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Energy nonequipartition in gas mixtures of inelastic rough hard spheres: The tracer limit
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The dynamical properties of a tracer or impurity particle immersed in a host gas of inelastic and rough
hard spheres in the homogeneous cooling state is studied. Specifically, the breakdown of energy equipartition
as characterized by the tracer/host ratios of translational and rotational temperatures is analyzed by exploring
a wide spectrum of values of the control parameters of the system (masses, moments of inertia, sizes, and
coefficients of restitution). Three complementary approaches are considered. On the theoretical side, the
Boltzmann and Boltzmann–Lorentz equations (both assuming the molecular chaos ansatz) are solved by means
of a multitemperature Maxwellian approximation for the velocity distribution functions. This allows us to obtain
explicit analytical expressions for the temperature ratios. On the computational side, two different techniques
are used. First, the kinetic equations are numerically solved by the direct simulation Monte Carlo (DSMC)
method. Second, molecular dynamics simulations for dilute gases are performed. Comparison between theory
and simulations shows a general good agreement. This means that (i) the impact of the molecular chaos ansatz
on the temperature ratios is not significant (except at high inelasticities and/or big impurities) and (ii) the simple
Maxwellian approximation yields quite reliable predictions.
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I. INTRODUCTION

It is well known that granular gases are intrinsically out
of equilibrium [1,2]. As a consequence, energy is in general
unevenly distributed among the different degrees of freedom,
even in homogeneous and isotropic states. For instance, if
the grains have both translational and rotational degrees of
freedom, the mean kinetic energy associated with each degree
of freedom is in general different [3–17]. Analogously, in a
granular mixture, each component may have a different mean
translational kinetic energy [18–24]. Of course, the study of
the lack of energy equipartition becomes much more complex
when both rotational degrees of freedom and polydispersity
are considered.

Taking into account the rotational degrees of freedom is
in general more realistic than ignoring them, since they tend
to be relevant in experiments, even for systems of spherical
particles; i.e., frictional forces may in general give rise to a
spinning motion, upon collision. The simplest way to model
this effect is to consider that collisions between spheres i

and j are characterized by two constant coefficients of normal
(αij ) and tangential (βij ) restitution [25–27]. The coefficient of
normal restitution 0 < αij < 1 helps characterize the decrease
in the magnitude of the normal component of the relative
velocity of the two colliding spheres. On the other hand, the
coefficient of tangential restitution −1 � βij � 1 accounts for
the change in the tangential component of the relative velocity
at contact.

To the best of our knowledge, apart from works on a fixed
particle immersed in a bath of thermalized point particles
[28,29], the only studies of the nonequipartion of energy in
a multicomponent gas of inelastic rough hard spheres were
carried out in Refs. [30,31]. In Ref. [30], starting from the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierar-
chy [32], the collisional energy production rates associated
with the translational and rotational temperatures were derived

with the help of two main approximations: (i) the factorization
of the (precollisional) two-body velocity distribution function
as the product of two one-body distributions (i.e., molecular
chaos); and (ii) the neglect of correlations between trans-
lational and rotational velocities, the translational velocity
distribution function being approached in the form of a
Maxwellian distribution. In the case of a binary mixture in
the so-called homogeneous cooling state (HCS) [33], the
three independent temperature ratios (T tr

1 /T tr
2 , T rot

1 /T rot
2 , and

T rot
2 /T tr

2 ) were determined as functions of the three coefficients
of normal restitution (α11, α12, α22), the three coefficients of
tangential restitution (β11, β12, β22), the two reduced moments
of inertia (κ1 and κ2), the mass ratio (m1/m2), the size ratio
(σ1/σ2), and the two packing fractions φi = π

6 niσ
3
i (i = 1,2),

ni being the number density of component i.
It is obviously interesting to assess the degree of accuracy

of the temperature ratios derived in Ref. [30] from approxi-
mations (i) and (ii). Therefore, the main goal of this paper is
to comparatively study this approximate theoretical solution
together with the exact numerical solution of the corresponding
kinetic equations obtained via the direct simulation Monte
Carlo method (DSMC), as an assessment of approach (ii), and
with molecular dynamics (MD) simulations, as an additional
and independent assessment of approaches (i) and (ii). On
the other hand, since the parameter space in a general binary
mixture of rough spheres is 12-dimensional, here we consider
the simpler case where one of the components (say i = 1) is
present in tracer concentration (i.e., n1/n2 → 0). This limit
case is equivalent to the problem of an impurity or intruder
immersed in a granular gas of rough spheres (component
i = 2). This implies that the state of the gas bath is not affected
by the presence of the tracer particles, so that its distribution
function f2 obeys, under the molecular chaos ansatz (i),
the Boltzmann equation for a one-component granular gas.
Moreover, collisions among tracer particles are neglected.
As a consequence, the velocity distribution f1 of the tracer
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component obeys a Boltzmann–Lorentz kinetic equation. In
this limit case, assuming that the state of the excess (or host)
component is known [5,6], the relevant temperature ratios are
T tr

1 /T tr
2 and T rot

1 /T rot
2 , and the independent control parameters

(apart from those associated with f2, namely φ2, α22, β22, and
κ2) are α12, β12, κ1, m1/m2, and σ1/σ2.

In this paper, we take the tracer limit from the more
general results of Ref. [30] and carry out DSMC [34] and
MD [35] simulations to gauge the reliability of the theoretical
predictions. Since the DSMC method is equivalent to a
numerical solution of the Boltzmann equation, comparison
between theory and DSMC results assess the assumption (ii)
described above. On the other hand, MD simulations are free
from the molecular chaos hypothesis and thus they measure
the impact of the assumption (i) on the temperature ratios.
Some preliminary results were recently reported in Ref. [36].

The paper outline is as follows. For completeness, the
kinetic theory for multicomponent granular gases is briefly
summarized in Sec. II. Then, the tracer limit is explicitly
worked out in Sec. III, where it is shown that the temperature
ratios are given in terms of the solution of a quartic equation.
Section IV is the core of the paper, as it deals with the
comparison between the theoretical predictions and the com-
puter simulations (both DSMC and MD) for 10 representative
classes of systems. The main conclusions of the work are
presented in the concluding Sec. V.

II. ENERGY PRODUCTION RATES IN GENERAL
GRANULAR MIXTURES

Let us consider a granular gas of inelastic rough hard
spheres with an indefinite number of species, where by species
we refer to a set of identical particles. Particles of component
i have a mass mi , a diameter σi , and a moment of inertia Ii .
We use the following definition of dimensionless moment of
inertia for species i:

κi ≡ 4Ii

miσ
2
i

, (1)

which may range from κi = 0 (mass concentrated on the
center) to κi = 2

3 (mass concentrated on the surface). A
relevant case is κi = 2

5 , for which the mass is uniformly
distributed.

As advanced in Sec. I, collisions between particles of sets i

and j will be characterized with constant coefficients of normal
and tangential restitutions αij and βij , respectively. They are
defined by the collision rules,

σ̂ · w′
ij = −αij σ̂ · wij , σ̂ × w′

ij = −βij σ̂ × wij , (2)

where wij and w′
ij are the pre- and post-collisional relative

velocities of the points at contact and σ̂ is the unit vector
joining the centers of the two colliding spheres. While
the coefficient αij ranges from αij = 0 (perfectly inelastic
particles) to αij = 1 (perfectly elastic particles), the coefficient
βij runs from βij = −1 (perfectly smooth particles) to βij = 1
(perfectly rough particles). Except if αij = 1 and |βij | = 1,
kinetic energy is dissipated upon a collision ij .

The relevant dynamic quantity is the velocity distribu-
tion function fi(v,ω; t) of each component, where we have
particularized to homogeneous states. Here, v and ω denote

the translational and rotational velocities, respectively. The
number density and the translational and rotational velocities
of component i are defined, respectively, as

ni =
∫

dv
∫

dω fi(v,ω), (3a)

T tr
i = mi

3ni

∫
dv

∫
dω v2fi(v,ω), (3b)

T rot
i = Ii

3ni

∫
dv

∫
dω ω2fi(v,ω). (3c)

The global temperature is

T =
∑

i

ni

2n

(
T tr

i + T rot
i

)
, (4)

where n = ∑
i ni is the total number density.

Assuming molecular chaos, the one-particle velocity distri-
bution functions {fi} obey a closed set of coupled Boltzmann–
Enskog equations [2,30],

∂tfi(v1,ω1; t) =
∑

j

Jij [v1,ω1; t |fi,fj ], (5)

where

Jij [v1,ω1; t |fi,fj ]

= χijσ
2
ij

∫
dv2

∫
dω2

∫
dσ̂�(v12 · σ̂ )(v12 · σ̂ )

×
[

1

α2
ij β

2
ij

fi(v′′
1,ω

′′
1; t)fj (v′′

2,ω
′′
2; t)

− fi(v1,ω1; t)fj (v2,ω2; t)

]
(6)

is the collision operator. Here, χij is the contact value of
the spatial pair correlation function, σij ≡ (σi + σj )/2, v12 =
v1 − v2 is the relative translational velocity, and the double
primes denote precollisional velocities. Taking moments in
Eq. (5), one can easily get the evolution equations for the
partial temperatures as

∂tT
tr
i = −ξ tr

i T tr
i , ∂tT

rot
i = −ξ rot

i T rot
i , (7)

with

ξ tr
i =

∑
j

ξ tr
ij , ξ rot

i =
∑

j

ξ rot
ij , (8)

where

ξ tr
ij ≡ − mi

3niT
tr
i

∫
dv

∫
dω v2Jij [v,ω; t |fi,fj ], (9a)

ξ rot
ij ≡ − Ii

3niT
rot
i

∫
dv

∫
dω ω2Jij [v,ω; t |fi,fj ] (9b)

are energy production rates. They are in general complex
functionals of the distribution functions fi and fj , so that
the set of Eqs. (7) is not closed. The evolution equation for the
global temperature is

∂tT = −ζT , (10)
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where

ζ =
∑

i

ni

2nT

(
T tr

i ξ tr
i + T rot

i ξ rot
i

)
(11)

is the cooling rate. In contrast to the energy production rates ξ tr
ij

and ξ rot
ij , the cooling rate ζ is positive definite, i.e., collisions

produce a decrease of the total temperature T unless αij = 1
and βij = ±1 for all pairs ij .

Even though T monotonically decreases with time, it is
expected that, after a certain transient stage, a scaling regime
is reached where all the time dependence occurs through the
total temperature T . This is the so-called HCS [33], which
implies ∂t (T tr

i /T ) = ∂t (T rot
i /T ) = 0, so that

ξ tr
i = ξ rot

i = ζ (12)

for all components.
To express the production rates ξ tr

ij and ξ rot
ij in terms of the

partial temperatures T tr
i , T rot

i , T tr
j , and T rot

j , we assume that the
production rates can be estimated by the replacements

fi(v,ω) →
(

mi

2πT tr
i

)3/2

exp

(
−miv

2

2T tr
i

)
f rot

i (ω), (13a)

fj (v,ω) →
(

mj

2πT tr
j

)3/2

exp

(
−mjv

2

2T tr
j

)
f rot

j (ω) (13b)

in Eqs. (9). Here,

f rot
i (ω) =

∫
dv fi(v,ω), f rot

j (ω) =
∫

dv fj (v,ω) (14)

are marginal distributions that do not need to be known. The
hypothesis behind Eq. (13) is twofold. First, the statistical
correlations between the translational and rotational velocities
are ignored. Second, the translational marginal distribution
function is approximated by a Maxwellian. It is important to
stress that we are not making the strong claim that fi and fj

are well approximated by Eqs. (13) in the Boltzmann–Enskog
equation [15,16,37], just that the production rates can be
approximately computed by performing those replacements.

By inserting Eqs. (13) into Eqs. (9), and after some algebra,
one achieves the explicit expressions [30,31]

ξ tr
ij = 4νij

3miT
tr
i

[
2(̃αij + β̃ij )T tr

i − (̃
α2

ij + β̃2
ij

)(T tr
i

mi

+ T tr
j

mj

)

− β̃2
ij

(
T rot

i

miκi

+ T rot
j

mjκj

)]
, (15a)

ξ rot
ij = 4νij β̃ij

3miκiT
rot
i

[
2T rot

i − β̃ij

(
T tr

i

mi

+ T tr
j

mj

+ T rot
i

miκi

+ T rot
j

mjκj

)]
,

(15b)

ζ =
∑
i,j

nimij νij

3nT

[(
1 − α2

ij

)(T tr
i

mi

+ T tr
j

mj

)

+ κij

1 + κij

(
1 − β2

ij

)(T tr
i

mi

+ T tr
j

mj

+ T rot
i

miκi

+ T rot
j

mjκj

)]
,

(15c)

where we have introduced the effective collision
frequencies

νij ≡
√

2πχijnjσ
2
ij

√
T tr

i

mi

+ T tr
j

mj

(16)

and

α̃ij ≡ mij (1 + αij ), β̃ij ≡ mijκij

1 + κij

(1 + βij ), (17a)

mij ≡ mimj

mi + mj

, κij ≡ κiκj

mi + mj

κimi + κjmj

. (17b)

In summary, in an Nc-component mixture, Eqs. (15) allow
one to obtain from Eq. (12) a closed set of 2Nc − 1 coupled
algebraic equations for the 2Nc − 1 independent temperature
ratios, which in general must be solved numerically.

III. TRACER LIMIT

We now consider the special case of a system with two
species where one of the components (i = 1) is present
in tracer concentration (i.e., n1/n2 → 0). In this limit, the
Boltzmann Eqs. (5) decouple into a single Boltzmann equation
for the host component (i = 2) and a Boltzmann–Lorentz
equation for the tracer component, namely

∂tf2(v,ω; t) = J22[v,ω; t |f2,f2], (18a)

∂tf1(v,ω; t) = J12[v,ω; t |f1,f2]. (18b)

As a consequence of the limit n1/n2 → 0, the global
temperature, Eq. (4), and the cooling rate, Eq. (11), reduce
to

T = T tr
2 + T rot

2

2
, ζ = ξ tr

2 T tr
2 + ξ rot

2 T rot
2

T tr
2 + T rot

2

. (19)

A. Host component

In the Maxwellian approximation, Eq. (13), the production
rates associated with the host component [3,6] can easily be
obtained by setting i = j = 2 in Eqs. (15). Their expressions
are

ξ tr
2 = ξ tr

22 = 2ν22

3

[
1 − α2

22 + 2κ2(1 + β22)

(1 + κ2)2

(
1 − T rot

2

T tr
2

)
+ κ2

(
1 − β2

22

)
(1 + κ2)2

(
κ2 + T rot

2

T tr
2

)]
, (20a)

ξ rot
2 = ξ rot

22 = 2ν22

3

1 + β22

(1 + κ2)2

T tr
2

T rot
2

[
(1 − β22)

(
κ2 + T rot

22

T tr
22

)
− 2κ2

(
1 − T rot

2

T tr
2

)]
, (20b)

ζ = 2ν22

3

T tr
2

T tr
2 + T rot

2

[
1 − α2

22 + 1 − β2
22

1 + κ2

(
κ2 + T rot

2

T tr
2

)]
.

(20c)
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In the HCS, the condition ξ tr
2 = ξ rot

2 yields the following
quadratic equation for the temperature ratio T rot

2 /T tr
2 :

T rot
2

T tr
2

− T tr
2

T rot
2

= 2γ2, (21)

where

γ2 ≡ (1 + κ2)2

2κ2(1 + β22)2

[
1 − α2

22 − 1 − κ2

1 + κ2

(
1 − β2

22

)]
. (22)

Its physical root is

T rot
2

T tr
2

=
√

1 + γ 2
2 + γ2. (23)

It is interesting to note that the parameter γ2 comprises
completely the dependence of the temperature ratio on
the set of parameters κ2, α22, and β22 in the Maxwellian
approximation. The sign of that parameter results from the
competition between two terms proportional to 1 − α2

22 and
1 − β2

22, respectively. From Eq. (2) we observe that 1 − α2
22 =

1 − (σ̂ · w′)2/(σ̂ · w)2 measures the relative decrease in the
magnitude of the normal component of the relative velocity
after a collision. Likewise, 1 − β2

22 = 1 − (σ̂ × w′)2/(σ̂ ×
w)2 measures a similar relative decrease but in the case
of the tangential component. Thus, γ2 > 0 if the relative
decrease of the normal component is larger than that of the
tangential component [the latter being multiplied by (1 − κ2)/
(1 + κ2)]; otherwise, γ2 < 0. In the former case (γ2 > 0), the
mean rotational energy per particle is larger than the mean
translational energy per particle, i.e., T rot

2 /T tr
2 > 1, whereas

T rot
2 /T tr

2 < 1 if γ2 < 0. Equipartition of energy (T rot
2 /T tr

2 = 1)
occurs if γ2 = 0, implying a balance (in the sense described
above) between the relative decrease of the magnitudes
of the tangential and normal components of the relative
velocity.

B. Tracer component

In the case of the tracer component i = 1, one has ξ tr
1 =

ξ tr
12 and ξ rot

1 = ξ rot
12 , where ξ tr

12 and ξ rot
12 , in the Maxwellian

approximation, Eq. (13), can be obtained from Eqs. (15a)
and (15b), respectively. In the HCS, Eq. (12) for i = 1
yields

ζ ∗ = s

√
1 + X

X
A[2(1 + B)X − A(1 + B2)(1 + X)

−AB2r(1 + Y )], (24a)

ζ ∗ = s

√
1 + XAB

κ2
1 rY

[2κ1rY − AB(1 + X)

−ABr(1 + Y )]. (24b)

Here, to simplify the notation, we have introduced the
dimensionless quantities

X ≡ T tr
1

T tr
2

m2

m1
, Y ≡ T rot

1

T rot
2

m2κ2

m1κ1
, (25a)

ζ ∗ ≡ ζ

ν22
, r ≡ T rot

2

κ2T
tr

2

, s ≡ 2
√

2

3

χ12σ
2
12

χ22σ
2
2

, (25b)

TABLE I. Asymptotic behavior of the temperature ratios T tr
1 /T tr

2

and T rot
1 /T rot

2 in the limit m1/m2 � 1, depending on the sign of γ12

[see Eq. (26)]. The coefficients γ2, CI, KI, CII, KII, and KIII are given
by Eqs. (22), (A4a), (A4b), (A9a), (A9b), and (A12), respectively.

γ12 T tr
1 /T tr

2 T rot
1 /T rot

2

>0 C2
I

(
m1
m2

)3( σ2
σ12

)4 KIC
2
I√

1+γ 2
2 +γ2

(
m1
m2

)4( σ2
σ12

)4

=0 C2
I

(
m1
m2

)3( σ2
σ12

)4 KIIIC
2
I√

1+γ 2
2 +γ2

( m1
m2

)3( σ2
σ12

)4

<0 C2
II

(
m1
m2

)3( σ2
σ12

)4 KIIC
2
II√

1+γ 2
2 +γ2

(
m1
m2

)2( σ2
σ12

)4

A ≡ α̃12

m1
= m2

m1 + m2
(1 + α12), (25c)

B ≡ β̃12

α̃12
= κ12

1 + κ12

1 + β12

1 + α12
. (25d)

The quantities ζ ∗, r , s, A, and B are known in terms of the
parameters of the problem, so that Eqs. (24) make a closed
set of two nonlinear coupled equations for the unknowns X

and Y . To solve them, it is convenient to make the change of
variable X → x2 − 1. Equation (24b) allows one to express the
quantity Y in terms of x. Next, insertion of Y (x) into Eq. (24a)
yields a quartic equation for x, whose physical solution can
easily be obtained. Note that X and Y depend on the nine
parameters of the problem only through the five quantities ζ ∗,
r , s, A, and B.

For completeness, the special limit m1 � m2 (heavy im-
purity) is analyzed in the Appendix. Table I summarizes the
asymptotic behaviors of the two tracer/host temperature ratios
in that limit. Note that the ratios depend on the sign of the
quantity

γ12 ≡ 1 + α12 − κ2(1 − κ1)

κ1(1 + κ2)
(1 + β12). (26)

In all the cases, the tracer/host temperature ratios diverge in
the limit m1/m2 → ∞ following power laws.

IV. COMPARISON WITH COMPUTER SIMULATIONS

In this section, the theoretical predictions derived in Sec. III
are compared against computer simulations by the DSMC [34]
and MD [35,38] methods. The first method obtains an exact
numerical solution of the Boltzmann and Boltzmann–Lorentz
equations, and thus the assumption of molecular chaos is built
in. In contrast, the MD method avoids this bias since it is merely
a solution of Newton’s equations of motion and therefore is free
from that assumption. In the DSMC simulations we have taken
χ12 = χ22 = 1, which corresponds to the dilute limit φ2 → 0.
On the other hand, in the MD simulations the value of the
packing fraction needs to be finite and we have taken the values
φ2 = π

600 	 0.005 and φ2 = π
300 	 0.010, which are small

enough to justify the approximations χ12 	 χ22 	 1. Even in
that case, there are eight independent control parameters of
the mixture. Because of that, we have restricted ourselves to
the 10 series of systems with parameters displayed in Table II.
In the series A–G, the tracer and host particles are assumed to
be made of the same material, so that they share the values of
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TABLE II. Parameters of the different systems considered in this work.

Label m1/m2 σ1/σ2 κ2 κ1 α22 α12 β22 β12

A (σ1/σ2)3 0.25, . . . , 2 2
5

2
5 0.9 0.9 −0.5 −0.5

B (σ1/σ2)3 0.25, . . . , 2 2
5

2
5 0.7 0.7 −0.5 −0.5

C (σ1/σ2)3 0.25, . . . , 2 2
5

2
5 0.9 0.9 0 0

D (σ1/σ2)3 0.25, . . . , 2 2
5

2
5 0.7 0.7 0 0

E (σ1/σ2)3 0.25, . . . , 2 2
5

2
5 0.9 0.9 0.5 0.5

F (σ1/σ2)3 0.25, . . . , 2 2
5

2
5 0.7 0.7 0.5 0.5

G (σ1/σ2)3 0.25, . . . , 2 0.1 0.1 0.2 0.2 1 1

H 1 1 2
5

2
5 0.9 0.5, . . . , 0.99 0 0

I 1 1 2
5

2
5 0.9 0.9 0 −0.99, . . . , 0.99

J 1 1 2
5 0.01, . . . , 2

3 0.9 0.9 0 0

the coefficients of restitution, the reduced moment of inertia,
and the particle mass density. Thus, the only independent
parameter is the size ratio σ1/σ2 and, consequently, the mass
ratio is m1/m2 = (σ1/σ2)3. While in cases A–F the mass
distribution is uniform (so that κ1 = κ2 = 2

5 ) and the particles
are moderately inelastic, in case G the mass distribution is
more concentrated near the center (κ1 = κ2 = 0.1) and the
particles are very inelastic and completely rough. In the series
H–J the tracer particles have the same size and mass as the
host particles but they differ in the coefficient of normal (case
H) or tangential (case I) restitution, or in the reduced moment
of inertia (case J). In the latter case the tracer and host particles
are “externally” identical but they differ in their internal mass
distribution.

Before presenting the results for the partial temperatures
associated with the tracer component, it is worth analyzing the
temperature ratio T rot

2 /T tr
2 for the host component. According

to the Maxwellian approximation, Eq. (13), the ratio T rot
2 /T tr

2
is a function of the parameter γ2 only [see Eq. (23)]. Figure 1
shows the simulation values of T rot

2 /T tr
2 as a function of γ2

for the cases A–G. Notice that the host component in cases

FIG. 1. Plot of the temperature ratio T rot
2 /T tr

2 of the host gas
versus the parameter γ2 defined in Eq. (22). The line is the theoretical
prediction given by Eq. (23), while the filled and open symbols are
DSMC and MD results, respectively. The symbols correspond to the
cases A (squares), B (circles), C (up triangles), D (down triangles), E
(left triangles), F (right triangles), and G (diamonds). The error bars
in the simulation data are smaller than the size of the symbols.

H–J is in the same state as in case C. We observe an excellent
agreement with the Maxwellian prediction, although the latter
tends to overestimate the ratio T rot

2 /T tr
2 for large values of the

parameter γ2.
Now we turn our attention to the tracer/host temperature

ratios. Figure 2 shows the dependence of T tr
1 /T tr

2 and T rot
1 /T rot

2
on the size ratio σ1/σ2 for systems A–F. The MD data have
been restricted to σ1/σ2 � 1.5 because we have observed that
for σ1/σ2 � 1.25 the tracer particle is massive enough to
disturb the state of the host gas, so that the Boltzmann–Lorentz
treatment is not applicable. This does not happen in the
DSMC simulations since in that case one numerically solves
Eqs. (18) independently. From Fig. 2 it is quite apparent that
the tracer temperature (either translational or rotational) is
larger (smaller) than its host counterpart if the size of the tracer
particle is larger (smaller) than that of a host particle. This trend
is similar to what is observed in the case of smooth spheres
[21,23], where only translational temperatures play a role.
This effect, however, is more pronounced in T rot

1 /T rot
2 than

in T tr
1 /T tr

2 . Moreover, the disparity in temperatures increases
as the roughness decreases. Comparison with the simulation
data shows a good behavior of the approximate theoretical
predictions. An exception is the rotational temperature ratio
T rot

1 /T rot
2 at σ1/σ2 = 1.5, where the MD data are clearly larger

than both the theoretical and DSMC values. While this might
be due in part to the nonnegligible effect of a big and massive
tracer particle on the properties of the host gas, it also may
reflect a breakdown of the molecular chaos assumption (at
least in what concerns the distribution of angular velocities) in
that situation.

In Fig. 3(a) we display the results for system G, which
corresponds to very inelastic spheres (α11 = α22 = 0.2) with
a mass distribution concentrated near the center (κ1 = κ2 =
0.1). The theory agrees quantitatively well with the DSMC data
but only qualitatively with the MD simulations. This means
that the molecular chaos hypothesis in the Boltzmann–Lorentz
description is less reliable as the inelasticity increases, as
expected from previous results [21]. It is worthwhile noting
that, in comparison with Fig. 2, the breakdown of energy
equipartition is much less significant in system G than in
systems A–F.

In system H the impurity has the same mass, size, mass
distribution, and coefficient of tangential restitution as the host
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FIG. 2. Plot of the temperature ratios T tr
1 /T tr

2 (solid lines and circles) and T rot
1 /T rot

2 (dashed lines and triangles) versus σ1/σ2 for systems
(a) A, (b) B, (c) C, (d) D, (e) E, and (f) F (see Table II). The lines are theoretical predictions, the filled symbols are DSMC results, and the open
symbols are MD results. The error bars in the simulation data are smaller than the size of the symbols. Note the vertical logarithmic scales in
panels (a)–(d).

particles, so that it only differs in the coefficient of normal
restitution. This case has been analyzed by Goldhirsch and
coworkers [39,40] in the study of thermal diffusion segregation

[41]. From Fig. 3(b) we observe that the ratio of rotational
temperatures has a very weak dependence on α12 and is
quite close to 1. This can be understood as a consequence of

FIG. 3. Plot of the temperature ratios T tr
1 /T tr

2 (solid lines and circles) and T rot
1 /T rot

2 (dashed lines and triangles) versus (a) σ1/σ2 and (b)
α12 for systems (a) G and (b) H (see Table II). The lines are theoretical predictions, the filled symbols are DSMC results, and the open symbols
are MD results. Except for the MD data in panel (b), the error bars in the simulation data are smaller than the size of the symbols.
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FIG. 4. Plot of the temperature ratios T tr
1 /T tr

2 (solid lines and circles) and T rot
1 /T rot

2 (dashed lines and triangles) versus (a) β12 and (b) 3
2 κ1

for systems (a) I and (b) J (see Table II). The lines are theoretical predictions, the filled symbols are DSMC results, and the open symbols are
MD results. The error bars in the simulation data are smaller than the size of the symbols. Note that in panel (a) the vertical scale is logarithmic
for −1 � β12 � −0.5 and normal for −0.5 � β12 � 1.

β12 = β22. On the other hand, the different inelasticity has an
obvious impact on the ratio of translational temperatures. If
α12 < α22 the cooling effect is more significant for the tracer
particle than for the host particles, which gives rise to T tr

1 < T tr
2

in the asymptotic regime. The opposite happens when α12 >

α22. The agreement between theory and simulations is very
good, although the fluctuations in the MD data for T rot

1 /T rot
2

are noticeable.
System I is analogous to system H, except that now tracer

and host particles have a different roughness. The results are
displayed in Fig. 4(a). The tracer/host temperature ratios reach
very high values when the tracer particle is rather smooth. For
instance, T rot

1 /T rot
2 > 10 if β12 � −0.58 and T tr

1 /T tr
2 > 10 if

β12 � −0.83. For that reason, the vertical scale is logarithmic
for β12 < −0.5 in Fig. 4(a). In addition, in that region the
duration of the transient regime toward the HCS increases
considerably and, consequently, we were not able to reach
steady values for the temperature ratios in our MD simulations.
Interestingly, the temperature ratios have a nonmonotonic
dependence on β12 in the region β12 > −0.5. This behavior
is very well captured by the approximate Maxwellian theory,
as shown in Fig. 4(a).

Finally, system J is studied in Fig. 4(b). Now the only
distinction between the tracer and host particles is the mass
distribution, i.e., κ1 
= κ2. It is quite apparent that the impact of
the mass distribution on the ratio of translational temperatures
is rather weak, as might have been expected from the fact
that the moment of inertia is directly related to the rotational
degrees of freedom. In what concerns the ratio T rot

1 /T rot
2 , we

observe that it grows as the mass of the tracer particle is more
concentrated near the surface. Again, it is worth highlighting
that all those features are quantitatively well accounted for by
our Maxwellian approximation.

V. CONCLUSIONS

In this paper we have carried out a study of the properties
of an impurity (also called tracer particle) immersed in a host

gas of inelastic and rough hard spheres in the HCS regime.
More specifically, we have focused on the quantities measuring
the violation of energy equipartition between both species,
namely the temperature ratios T tr

1 /T tr
2 and T rot

1 /T rot
2 . Given

the large number of independent parameters involved in the
problem, we have considered 10 different classes of systems
(see Table II), in each one of them the tracer particle sharing
the same mechanical properties as the host particles, except
one. This has allowed us to offer a comprehensive view of the
general tracer problem.

Three complementary but different routes have been fol-
lowed. On the one hand, previous results derived in Ref. [30]
from the multitemperature Maxwellian approximation,
Eq. (13), have been particularized to the problem at hand.
All the quantities of the problem have been analytically
determined in terms of the exact solution of an algebraic quartic
equation. These theoretical results have been gauged via com-
parison with simulation results obtained independently from
two methods: (i) a numerical solution of the Boltzmann and
Boltzmann–Lorentz kinetic equations by the DSMC method
and (ii) a MD simulation to solve Newton’s equations of
motion. The former measures the accuracy of the Maxwellian
approximation, while the latter assess the reliability of the
molecular chaos assumption to compute the temperature ratios.

The results displayed in Figs. 2–4 show that, in general,
the approximate theory compares well with simulations
under conditions of practical interest. We have observed that
limitations of the molecular chaos ansatz are relevant only for
large tracer particles and/or very inelastic gases, as shown in
Figs. 2 and 3(a). Even in those cases, the theoretical description
agrees qualitatively well with MD simulations.

The present study encourages us to address the more
general problem of a binary mixture of inelastic and rough
hard spheres. In that case, one has to deal with two coupled
Boltzmann equations. In addition, the parameter space is
augmented by three new parameters, namely the relative
concentration n1/n2 and the coefficients of restitution α11

and β11. This will imply a much more stringent test for
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the multitemperature Maxwellian approximations. It will also
be very interesting to consider, even in the tracer limit, a
moderately dense granular fluid and study the impact of
velocity correlations on energy nonequipartition. We plan to
undertake those projects in the future.
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APPENDIX: LIMIT OF A HEAVY IMPURITY

The general framework presented in Sec. III B is particu-
larized here to the case where the mass of a tracer particle is
much larger than the mass of a host gas particle, i.e., μ ≡
m1/m2 � 1. In that limit [see Eqs. (17b), (25c), and (25d)],

κ12 ≈ κ2, A ≈ μ−1(1 + α12), B ≈ κ2

1 + κ2

1 + β12

1 + α12
.

(A1)

Three independent possibilities must be distinguished.

1. 1 + α12 >
κ2(1 − κ1)
κ1(1 + κ2)

(1 + β12)

By assuming that μY � X � 1, Eq. (24b) yields

X ≈
[

ζ ∗κ1

2sB(1 + α12)

]2

μ2. (A2a)

Next, we consider Eq. (24a). If one had X � μ−1Y , then
Eq. (24a) would provide an expression for X inconsistent with
(A2a). Thus, we conclude that Y ∼ μX, so that

Y ≈ 2
1 − B

(
κ−1

1 − 1
)

B2r(1 + α12)
μX. (A2b)

Going back to the temperature ratios [see Eq. (25a)],

T tr
1

T tr
2

≈ C2
I

(
m1

m2

)3(
σ2

σ12

)4

, (A3a)

T rot
1

T tr
1

≈ KI
m1

m2
, (A3b)

where

CI ≡ 3ζ ∗κ1(1 + κ2)χ22/χ12

4
√

2κ2(1 + β12)
, (A4a)

KI ≡ 2κ1(1 + κ2)2

κ2
2

1 + α12 − κ2(1−κ1)
κ1(1+κ2) (1 + β12)

(1 + β12)2
. (A4b)

Therefore, the asymptotic behaviors are

T tr
1

T tr
2

∼
(

m1

m2

)3(
σ2

σ12

)4

, (A5a)

T rot
1

T rot
2

∼
(

m1

m2

)4(
σ2

σ12

)4

. (A5b)

If the impurity and bath particles have comparable mass
densities, then m1/m2 ∼ (σ1/σ2)3, so that Eqs. (A5) imply
(by ignoring the dependence of χ22/χ12 on the size ratio)
that T tr

1 /T tr
2 ∼ (σ1/σ2)5 and T rot

1 /T rot
2 ∼ (σ1/σ2)8 in the limit

σ1/σ2 � 1.
It must be noted that the above analysis (based on the

assumptions Y ∼ μX � X � 1) is valid inasmuch as the
predicted temperature ratios are positive definite, i.e., if,
according to Eq. (A2b), B(κ−1

1 − 1) < 1. This is equivalent
to [see Eq. (A4b)]

1 + α12 >
κ2(1 − κ1)

κ1(1 + κ2)
(1 + β12). (A6)

On the other hand, a Monte Carlo estimate with 108 sets of
random values 0 � α12 � 1, −1 � β12 � 1, 0 � κ2 � 2

3 , and
0 � κ1 � 2

3 shows that Eq. (A6) is violated about 19.26% of
all the possible cases. For instance, if κ2 = 2

5 , α12 = 1
2 , and

β12 = 1, Eq. (A6) is not fulfilled if κ1 � 8
29 	 0.276.

Obviously, when Eq. (A6) is not verified, Eqs. (A2)–(A5)
are no longer applicable. In that case, the working hypothesis
μY � X � 1 must be replaced by μY ∼ X � 1.

2. 1 + α12 <
κ2(1 − κ1)
κ1(1 + κ2)

(1 + β12)

By assuming μY ∼ X � Y � 1, Eqs. (24a) and (24b)
yield, respectively,

X ≈
[

ζ ∗

2s(1 + B)(1 + α12)

]2

μ2, (A7a)

Y ≈ B2(1 + α12)/2rκ2
1

B(κ−1
1 − 1) − 1

X

μ
. (A7b)

Going back to the original quantities,

T tr
1

T tr
2

≈ C2
II

(
m1

m2

)3(
σ2

σ12

)4

, (A8a)

T rot
1

T tr
1

≈ KII
m2

m1
, (A8b)

with

CII ≡ 3ζ ∗χ22/χ12

4
√

2
[
1 + α12 + κ2

1+κ2
(1 + β12)

] , (A9a)

KII ≡ − 1

KI
. (A9b)
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The asymptotic behaviors are of the form

T tr
1

T tr
2

∼
(

m1

m2

)3(
σ2

σ12

)4

, (A10a)

T rot
1

T rot
2

∼
(

m1

m2

)2(
σ2

σ12

)4

. (A10b)

Now, if m1/m2 ∼ (σ1/σ2)3, then T tr
1 /T tr

2 ∼ (σ1/σ2)5 and
T rot

1 /T rot
2 ∼ (σ1/σ2)2 in the limit σ1/σ2 � 1.

3. 1 + α12 = κ2(1 − κ1)
κ1(1 + κ2)

(1 + β12)

This is the threshold between the cases 1 and 2 above. It
takes place if B(κ−1

1 − 1) = 1, i.e., if both sides of Eq. (A6)

are equal. Now X and Y are of the same order, Y ∼ X � 1.
Because of the same reasoning as in case 1, Eqs. (A2a) and
(A3a) still apply. In fact, in this special case they are equivalent
to Eqs. (A7a) and (A8a), respectively, i.e., CI = CII. Next, by
equating the right-hand sides of Eqs. (24a) and (24b) and
using B = κ1/(1 − κ1), one finds a quadratic equation for
κ1rY/X ≡ T rot

1 /T tr
1 ,(

T rot
1

T tr
1

)2

− 2(1 − κ1)
T rot

1

T tr
1

− 1 = 0, (A11)

whose positive solution is

T rot
1

T tr
1

≈ KIII, KIII ≡ 1 − κ1 +
√

(1 − κ1)2 + 1. (A12)

Table I summarizes the results of this Appendix.
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