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Role of roughness on the hydrodynamic homogeneous base state of inelastic spheres
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A gas of inelastic rough spheres admits a spatially homogeneous base state which turns into a hydrodynamic
state after a finite relaxation time. We show that this relaxation time is hardly dependent on the degree of inelasticity
but increases dramatically with decreasing roughness. An accurate description of translational-rotational velocity
correlations at all times is also provided. At a given inelasticity, the roughness parameter can be tuned to produce
a huge distortion from the Maxwellian distribution function. The results are obtained from a Grad-like solution
of the Boltzmann-Enskog equation complemented by Monte Carlo and molecular dynamics simulations.
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The extension of statistical and fluid mechanics concepts
to fluidized granular matter systems has allowed for a better
understanding of the discrete-to-continuum description of
matter by placing it into a more general theoretical framework
[1–4].

Granular systems may exist in fluidized states at densities
low enough to make a description by means of the (inelastic)
Boltzmann and Enskog equations [2,3,5–7] possible. In that
context, an immediate question arises: Do the inelastic versions
of these kinetic equations support an accurate hydrodynamic
description for granular gases as the elastic one [8] does for
molecular gases? A variety of interesting kinetic theory studies
have successfully modeled granular gas dynamics, proving
additionally that granular gases may admit a hydrodynamic
description [2–4,9–11]. However, most granular transport
theories do not take into account the effects of particle
roughness, which is inherently present in all real granular
systems [12,13], or do it in the quasismooth regime [5,6].
Thus, the debate on the limits of applicability of granular
hydrodynamics is still not closed.

The existence of a hydrodynamic regime relies on scale
separation [14], i.e., individual particle (microscopic) dynam-
ics variations (both in time and space) should be much shorter
than those for the (macroscopic) average fields [2,8,14]. For
molecular fluids, hydrodynamic states exist if the system is
not subject to large gradients from the boundaries. However,
for granular gases, even if no gradients are applied at all,
the inelastic cooling sets an inherent decay time rate for
the kinetic energy which is not necessarily slow compared
to the characteristic microscopic time. This makes the proof
of existence of a hydrodynamic solution in granular gases
be not trivial [15], even for homogeneous states. The more
realistic case of rough spheres seems to be much more
complex [12]. For instance, energy nonequipartition [16,17],
non-Maxwellian behavior [5–7], and correlations between
translational and angular velocities [18–20] appear.
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Taking the homogeneous cooling state (HCS) [4] as the
base state for hydrodynamics, we address in this Rapid Com-
munication questions such as the following: Is the ability of a
homogeneous gas of rough spheres to reach a hydrodynamic
state related to the degrees of inelasticity and/or roughness?
How does the degree of roughness affect the aging time
needed to reach the hydrodynamic HCS state? Is the HCS
marginal probability distribution of angular velocities close
to a Maxwellian? For this, both theoretical and simulational
routes are followed. We develop a perturbative, Grad-like
solution of the Boltzmann-Enskog (BE) equation that takes
into account the effects of translational-rotational velocity
correlations and non-Maxwellian features of the velocity
distribution function. Moreover, we confirm our theory results
by numerical solutions of the BE equation by means of the
direct simulation Monte Carlo (DSMC) method [4]. In order
to check that eventual violations of molecular chaos are not
relevant, we carry out additional molecular dynamics (MD)
simulations, using an event-driven algorithm [21,22].

The BE equation for a homogeneous state reads

∂f

∂t
= σ 2χK[v,ω|f ], (1)

where f (v,ω,t) is the one-body distribution function, v and
ω being the particle translational and angular velocities,
respectively, σ is the sphere diameter, χ is the pair correlation
function at contact (Enskog factor), which accounts for finite-
density effects [23], and σ 2χK ≡ J is the usual collision
operator for inelastic and rough hard spheres [24,25]. The
collision rule involves the normal (α) and tangential (β)
coefficients of restitution [24,26]. While α ranges from 0
(perfectly inelastic) to 1 (perfectly elastic), β ranges from −1
(perfectly smooth) to 1 (perfectly rough). A more detailed
description on the mechanics of collisions of rough hard
spheres may be found elsewhere [12,18,26,27].

While the two-parameter (α,β) model neglects sliding
effects that can be relevant in grazing collisions [27], a more
sophisticated collision model with a Coulomb friction constant
[28] may hinder the possibility of analytical treatments outside
of the quasielastic and/or quasismooth limits [5,29]. Moreover,
the (α,β) model still captures the basic features of the collision
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process and of the hydrodynamic issue [18,19,30] without
compromising its physical content as a granular fluid model.

The translational and rotational temperatures are defined in
the usual way [18,26] as Tt = m

3 〈(v − uf )2〉 and Tr = I
3 〈ω2〉,

respectively, where m and I are the mass and moment of
inertia, respectively, of the particles, and uf = 〈v〉 is the
flow velocity. The total temperature T = 1

2 (Tt + Tr ) decays
monotonically with time (unless α = β2 = 1). Since both uf

and the density n are constant in homogeneous states, T is
the only relevant hydrodynamic quantity of the system. Thus,
if a hydrodynamic regime does exist, the whole temporal
dependence of f must occur through a dependence on T [31].

The investigation of this scenario calls for the introduction
of the reduced translational and angular velocities c(t) ≡ (v −
uf )/

√
2Tt (t)/m, w(t) ≡ ω/

√
2Tr (t)/I , and the reduced distri-

bution function φ(c,w,t) ≡ n−1[4Tt (t)Tr (t)/mI ]3/2f (v,ω,t).
In terms of these reduced quantities, the evolution equation for
the temperature ratio θ (t) ≡ Tr (t)/Tt (t) and the BE equation
(1) become

∂τ ln θ = −2

3

(
μ

(0)
02 − μ

(0)
20

)
, (2)

∂τφ + μ
(0)
20

3

∂

∂c
· (cφ) + μ

(0)
02

3

∂

∂w
· (wφ) = J [c,w|φ], (3)

where ∂τ ≡ [ν(t)]−1∂t is a time derivative scaled by the
effective collision frequency ν(t) = 2nσ 2χ

√
πTt (t)/m, J ≡

ν−1n−1(4TtTr/mI )3/2J is the reduced collision operator [25],
and

μ(r)
pq ≡ −

∫
dc

∫
dw cpwq(c · w)rJ [c,w|φ] (4)

are reduced collisional moments. Taking moments on both
sides of Eq. (3) we get the equations

∂τ ln M (r)
pq − p + r

3
μ

(0)
20 − q + r

3
μ

(0)
02 = −μ(r)

pq/M
(r)
pq , (5)

where M (r)
pq ≡ 〈cpwq(c · w)r〉. If a hydrodynamic description

applies, it is expected that, after a certain transient period
(kinetic stage), the system reaches an asymptotic regime
(hydrodynamic stage) where θ and φ(c,w) (or, equivalently,
its moments M (r)

pq ) become independent of time.
In isotropic conditions, φ(c,w) is actually a function

of the three scalar quantities c2 = c · c, w2 = w · w, and
(c · w)2. As a consequence, one can formally represent the
ratio φ(c,w)/φM (c,w), where φM (c,w) = π−3e−c2−w2

is the
(reduced) two-temperature Maxwellian distribution, as an
infinite series of polynomials in c2, w2, and (c · w)2:

φ(c,w) = φM (c,w)
∞∑

j=0

∞∑
k=0

∞∑
=0

a
()
jk �

()
jk (c,w), (6)

where �
()
jk (c,w) = L

(2+ 1
2 )

j (c2)L
(2+ 1

2 )
k (w2)(c2w2)P2(u) is a

polynomial of total degree 2(j + k + 2) in velocity. Here,

L
(2+ 1

2 )
j (x) and P2(x) are Laguerre and Legendre polynomials,

respectively, and u ≡ (c · w)/cw is the cosine of the angle
made by v and ω. The set of polynomials {�()

jk } is a
complete orthogonal basis for the solution of Eq. (3) [25]. The
expansion coefficients a

()
jk ∝ 〈�()

jk 〉 are linear combinations

of the moments M (r)
pq with p,q,r = even and p + q + 2r �

2(j + k + 2). By normalization, a(0)
00 = 1, a(0)

10 = a
(0)
01 = 0, so

the first nontrivial coefficients are those of degree four, namely,
the fourth-degree cumulants

a
(0)
20 = 4

15 〈c4〉 − 1, a
(0)
02 = 4

15 〈w4〉 − 1, (7a)

a
(0)
11 = 4

9 〈c2w2〉− 1, a
(1)
00 = 8

15

[〈(c · w)2〉− 1
3 〈c2w2〉]. (7b)

In our theoretical approach we apply a Grad-Sonine (GS)
methodology [31,32]. First, the expansion (6) is truncated after
j + k + 2 = 2 [7], so that the only retained coefficients are
a

(0)
00 = 1 and those in Eqs. (7). Next, the collisional moments

μ
(0)
20 , μ(0)

02 , μ(0)
40 , μ(0)

04 , μ(0)
22 , and μ

(2)
00 are evaluated by inserting the

truncated expansion into the collision operator J , neglecting
terms that are quadratic in the cumulants, and performing the
velocity integrals. The resulting expressions (with coefficients
being nonlinear functions of the temperature ratio θ , the two
coefficients of restitution α and β, and the dimensionless
moment of inertia κ ≡ 4I/mσ 2) can be found in Ref. [25].
Finally, the coupled set of five equations (2) and (5) with
p + q + 2r = 4 are numerically solved to obtain the time
evolution of θ and the cumulants (7) [25]. Setting ∂τ → 0, the
solution to the corresponding set of algebraic equations gives
the stationary values of those quantities. To check the stability
of the stationary values, we have analyzed the associated
linearized problem and observed that all the eigenvalues indeed
have a negative real part. The characteristic relaxation period
(in units of the accumulated number of collisions per particle)
is −1/Re(s), where s is the eigenvalue with the real part
closest to the origin. It strongly increases when the roughness
parameter decreases from β ≈ 0 to β � −1 but is hardly
dependent on the inelasticity parameter α [25].

In order to check the accuracy of our GS approximation,
we have performed DSMC and MD simulations in the
case of uniform spheres (κ = 2

5 ), starting from an initial
equilibrium state, for a large number of (α,β) pairs. As a
particularly unfavorable case (see below), in Fig. 1 we plot the
temporal evolution (as measured by the accumulated number
of collisions per particle N ) of the cumulants for α = 0.7 and
β = −0.575. As we see, MD and DSMC results are hardly
distinguishable, which reinforces the validity of the BE (1) for
dilute granular gases. Moreover, both theory and simulation
results agree very well in the first stages of development (up to
N ≈ 10 collisions per particle). Beyond that stage, the angular
velocity kurtosis a

(0)
02 becomes larger than about 0.3 and the GS

theory (being based on truncation and linearization around the
Maxwellian) underestimates the magnitude of the cumulants.
However, the theory successfully captures the qualitative later
evolution and the duration of the total relaxation period. The
discrepancies between theory and simulations observed in
Fig. 1 for N � 10 are not due to an inherent limitation of the
GS theory to the early stages of evolution but to the high values
reached by the cumulant a

(0)
02 in this particularly stringent

case. In fact, a good agreement is found at all times for most
combinations of (α,β) since in those cases the magnitudes of
the cumulants are smaller than about 0.3 [25].

To characterize the duration (Nr ) of the relaxation period,
we adopt the practical criterion that the values of θ and a

()
jk
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FIG. 1. (Color online) Temporal evolution of the velocity cu-
mulants for α = 0.7 and β = −0.575. Henceforth, lines stand for
theoretical results and symbols for simulation data (DSMC: �;
MD: 
).

(with j + k + 2 = 2) must differ from their stationary values
by less than 5% if N > Nr . The theoretical and simulation
results are presented in Fig. 2, where a good agreement is
found. Since each quantity satisfies the 5% criterion after a
different relaxation period, what is plotted in Fig. 2 is the
maximum of the five particular relaxation times [25]. This,
together with the cases where the relaxation is not monotonic,
explains the nonsmooth shape of Nr at some points. We may
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FIG. 2. (Color online) Relaxation time Nr (in units of collisions
per particle) as a function of β for constant α = 0.7 (dotted line; ◦)
or α = 0.9 (solid line; �). The inset shows Nr as a function of α for
constant β = 0. Symbols stand for DSMC data.
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FIG. 3. (Color online) Stationary values of the cumulants and of
the temperature ratio as functions of β. (a) (α = 0.9) and (b) (α = 0.7)
show a

(0)
20 (solid lines; �), a(0)

11 (dashed lines; ◦), and a
(1)
00 (dotted lines,

×). (c) and (d) correspond to a
(0)
02 and θ , respectively, for α = 0.9

(solid lines; �) and α = 0.7 (dashed lines; ◦). The inset in (c) shows
the value βmax(α) at which a

(0)
02 reaches its maximum value. Symbols

stand for DSMC data.

see that the α dependence is not as critical as the β dependence,
with Nr increasing dramatically as β approaches the smooth
limit β → −1. This agrees with the observed behavior of the
theoretical quantity −1/Re(s) [25]. Interestingly, the inset of
Fig. 2 (where the intermediate roughness β = 0 is chosen as a
representative example) shows that the relaxation time (Nr ≈
10) to the hydrodynamic state is not significantly different in
the extreme limiting cases of complete inelasticity (α = 0)
and complete elasticity (α = 1). We have checked by DSMC
simulations that sixth- and eighth-degree moments relax over
essentially the same time scale as the fourth-degree ones.

Let us now focus on the hydrodynamic (“steady”) states.
In Fig. 3 we plot the cumulants and the temperature ratio as
functions of β for α = 0.7 and 0.9. The agreement between
theory and simulation for the translational velocity kurtosis
a

(0)
20 , the (orientational) translational-rotational correlation

parameter a
(1)
00 , and the temperature ratio θ is excellent for

all values of β, especially at α = 0.9. The agreement for a
(0)
11

is still very good, except in the ranges where a
(0)
02 reaches high

values (a(0)
02 � 0.3). Note that, according to our simulations,

the angular velocity kurtosis at α = 0.9 reaches values as high
as a

(0)
02 ≈ 3 if the roughness is tuned to β = βmax � −0.78.
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FIG. 4. (Color online) Marginal distribution functions φc(c)
(dashed line; DSMC: �; MD: 
) and φw(w) (dotted line; DSMC:
+; MD: ×) at α = 0.9, β = −0.75. The solid line stands for the
(common) Maxwellian distribution function.

As the inelasticity increases to α = 0.7, the maximum of
a

(0)
02 decreases to a

(0)
02 ≈ 1.5 and occurs at a larger roughness

(βmax � −0.58). The latter is precisely the case analyzed
in Fig. 1. As seen from the inset in Fig. 3(c), the GS
approximation captures qualitatively well the α dependence
of βmax. The existence of very large values of a

(0)
02 at (α,βmax)

does not have a straightforward intuitive explanation but shows
a subtle interplay between the translational and rotational
degrees of freedom in the granular gas.

The results of Fig. 3 show that the hydrodynamic HCS
distribution function can be highly non-Maxwellian, especially
with respect to the angular velocities, if at a given α

the roughness parameter β is close to βmax(α). In those
cases, truncation of the perturbative expansion (6) is not
the adequate tool to accurately describe the distribution
function, regardless of the truncation order, and an alternative
approach is needed. This is illustrated by Fig. 4, where the
marginal distribution functions φc(c) = 4πc2

∫
dwφ(c,w) and

φw(w) = 4πw2
∫

dcφ(c,w) are plotted for the extreme case
(see Fig. 3) α = 0.9, β � βmax = −0.75. While φc(c) is close
to the Maxwellian and is well represented by the GS truncated
expansion, a large discrepancy is observed between the actual
distribution φw(w) and the corresponding GS distribution, even
if the latter is parametrized with the empirical kurtosis a

(0)
02 . The

GS distribution φw(w) is bimodal (with an almost zero local
minimum) whereas simulation data do not exhibit this feature.
More interestingly, both DSMC and MD simulation data for
φw(w) show extremely large high-energy tails (perhaps the
largest ones reported for granular gases of hard spheres so far
[19]) consistent with φw(w) ∼ exp(−Aw).

In summary, we have studied the temporal evolution of the
HCS for a granular gas of rough hard spheres by a GS truncated
expansion and by DSMC and MD simulations. The three
methods confirm that, after a kinetic stage, a hydrodynamic
regime is reached where the whole time dependence of the
velocity distribution function is enslaved by the temperature.
The GS theory provides an excellent description of the
evolution of the temperature ratio and the four velocity
cumulants, except when the angular velocity kurtosis becomes
so large (a(0)

02 � 0.3) that it compromises the assumptions
behind the truncation and linearization scheme. Even in those
cases, the GS theory predicts well the relaxation time (see
Fig. 2) and describes qualitatively the roughness dependence
of the stationary cumulants (see Fig. 3). Quite surprisingly,
and in contrast to what was generally believed, the relaxation
to the hydrodynamic state is practically independent of the
inelasticity coefficient α and is rather fast (no more than about
ten collisions per particle, even in the most inelastic case,
α = 0) if the spheres are sufficiently rough (β � 0). Therefore,
we may conclude that high inelasticity does not preclude by
itself the applicability of hydrodynamics. On the other hand,
paradoxically, if the spheres are weakly rough (β � −1), the
relaxation time increases dramatically to values on the order of
at least 103 collisions per particle. This is because, as roughness
decreases, more and more collisions are needed to activate the
rotational degrees of freedom, which are absolutely quenched
in the smooth-sphere model. Interestingly, the duration of the
relaxation stage and the departure from the (two-temperature)
Maxwellian are not fully correlated, as comparison between
Figs. 2 and 3 shows. In particular, at a given α, the maximum
distortion from the Maxwellian (as monitored by the kurtosis
a

(0)
02 ) does not take place in the limit β → −1 but at a certain

value βmax(α) < 0 [see the inset in Fig. 3(c)].
Given that the HCS is the base state for a granular gas and

for the application of the Chapman-Enskog method [2], we
expect these results to be of help in further developments of
hydrodynamic transport theories of inhomogeneous granular
gases. In this respect, it is interesting to note that most of the
materials are characterized by positive values of the roughness
parameter (typically, β ∼ 0.5) [33], where the GS theory
developed here is highly accurate.
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