+(σi−σj )/2], respectively, with each
integrand having a single pole at k = 0 of order 2d − 1. If
0 < r < σij , the first integral must be closed with an upper
half circle of infinite radius, and the residue theorem yields a
nonzero value. If 0 < r < |σj − σi |/2, an additional nonzero
contribution results from the third or fourth integral, depending
on whether σi > σj or σj > σi , respectively. On the other
hand, if r > σij , we must close the path with a lower half
circle. As a consequence, the four contributions vanish, and so
the RFA method yields Eq. (2.12).

This completes the proof on the equivalence between the PY
and RFA solutions for binary mixtures of hard hyperspheres
at odd dimensional space.

V. CONCLUDING REMARKS

PY and RFA theories are, in principle, alternative methods
for calculating thermodynamic and structural functions of HS
systems. The PY theory consists of the OZ relation (2.1)
supplemented with the hard-core condition (2.5) and the
genuine PY closure (2.12). In the RFA approach, however,
one proposes a specific form, Eqs. (2.13)–(2.16), for the
s dependence of the Laplace functional Gij (s) defined by
Eq. (2.3). This specific form includes n + 2 = (d + 1)/2
coefficients, L

(m)
ij , which are determined, in consistency with

Eq. (2.7), by requiring the independent term in the Taylor series
expansion of s2Gij (s) to be (d − 2)!! and all the coefficients
of s2q+1 with q = 0, . . . ,n to vanish.

In this paper we have shown by a direct verification that
both methods are fully equivalent for binary mixtures of
additive hard hyperspheres at odd dimensions. The proof is
based on the analysis of the Fourier transform ĉij (k) of the
direct correlation function cij (r) and proceeds along two main
stages. In the first stage, use of Eqs. (2.13)–(2.16) has allowed

us to derive Eq. (3.17), where P̂ij (s), Q̂ij (s), and D(s) are
polynomials. This result applies regardless of the values of
the n + 2 coefficients L

(m)
ij . In the second stage, we have

proved that enforcement of Eq. (2.7) implies Eqs. (4.2), (4.7),
and (4.8), so that Eq. (3.17) simplifies further to Eq. (4.6).
Application of the residue theorem then yields Eq. (2.12),
which completes the proof. An interesting feature of the proof
is that the explicit expressions for the coefficients L

(m)
ij as

functions of the physical parameters of the fluid (density, mole
fractions, and particle diameters) are not needed.

Although the proof presented in this paper has been
restricted to the binary case (N = 2), we conjecture that the
structure of Eq. (4.6), and hence the validity of Eq. (2.12),
remains valid for any number N of components in the
framework of the RFA.

It is worth mentioning that, as done for three-dimensional
mixtures [10] and for d-dimensional one-component systems
[8], the RFA scheme can be extended beyond the PY level
by adding extra terms L

(n+2)
ij in Eqs. (2.14) and (2.16) and

replacing δij by (1 + us)δij in Eq. (2.15). The N 2 + 1 free
parameters L

(n+2)
ij and u can be fixed by imposing given

expressions for the contact values gij (σ+
ij ) and the thermodyna-

mically consistent isothermal compressibility.
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