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Interplay between polydispersity, inelasticity, and roughness in the freely cooling regime
of hard-disk granular gases
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A polydisperse granular gas made of inelastic and rough hard disks is considered. Focus is laid on the kinetic-
theory derivation of the partial energy production rates and the total cooling rate as functions of the partial densities
and temperatures (both translational and rotational) and of the parameters of the mixture (masses, diameters,
moments of inertia, and mutual coefficients of normal and tangential restitution). The results are applied to the
homogeneous cooling state of the system and the associated nonequipartition of energy among the different
components and degrees of freedom. It is found that disks typically present a stronger rotational-translational
nonequipartition but a weaker component-component nonequipartition than spheres. A noteworthy “mimicry”
effect is unveiled, according to which a polydisperse gas of disks having common values of the coefficient of
restitution and of the reduced moment of inertia can be made indistinguishable from a monodisperse gas in what
concerns the degree of rotational-translational energy nonequipartition. This effect requires the mass of a disk of
component i to be approximately proportional to 2σi + 〈σ 〉, where σi is the diameter of the disk and 〈σ 〉 is the
mean diameter.
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I. INTRODUCTION

The minimal model to describe the dynamical properties of
a granular fluid consists of a collection of identical, smooth
hard disks (in two-dimensional geometry) or spheres (in the
three-dimensional case). Particles dissipate kinetic energy via
binary collisions and this is characterized in the minimal
model by means of a constant coefficient of normal restitution.
While this simple model captures most of the basic properties
of granular flows [1–8], it can be made more realistic, for
instance, by assuming that the coefficient of normal restitution
depends on the impact velocity [6,9,10], taking into account the
presence of an interstitial fluid [11], considering nonspherical
particles [12], introducing the effect of surface friction in
collisions, or accounting for a multicomponent character of
the granular fluid.

In particular, there exists a vast literature about polydis-
perse systems of smooth disks or spheres [13–27], as well
as about friction (or roughness) in monodisperse systems
[10,28–65]. On the other hand, much fewer works have dealt
with multicomponent gases of rough spheres [66–72]. This
class of systems is especially relevant because of an inherent
breakdown of energy equipartition, even in homogeneous and
isotropic states (driven or undriven), as characterized by inde-
pendent translational (T tr

i ) and rotational (T rot
i ) temperatures

associated with each component i. The rate of change of the
translational mean kinetic energy of particles of component
i due to collisions with particles of component j defines the
energy production rate ξ tr

ij . A similar energy production rate
ξ rot
ij measures the rate of change of the rotational mean kinetic

energy.
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By means of kinetic-theory tools, the energy production
rates ξ tr

ij and ξ rot
ij for (three-dimensional) hard spheres were

obtained in Ref. [69] as functions of T tr
i , T tr

j , T rot
i , T rot

j , and
of the mechanical parameters (masses, diameters, moments of
inertia, and coefficients of normal and tangential restitution)
of each pair ij . Those expressions were derived by assuming
collisional molecular chaos, statistical independence between
the translational and angular velocities, and a Maxwellian
form for the translational velocity distribution function. The
application of the results to the homogeneous cooling state
(HCS) of a tracer particle immersed in a granular gas of
inelastic and rough hard spheres shows a very good agreement
with computer simulations [71,72].

From the experimental point of view, however, most of the
setup geometries are two-dimensional [64,73–83]. Moreover,
while capturing most of the physics of the problems at hand,
two-dimensional computer simulations are much easier to
carry out and interpret than three-dimensional ones. Hence,
the extension of the analysis carried out in Ref. [69] to
multicomponent hard disks has undoubtedly a practical interest
beyond its added academic value. In contrast to what happens
for smooth, spinless particles, where an unambiguous kinetic-
theory treatment of d-dimensional hard spheres is possible
[84], the existence of angular motion due to surface friction
or roughness establishes a neat separation between the cases
of spheres and disks. Whereas both classes of particles are
embedded in a common three-dimensional space, spinning
spheres have three translational plus three rotational degrees of
freedom, but spinning disks on a plane have two translational
and only one rotational degrees of freedom.

By following steps similar to those followed in Ref. [69],
the energy production rates ξ tr

ij and ξ rot
ij are derived in this paper

for a multicomponent gas made of inelastic and rough disks.
The results are subsequently applied to the HCS and illustrated
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FIG. 1. Sketch of the precollisional quantities of disks i and j in
the frame of reference solidary with disk j .

for monodisperse and bidisperse gases. An interesting mimicry
effect is also analyzed. According to this effect, the HCS of
a polydisperse gas of disks having common values of the
coefficient of restitution and of the reduced moment of inertia
can be indistinguishable from that of a monodisperse gas in
what concerns the rotational-translational temperature ratio.
It is shown here that the condition for this mimicry effect is
that the mass mi of each component i must be approximately
proportional to 2σi + 〈σ 〉, where σi is the diameter of a disk
of component i and 〈σ 〉 is the mean diameter.

The organization of this paper is as follows. Section II
describes the collision rules, which are then used in Sec. III
to express the collisional rates of change in terms of two-body
averages. Next, those averages are estimated by assuming
molecular chaos, statistical independence between the transla-
tional and angular velocities, and a Maxwellian translational
velocity distribution function. The energy production rates
ξ tr
ij and ξ rot

ij are defined in Sec. IV, their explicit expressions
being displayed in Table III. Those results are applied to
the HCS of monodisperse and bidisperse systems in Sec. V.
Section VI deals with the mimicry effect described above.
Finally, the paper ends with some concluding remarks in
Sec. VII.

II. BINARY COLLISIONS. COEFFICIENTS
OF RESTITUTION

A. Collisional rules

Let us consider an s-component granular gas of hard disks
(lying on the xy plane). Disks of component i have a mass
mi , a diameters σi , and a moment of inertia Ii = 1

4miσ
2
i κi ,

where the value of the dimensionless quantity κi depends on
the mass distribution within the disk, running from the extreme
values κi = 0 (mass concentrated on the center) to κi = 1
(mass concentrated on the perimeter). If the mass is uniformly
distributed, then κi = 1

2 .
Figure 1 sketches a binary collision between two disks

of components i and j . Let us denote by vij = vi − vj the
precollisional relative velocity of the center of mass of both
disks, by ωi = ωîz and ωj = ωj ẑ the respective precollisional
angular velocities, by σ̂ ≡ (rj − ri)/|rj − ri | the unit vector
pointing from the center of i to the center of j , and by
σ̂⊥ = σ̂ × ẑ = σ̂y x̂ − σ̂x ŷ its perpendicular unit vector. The
velocities of the points of the disks which are in contact at the

collision are

wi = vi − σi

2
ωi σ̂⊥, wj = vj + σj

2
ωj σ̂⊥, (2.1)

so that the corresponding relative velocity is

wij = vij − Sij σ̂⊥, Sij ≡ σi

2
ωi + σj

2
ωj . (2.2)

Postcollisional velocities will be denoted by primes. The
conservation of linear and angular momenta yields

miv′
i + mj v′

j = mivi + mj vj , (2.3a)

Iiω
′
i + mi

σi

2
v′

i · σ̂⊥ = Iiωi + mi

σi

2
vi · σ̂⊥, (2.3b)

Ijω
′
j − mj

σj

2
v′

j · σ̂⊥ = Ijωj − mj

σj

2
vj · σ̂⊥. (2.3c)

Angular momentum (with respect to the point of contact)
is conserved for each particle separately because during a
collision the forces act only at the point of contact and hence
there is no torque with respect to that point [49]. Equations
(2.3) imply that

v′
i = vi − 1

mi

Qij , v′
j = vj + 1

mj

Qij , (2.4a)

ω′
i = ωi + σi

2Ii

Qij · σ̂⊥, ω′
j = ωj + σj

2Ij

Qij · σ̂⊥, (2.4b)

where the (so-far) undetermined quantity Qij is the impulse
exerted by particle i on particle j . Therefore, the postcollisional
relative velocities are

v′
ij = vij − 1

mij

Qij , (2.5a)

w′
ij = wij − 1

mij

Qij − 1

mijκij

(Qij · σ̂⊥)σ̂⊥, (2.5b)

where

mij ≡ mimj

mi + mj

, κij ≡ κiκj

mi + mj

κimi + κjmj

(2.6)

are the reduced mass and a sort of reduced inertia-moment
parameter, respectively.

The collisional rules can be closed by relating the normal
(i.e., parallel to σ̂ ) and tangential (i.e., parallel to σ̂⊥) compo-
nents of the relative velocities wij and w′

ij :

w′
ij · σ̂ = −αij wij · σ̂ , w′

ij · σ̂⊥ = −βij wij · σ̂⊥. (2.7)

Here, αij and βij are the constant coefficients of normal
and tangential restitution, respectively. While αij ranges from
αij = 0 (perfectly inelastic particles) to αij = 1 (perfectly elas-
tic particles), the coefficient βij runs from βij = −1 (perfectly
smooth particles, i.e., no change in the tangential component
of the relative velocity) to βij = 1 (perfectly rough particles,
i.e., reversal of the tangential component). The insertion of
Eq. (2.5b) into Eq. (2.7) yields

Qij · σ̂

mij

= αij wij · σ̂ ,
Qij · σ̂⊥

mij

= βij wij · σ̂⊥, (2.8)
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with the introduction of the parameters

αij ≡ 1 + αij , βij ≡ κij

1 + κij

(1 + βij ). (2.9)

Therefore, with the help of Eqs. (2.2) and (2.8), the impulse
Qij is expressed in terms of the precollisional velocities and
the unit vector σ̂ as

Qij

mij

= αij (vij · σ̂ )σ̂ + βij (vij · σ̂⊥ − Sij )σ̂⊥. (2.10)

This, together with Eqs. (2.4), closes the collision rules

(vi ,ωi ; vj ,ωj )
σ̂→ (v′

i ,ω
′
i ; v′

j ,ω
′
j ). Note that one has βij = 0 in

the special case of perfectly smooth disks (βij = −1), so that
Qij · σ̂⊥ = 0 in that case and, according to Eq. (2.4b), the
angular velocities of the two colliding disks are unaffected
by the collision, as expected.

B. Energy dissipation

While linear and angular momenta are conserved by col-
lisions, kinetic energy is not. Let us see this point in more
detail. From Eqs. (2.4) and (2.10), it follows that the collisional
changes of mivi , Iiωi,miv

2
i , and Iiω

2
i are

miv′
i − mivi

mij

= −αij (vij · σ̂ )σ̂ − βij (vij · σ̂⊥ − Sij )σ̂⊥,

(2.11a)

Iiω
′
i − Iiωi

mij

= σi

2
βij (vij · σ̂⊥ − Sij ), (2.11b)

miv
′
i
2 − miv

2
i

mij

= mijα
2
ij

mi

(vij · σ̂ )2 − 2αij (vij · σ̂ )(vi · σ̂ )

− 2βij (vij · σ̂⊥ − Sij )(vi · σ̂⊥)

+ mijβ
2
ij

mi

(vij · σ̂⊥ − Sij )2, (2.11c)

Iiω
′
i
2 − Iiω

2
i

mij

= mijβ
2
ij

miκi

(vij · σ̂⊥ − Sij )2

+βijσiωi(vij · σ̂⊥ − Sij ). (2.11d)

Similar expressions are obtained for particle j by exchang-
ing i ↔ j, σ̂ ↔ −σ̂ , and σ̂⊥ ↔ −σ̂⊥. The total kinetic energy
before collision is

Eij = mi

2
v2

i + mj

2
v2

j + Ii

2
ω2

i + Ij

2
ω2

j . (2.12)

Combining Eqs. (2.11c) and (2.11d), plus their counterparts
for particle j , one obtains

E′
ij − Eij = − mij

2

κij

1 + κij

(
1 − β2

ij

)
(vij · σ̂⊥ − Sij )2

− mij

2

(
1 − α2

ij

)
(vij · σ̂ )2. (2.13)

The right-hand side is a negative definite quantity. Thus, energy
is conserved only if the disks are elastic (αij = 1) and either
perfectly smooth (βij = −1) or perfectly rough (βij = 1).
Otherwise, E′

ij < Eij and kinetic energy is dissipated upon
collisions.

C. Restituting collisions

By inverting the direct collisional rules given by Eq. (2.4)
and (2.10), one can find the restituting collisional rules as

v′′
i = vi − 1

mi

Q−
ij , v′′

j = vj + 1

mj

Q−
ij , (2.14a)

ω′′
i = ωi + σi

2Ii

Q−
ij · σ̂⊥, ω′′

j = ωj + σj

2Ij

Q−
ij · σ̂⊥,

(2.14b)

where

Q−
ij

mij

= αij

αij

(vij · σ̂ )σ̂ + βij

βij

(vij · σ̂⊥ − Sij )σ̂⊥. (2.15)

Here, the double primes denote precollisional quantities giving
rise to unprimed quantities as postcollisional values.

It is interesting to note that the modulus of the Jacobian of
the transformation between pre- and postcollisional velocities
is ∣∣∣∣∂(v′

i ,ω
′
i ,v

′
j ,ω

′
j )

∂(vi ,ωi,vj ,ωj )

∣∣∣∣ =
∣∣∣∣∣ ∂(vi ,ωi,vj ,ωj )

∂(v′′
i ,ω

′′
i ,v

′′
j ,ω

′′
j )

∣∣∣∣∣ = αij |βij |. (2.16)

Interestingly, this differs from the case of spheres, for which
the Jacobian is αijβ

2
ij [69].

III. COLLISIONAL RATES OF CHANGE

A. One- and two-body distribution functions

By starting from the Liouville equation, making use of the
collisional rules, and following standard steps, one can derive
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy [85], whose first equation reads

∂tfi(ri ,ci ; t) + vi · ∇ fi(ri ,ci ; t) =
s∑

j=1

Jij

[
ri ,ci ; t |f (2)

ij

]
,

(3.1)

where the short-hand notation ci ≡ {vi ,ωi} has been intro-
duced, f

(2)
ij (ri ,ci ; rj ,cj ; t) is the two-body distribution func-

tion, and

fi(ri ,ci ; t) = N−1
j

∫
drj

∫
dcj f

(2)
ij (ri ,ci ; rj ,cj ; t) (3.2)

is the one-body distribution function, normalized as∫
dri

∫
dci fi(ri ,ci ; t) = Ni . Here, Ni is the number of disks of

component i and
∫

dci ≡ ∫
dvi

∫ ∞
−∞ dωi . Finally, the collision

operator is

Jij

[
ri ,ci ; t |f (2)

ij

] = σij

∫
dcj

∫
+

dσ̂ (vij · σ̂ )

×
[

1

α2
ij |βij |

f
(2)
ij (ri ,c′′

i ; ri − σ ij ,c′′
j ; t)

− f
(2)
ij (ri ,ci ; ri + σ ij ,cj ; t)

]
, (3.3)

where σij ≡ (σi + σj )/2, σ ij ≡ σij σ̂ , and
∫
+ dσ̂ ≡∫

dσ̂ 	(vij · σ̂ ),	(x) being the Heaviside step function.
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B. Balance equations

Given a one-body function ψ(ci), its average value is

〈ψ(ci)〉 ≡ 1

ni

∫
dci ψ(ci)fi(ci), (3.4)

where ni = ∫
dci fi(ci) is the number density of component

i and, for the sake of brevity, the spatial and temporal argu-
ments have been omitted. In particular, one can define partial
temperatures associated with the translational and rotational
degrees of freedom of each component as

T tr
i = mi

2
〈(vi − u)2〉, T rot

i = Ii

〈
ω2

i

〉
, (3.5)

where

u =
∑s

i=1 mini〈vi〉∑s
i=1 mini

(3.6)

is the flow velocity. Note that in the definition of T rot
i the

angular velocities are not referred to any average value because
of the lack of invariance of the collision rules under the
addition of a common value to every angular velocity. Also,
Eq. (3.5) takes into account that the number of translational
and rotational degrees of freedom are 2 and 1, respectively.
The global temperature is

T =
s∑

i=1

ni

n

2T tr
i + T rot

i

3
, (3.7)

where n = ∑s
i=1 ni is the total number density.

In general, the balance equation for 〈ψ(ci)〉 can be obtained
by multiplying both sides of Eq. (3.1) by ψ(ci) and integrating
over ci :

∂tni〈ψ(ci)〉 + ∇ · ni〈viψ(ci)〉 =
s∑

j=1

Jij

[
ψ |f (2)

ij

]
, (3.8)

where the collisional integral Jij [ψ |f (2)
ij ] is

Jij

[
ψ |f (2)

ij

] ≡
∫

dci ψ(ci)Jij

[
ci |f (2)

ij

]
= σij

∫
dci

∫
dcj

∫
+

dσ̂ (vij · σ̂ )

× f
(2)
ij (ri ,ci ; ri + σ ij ,cj )[ψ(c′

i) − ψ(ci)].
(3.9)

Therefore, n−1
i Jij [ψ |f (2)

ij ] is the rate of change of the quantity
ψ(ci) due to collisions with particles of component j . This rate
of change is a functional of the two-body distribution function
f

(2)
ij , as indicated by the notation. The most basic cases are

ψ(ci) = {mivi ,Iiωi,miv
2
i ,Iiω

2
i }. The corresponding rates of

change are obtained by inserting Eqs. (2.11) into Eq. (3.9).
Note that so far all the results are formally exact.

C. Collisional integrals as two-body averages

To proceed, let us make the approximation

Jij

[
ψ |f (2)

ij

] ≈ Jij

[
ψ |f̄ (2)

ij

]
, (3.10)

where

f̄
(2)
ij (ri ,ci ; cj ) ≡ 1∫

+ dσ̂ (vij · σ̂ )

∫
+

dσ̂ (vij · σ̂ )

× f
(2)
ij (ri ,ci ; ri + σ ij ,cj ), (3.11)

is the orientational average of the precollisional distribution
f

(2)
ij . Equation (3.10) replaces the formally exact collisional

integral (3.9) by a simpler one where the angular integral

�(ci ; cj ) ≡
∫

+
dσ̂ (vij · σ̂ )[ψ(c′

i) − ψ(ci)] (3.12)

can be evaluated independently of f
(2)
ij . As a consequence,

Jij

[
ψ |f̄ (2)

ij

] = ninjσij 〈〈�(ci ; cj )〉〉, (3.13)

where

〈〈�(ci ; cj )〉〉 ≡ 1

ninj

∫
dci

∫
dcj �(ci ; cj )f̄ (2)

ij (ci ; cj )

(3.14)
is a two-body average.

It is important to bear in mind that the approximation (3.10)
refers to precollisional quantities inside integrals over ci , cj ,
and σ̂ . Thus, it is much weaker than the bare approximation
f

(2)
ij ≈ f̄

(2)
ij . On the other hand, it must be pointed out that the

equality f
(2)
ij = f̄

(2)
ij holds if (i) the gas is in the Boltzmann

limit (niσ
2
i → 0, njσ

2
j → 0), in which case one can formally

take σij → 0 in the contact value of f
(2)
ij , or (ii) the system is

homogeneous and isotropic (regardless of the reduced densities
niσ

2
i and njσ

2
j ), in which case f

(2)
ij only depends on |ri − rj |.

Thus, the approximation (3.10) is justified if the density of
the granular gas and/or its heterogeneities are small enough
to make the value of f

(2)
ij at contact hardly dependent on the

relative orientation of the two colliding disks.
Let us now particularize to ψ(ci) = {mivi ,Iiωi,miv

2
i ,Iiω

2
i }.

The needed angular integrals are∫
+

dσ̂ (̂k · σ̂ )�σ̂ =
√

π�(1 + �/2)

�
(

�+3
2

) k̂, (3.15a)∫
+

dσ̂ (̂k · σ̂ )σ̂⊥ = π

2
k̂⊥, (3.15b)∫

+
dσ̂ (̂k · σ̂ )(̂k · σ̂⊥)�σ̂⊥ = 1 + (−1)�+1

� + 2
k̂, (3.15c)

were k̂ is an arbitrary unit vector and k̂⊥ = k̂ × ẑ is its
orthogonal unit vector. After some algebra, one can find the
expressions displayed in Table I, where vij ⊥ = vij × ẑ is a
vector orthogonal to vij .

D. Estimates of two-body averages

Table I expresses the collisional rates of change of the
main quantities as linear combinations of two-body averages
of the form (3.14). They are local functions of space and
time and functionals of the orientation-averaged precollisional
distribution f̄

(2)
ij . While, thanks to the approximation (3.10), the

expressions in Table I are much more explicit than the formally
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TABLE I. Relevant collisional integrals in terms of two-body
averages.

ψ −Jij [ψ |f̄ (2)
ij ]/mijninjσij

mivi

2

3

(
2αij + βij

)〈〈vij vij 〉〉 − π

2
βij 〈〈Sij vij ⊥〉〉

Iiωi σiβij 〈〈vij Sij 〉〉
miv

2
i

4

3

(
2αij + βij

)〈〈vij vi · vij 〉〉 + πβij 〈〈Sij vi · vij ⊥〉〉

−2mij

3mi

(
2α2

ij + β
2
ij

)
〈〈v3

ij 〉〉 − 2mijβ
2
ij

mi

〈〈vij S
2
ij 〉〉

Iiω
2
i 2βijσi〈〈vijωiSij 〉〉 − 2mijβ

2
ij

3miκi

(〈〈v3
ij 〉〉 + 3〈〈vij S

2
ij 〉〉

)
miv

2
i + mjv

2
j

4

3

[
(1 − α2

ij ) + βij

2
(2 − βij )

]
〈〈v3

ij 〉〉 − 2β
2
ij 〈〈vij S

2
ij 〉〉

Iiω
2
i + Ijω

2
j

2βij

κij

(
2κij − βij

)〈〈vij S
2
ij 〉〉 − 2

3κij

β
2
ij 〈〈v3

ij 〉〉

Eij

2

3
(1 − α2

ij )〈〈v3
ij 〉〉 + κij

3(1 + κij )
(1 − β2

ij )

×(〈〈v3
ij 〉〉 + 3〈〈vij S

2
ij 〉〉

)

exact results stemming from Eq. (3.9), they still require the full
knowledge of f̄

(2)
ij .

Suppose, for simplicity, that 〈vi〉 = 〈vj 〉 = u. Now, let us
imagine that, instead of the full knowledge of f̄

(2)
ij , we only

know the common flow velocity (u) and the two translational
temperatures (T tr

i and T tr
j ). One can resort to information-

theory (i.e., maximum-entropy) arguments to make the approx-
imation

f̄
(2)
ij (ci ; cj ) → χijmimj

4π2T tr
i T tr

j

e−mi (vi−u)2/2T tr
i f rot

i (ωi)

× e−mj (vj −u)2/2T tr
j f rot

j (ωj ), (3.16)

where χij is the contact value of the pair correlation function
and

f rot
i (ωi) =

∫
dvi fi(ci) (3.17)

is the marginal distribution function associated with the rota-
tional degrees of freedom. Similarly, the translational marginal
distribution function is

f tr
i (vi) =

∫ ∞

−∞
dωi fi(ci). (3.18)

Equation (3.16) is the least biased ansatz consistent with the
input quantities u, T tr

i , and T tr
j . It implies (a) molecular chaos

(i.e., f̄ (2)
ij = χijfifj ), (b) statistical independence between the

translational and angular velocities (i.e., fi = n−1
i f tr

i f rot
i ), and

(c) a Maxwellian form for the distribution of translational
velocities. The generalization to 〈vi〉 �= 〈vj 〉 can be carried
out following similar steps as done in Ref. [84] for smooth
spheres. Since the angular velocities only appear linearly or
quadratically in Table I, a Maxwellian form for f rot

i does not
need to be assumed, so that the local densities (ni and nj ), the
average angular velocities (〈ωi〉 = �i and 〈ωj 〉 = �j ), and the

TABLE II. Expressions, as obtained from the approximation
(3.16), for the two-body averages appearing in Table I.

Quantity Expression

〈〈vij vij 〉〉 0

〈〈Sij vij ⊥〉〉 0

〈〈vij Sij 〉〉 1

2

(
σi�i + σj�j

)〈〈vij 〉〉

〈〈vij vi · vij 〉〉 T tr
i

mi

(
T tr

i

mi

+ T tr
j

mj

)−1

〈〈v3
ij 〉〉

〈〈Sij vi · vij ⊥〉〉 0

〈〈vij S
2
ij 〉〉

(
T rot

i

miκi

+ T rot
j

mjκj

+ 1

2
σiσj�i�j

)
〈〈vij 〉〉

〈〈vijωiSij 〉〉
(

2T rot
i

miκiσi

+ 1

2
σj�i�j

)
〈〈vij 〉〉

〈〈vij 〉〉
√

π

2
χij

(
T tr

i

mi

+ T tr
j

mj

)1/2

〈〈v3
ij 〉〉 3

√
π

2
χij

(
T tr

i

mi

+ T tr
j

mj

)3/2

rotational temperatures (T rot
i and T rot

j ) do not appear explicitly
in Eq. (3.16).

It must be stressed that, while small deviations from the
three assumptions (a), (b), and (c) behind Eq. (3.16) have been
documented in the literature [50,55,58,86,87], the expectation
is that the two-body averages can be estimated reasonably well
by performing the replacement (3.16). This expectation has
been confirmed in the hard-sphere case [58,71,72].

The insertion of the approximation (3.16) into Eq. (3.14) for
the functions �(ci ; cj ) appearing in Table I yields the results
displayed in Table II. In particular, combining the second row
of Table I with the third and eighth rows of Table II, it is
straightforward to obtain

Jij [Iiωi] = − 1
4niνijmijβijσi(σi�i + σj�j ), (3.19)

where the effective collision frequency

νij ≡
√

2πχijnjσij

√
T tr

i

mi

+ T tr
j

mj

(3.20)

has been introduced. Equation (3.19) shows that, except in
the smooth case (βij = −1), collisions produce a systematic
decrease in the magnitude of the angular velocities of the
particles. In the monodisperse case, the collision frequency
(3.20) reduces to

ν = 2χnσ
√

πT tr/m. (3.21)

IV. ENERGY PRODUCTION RATES AND COOLING RATE

While part of the total kinetic energy is dissipated after
each collision [see Eq. (2.13)], each one of the four partial
kinetic energy contributions in Eq. (2.12) can either increase
or decrease after a given collision, as a consequence of a re-
distribution of the nondissipated energy among both colliding
particles and both types (translational and rotational) of energy.
To characterize the statistical effect of energy dissipation
and redistribution, let us introduce the energy production rates
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as the rates of change of the partial temperatures T tr
i and

T rot
i due to collisions of disks of component i with disks of

component j :

ξ tr
ij ≡ −Jij [mi(vi − u)2]

2niT
tr
i

, ξ rot
ij ≡ −Jij

[
Iiω

2
i

]
niT

rot
i

. (4.1)

When collisions of particles of component i with all the com-
ponents are considered, one gets the (total) energy production
rates

ξ tr
i ≡ − 1

T tr
i

(
∂T tr

i

∂t

)
coll

=
s∑

j=1

ξ tr
ij , (4.2a)

ξ rot
i ≡ − 1

T rot
i

(
∂T rot

i

∂t

)
coll

=
s∑

j=1

ξ rot
ij . (4.2b)

Finally, the net cooling rate is

ζ ≡ − 1

T

(
∂T

∂t

)
coll

=
s∑

i=1

ni

n

2T tr
i ξ tr

i + T rot
i ξ rot

i

3T
. (4.3)

As said before, the individual energy productions rates ξ tr
ij and

ξ rot
ij (or even ξ tr

i and ξ rot
i ) do not have a definite sign. In contrast,

the net cooling rate ζ must be positive definite, i.e., collisions
produce a decrease of the total temperature T unless αij = 1
and βij = ±1 for all pairs ij .

The combination of the expressions in Tables I and II allows
one to obtain the energy production rates ξ tr

ij and ξ rot
ij , and

the cooling rate ζ . The resulting expressions can be seen in
the first half of Table III as explicit functions of the local
values of ni, nj ,�i,�j , T

tr
i , T rot

i , T tr
j , and T rot

j , as well as of
the mechanical parameters mi,mj , σi, σj , κi, κj , αij , and βij .

In the expressions for ξ tr
ij and ξ rot

ij given in Table III, the
dissipation and redistribution effects are mixed together. To
disentangle them, it is convenient to carry out the decomposi-
tions [70]

ξ tr
ij = κiT

rot
i

2T tr
i

ξ rot
ij + ζ tr

ij + �
(1)
ij + �

(2)
ij , (4.4a)

ξ rot
ij = ζ rot

ij + �
(3)
ij , (4.4b)

where the expressions for ζ tr
ij , ζ

rot
ij , and �

(1–3)
ij are also included

in Table III.
The quantities �

(1–3)
ij represent equipartition rates. They do

not have a definite sign and vanish if all the temperatures are
equal and either �i = 0 or �j = 0. The equipartition rate �

(1)
ij

is always present (even for perfectly elastic disks, αij = 1)
and tends to equilibrate the translational temperatures T tr

i and
T tr

j . The rates �
(2)
ij and �

(3)
ij do not contribute in the case of

smooth spheres (βij = −1). The former tends to equilibrate
the translational (T tr

i ) and rotational (T rot
i ) temperatures of

component i, while the latter tends to equilibrate the rotational
temperatures T rot

i and T rot
j but is also affected by the other

temperature differences (T tr
i − T tr

j and T tr
i − T rot

i ), and by the
product �i�j . On the other hand, the quantities ζ tr

ij and ζ rot
ij

are positive definite and represent cooling rates. The former
(headed by 1 − α2

ij ) vanishes only if the spheres are elastic,
while the latter (headed by 1 − β2

ij ) vanishes only if the spheres

are either perfectly smooth (βij = −1) or perfectly rough
(βij = 1).

It is straightforward to check that niT
tr
i �

(1)
ij +

njT
tr
j �

(1)
ji = 0 and ni[2T tr

i �
(2)
ij + (1 + κi)T rot

i �
(3)
ij ] +

nj [2T tr
j �

(2)
ji + (1 + κj )T rot

j �
(3)
ji ] = 0. Therefore, as expected,

the equipartition rates �
(1–3)
ij do not contribute to the net

cooling rate ζ defined by Eq. (4.3), so that

ζ = 1

3nT

s∑
i,j=1

[
ni

(
T tr

i ζ tr
ij + 1 + κi

2
T rot

i ζ rot
ij

)

+ nj

(
T tr

j ζ tr
ji + 1 + κj

2
T rot

j ζ rot
ji

)]
. (4.5)

In the monodisperse limit (i.e., s = 1 or, equivalently,
mi = m, κi = κ, σi = σ, αij = α, βij = β, T tr

i = T tr, T rot
i =

T rot,�i = �, ni = n, χij = χ ), the energy production,
cooling, and equipartition rates simplify to the expressions
shown in the second half of Table III, in agreement
with previous results [39]. Moreover, particularization
of the expressions presented in Table III to the case of
multicomponent smooth disks (βij = −1) allows one to
recover known results [84].

The expressions displayed in Table III are the main results
of this paper. As an immediate application, the HCS is analyzed
in Secs. V and VI.

V. APPLICATION TO THE HOMOGENEOUS
COOLING STATE

The HCS is an isotropic and spatially uniform freely cooling
regime, reached after the influence of the initial preparation has
vanished. This base state has been experimentally realized in
conditions of microgravity or levitation [78,79,88–90]. As a
consequence of isotropy, the mean angular velocities are zero
(i.e.,�i = 0), while, as a consequence of spatial uniformity, the
flux term ∇ · ni〈viψ(vi ,ωi)〉 in Eq. (3.8) is absent. Therefore,
the evolution equations for the total and partial temperatures
are

∂tT = −ζT , (5.1a)

∂t

T tr
i

T
= −(

ξ tr
i − ζ

)T tr
i

T
, ∂t

T rot
i

T
= −(

ξ rot
i − ζ

)T rot
i

T
. (5.1b)

Once the HCS scaling regime is reached (after a certain tran-
sient time), all the time dependence of the gas occurs through
the total temperature T . This implies constant temperature
ratios and equal production rates, i.e.,

ξ tr
1 = ξ tr

2 = · · · = ξ tr
s , ξ rot

1 = ξ rot
2 = · · · = ξ rot

s , (5.2a)

ξ tr
1 = ξ rot

1 . (5.2b)

When Eqs. (4.2), together with the expressions in Table III,
are used in Eqs. (5.2), the latter make a set of 2s − 1 equations
whose solution gives the 2s − 1 temperature ratios T rot

1 /T tr
1

and {T tr
i /T tr

1 ,T rot
i /T rot

1 ; i = 2, . . . ,s} for arbitrary values of
the s2 + 5s − 2 free dimensionless parameters of the problem:
the total packing fraction φ = π

4

∑s
i=1 niσ

2
i , the s − 1 density

ratios {ni/n1}, the s − 1 size ratios {σi/σ1}, the s − 1 mass
ratios {mi/m1}, the s reduced moments of inertia {κi}, the
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TABLE III. Energy production rates (ξs), cooling rates (ζ s), and equipartition rates (�s) for polydisperse and
monodisperse systems.

Polydisperse system
Quantity Expression

ξ tr
ij

νijm
2
ij

miT
tr
i

[
(2αij + βij )

T tr
i

mij

− 2α2
ij + β

2
ij

2

(
T tr

i

mi

+ T tr
j

mj

)
− β

2
ij

2

(
T rot

i

miκi

+ T rot
j

mjκj

+ 1

2
σiσj�i�j

)]

ξ rot
ij

νijm
2
ij βij

miκiT
rot
i

[
2T rot

i

mij

+ mi

2mij

κiσiσj�i�j − βij

(
T tr

i

mi

+ T tr
j

mj

+ T rot
i

miκi

+ T rot
j

mjκj

+ 1

2
σiσj�i�j

)]
ζ

∑s

i,j=1

niνijmij

3nT

[
(1 − α2

ij )

(
T tr

i

mi

+ T tr
j

mj

)
+ κij (1 − β2

ij )

2(1 + κij )

(
T tr

i

mi

+ T tr
j

mj

+ T rot
i

miκi

+ T rot
j

mjκj

+ 1

2
σiσj�i�j

)]

ζ tr
ij

νijm
2
ij (1 − α2

ij )

miT
tr
i

(
T tr

i

mi

+ T tr
j

mj

)
ζ rot
ij

νijm
2
ij κ

2
ij (1 − β2

ij )

miκi(1 + κij )2T rot
i

(
T tr

i

mi

+ T tr
j

mj

+ T rot
i

miκi

+ T rot
j

mjκj

+ 1

2
σiσj�i�j

)
�

(1)
ij

2νijm
2
ij (1 + αij )

mimjT
tr
i

(
T tr

i − T tr
j

)
�

(2)
ij

νijmij κij (1 + βij )

mi(1 + κij )T tr
i

(
T tr

i − T rot
i − miκiσiσj�i�j

4

)
�

(3)
ij

2νijm
2
ij κ

2
ij (1 + βij )

(1 + κij )2T rot
i

[
T rot

i − T rot
j

mimjκiκj

+ T tr
i − T tr

j

mimjκi

+ T rot
i − T tr

i

mimij κi

+
(

miκi − mjκj

mimjκiκj

+ 1

mij

)
σiσj�i�j

4

]
Monodisperse system

Quantity Expression

ξ tr νκ

(1 + κ)2

1 + β

2

[
1 − T rot + κmσ 2�2/4

T tr
+ 1 − β

2

(
κ + T rot + κmσ 2�2/4

T tr

)]
+ ν

1 − α2

2

ξ rot νκ

(1 + κ)2
(1 + β)

T tr

T rot

[
T rot + κmσ 2�2/4

T tr
− 1 + 1 − β

2κ

(
κ + T rot + κmσ 2�2/4

T tr

)]
ζ

νT tr

2T tr + T rot

[
1 − β2

2(1 + κ)

(
κ + T rot + κmσ 2�2/4

T tr

)
+ 1 − α2

]
ζ tr ν

1 − α2

2

ζ rot ν

(1 + κ)2

1 − β2

2

T tr

T rot

(
κ + T rot + κmσ 2�2/4

T tr

)
�(1) 0

�(2) νκ

1 + κ

1 + β

2

(
1 − T rot + κmσ 2�2/4

T tr

)
�(3) − 2

1 + κ

T tr

T rot
�(2)

s(s + 1)/2 coefficients of normal restitution {αij }, and the
s(s + 1)/2 coefficients of tangential restitution {βij }.

A. Monodisperse system

In the monodisperse case (s = 1) the only unknown is
T rot/T tr and the true number of free parameters is 3 because the
packing fraction φ is absorbed via the pair correlation function
at contact, χ , into the collision frequency ν [cf. Eq. (3.21)]. The
HCS condition ξ tr = ξ rot yields a quadratic equation whose
physical solution is

T rot

T tr
=

√
2 +

(
γ − 1

2

)2

+ γ − 1

2
, (5.3)

where the parameter

γ ≡ (1 + κ)2

κ(1 + β)2

[
1 − α2 − 2 − κ

2(1 + κ)
(1 − β2)

]
(5.4)

comprises completely the dependence of the temperature ratio
on the three quantities α, β, and κ . The dependence of T rot/T tr

on γ is shown in Fig. 2.
It can be observed from Eq. (5.4) that the sign of γ results

from the competition between two terms: 1 − α2, on the one
hand, and a term proportional to 1 − β2, on the other hand.
From Eq. (2.7), it turns out that that 1 − α2 = 1 − (w′ · σ̂ )2/

(w · σ̂ )2 measures the relative decrease in the magnitude of
the normal component of the relative velocity after a colli-
sion. Likewise, 1 − β2 = 1 − (w′ · σ̂⊥)2/(w · σ̂⊥)2 measures
a similar relative decrease but in the case of the tangential
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FIG. 2. Plot of the temperature ratio T rot/T tr of the monodisperse
gas versus the parameter γ defined in Eq. (5.4), according to the
theoretical prediction (5.3).

component. Thus, γ > 0 if the relative decrease of the normal
component is larger than that of the tangential component (the
latter being multiplied by a κ-dependent factor). In such a case,
T rot/T tr > 1. Otherwise, if the relative decrease of the normal
component is smaller than that of the (κ-weighted) tangential
component, then γ < 0 and T rot/T tr < 1. Equipartition of
energy (T rot/T tr = 1) occurs if γ = 0, implying a balance
(in the sense described above) between the relative decrease
of the magnitudes of the tangential and normal components
of the relative velocity. A similar dependence of T rot/T tr on
a certain single parameter γ occurs in the case of spheres
[71]. A detailed comparison shows that the breakdown of
rotational-translational equipartition is typically higher in
disks than in spheres.

To have a more comprehensive view on the joint dependence
of T rot/T tr on the coefficients of restitution α and β, Fig. 3

FIG. 3. Density plot of T rot/T tr [see Eqs. (5.3) and (5.4)] for
κ = 1

2 . The contour lines correspond to T rot/T tr = 1 (thick solid
line), T rot/T tr = 2−1,2−2,2−3, . . ., and T rot/T tr = 2,22,23, . . .. The
temperature ratio T rot/T tr takes the same value for all the pairs (α,β)
lying on the same locus γ = const.

shows a density plot of the temperature ratio in the case of
uniform disks (κ = 1

2 ). The equipartition line T rot/T tr = 1,

where γ = 0 (i.e., α =
√

(1 + β2)/2, with a minimum at
α = 1/

√
2 � 0.707), splits the plane (β,α) into two regions.

In the upper region (γ < 0) one has T rot/T tr < 1, whereas
T rot/T tr > 1 in the lower region (γ > 0). Moreover it can
be observed that T rot/T tr grows very rapidly in the lower
region as one approaches the quasismooth limit β → −1. In
contrast, T rot/T tr → 0 in the same limit β → −1 if α = 1
(elastic collisions). In fact, Eq. (5.4) yields

lim
β→−1

γ =

⎧⎪⎪⎨⎪⎪⎩
(1 + κ)2

κ

1 − α2

(1 + β)2
→ ∞, α < 1,

−2 + κ(1 − κ)

κ(1 + β)
→ −∞, α = 1,

(5.5)

so that

lim
β→−1

T rot

T tr
=

⎧⎪⎪⎨⎪⎪⎩
2γ = 2(1 + κ)2

κ

1 − α2

(1 + β)2
→ ∞, α < 1,

−γ −1 = κ(1 + β)

2 + κ(1 − κ)
→ 0, α = 1.

(5.6)
Therefore, the elastic-disk limit (α → 1) and the smooth-

disk limit (β → −1) do not commute. If the disks are inelastic
(α < 1) and quasismooth (β → −1), the rotational and trans-
lational degrees of freedom tend to be decoupled and T rot does
not change with time, while T tr keeps decreasing due to inelas-
ticity [40]. As a consequence, the ratio T rot/T tr diverges in the
long-time limit. On the other hand, if the disks are perfectly
elastic (α = 1) and then the quasismooth limit (β → −1) is
taken, a nonzero coupling between T rot and T tr exists such
that, assuming an initial state with T rot ∼ T tr, the translational
temperature decays initially more slowly than the rotational
temperature and T rot/T tr decreases in time until the HCS con-
dition ξ rot/ξ tr ≈ 2/κ − (T tr/T rot)(1 + β)/(1 + κ) = 1 even-
tually results in a temperature ratio T rot/T tr ∼ 1 + β → 0.

B. Bidisperse system

In the case of a binary mixture, the three indepen-
dent temperature ratios (T rot

1 /T tr
1 , T tr

2 /T tr
1 , and T rot

2 /T rot
1 ) de-

pend on 12 free parameters. As an illustration, let us con-
sider an equimolar mixture where all the disks are uni-
formly solid and are made of the same material, the size
of the disks of one component being twice that of the
other component. More specifically, n2/n1 = 1, α11 = α12 =
α22 = α, β11 = β12 = β22 = β, κ1 = κ2 = 1

2 , σ2/σ1 = 2, and
m2/m1 = 4. Moreover, a dilute granular gas is considered
(φ � 1), so that χij ≈ 1. Thus, only the parameters α and
β remain free.

Figure 4 shows the three independent temperature ra-
tios as functions of the roughness parameter β for several
characteristic values of the inelasticity parameter α. The
rotational-translational temperature ratio T rot

1 /T tr
1 has a behav-

ior qualitatively similar to that of the monodisperse case (see
Fig. 3): T rot

1 /T tr
1 < 1 if α is larger than a certain threshold value

(α = 0.651 in this case) and β belongs to a certain α-dependent
interval around β ≈ 0, whereas T rot

1 /T tr
1 > 1 otherwise. More-

over, in the quasismooth limit β → −1, T rot
1 /T tr

1 diverges for
inelastic particles (α < 1), while it vanishes for elastic particles
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FIG. 4. Plot of the temperature ratios (a) T rot
1 /T tr

1 , (b) T rot
2 /T rot

1 ,
and (c) T tr

2 /T tr
1 versus β for an equimolar binary mixture with σ2/σ1 =

2, m2/m1 = 4, κ1 = κ2 = 1
2 , α11 = α12 = α22 = α, and β11 = β12 =

β22 = β. The values of α are, from bottom to top, α =
1, 0.9, 0.8, 0.7, 0.6, and 0.5. The circles at β = −1 in panel (c)
represent the results obtained in the case of perfectly smooth disks
for the same values of α.

(α = 1). As for the component-component temperature ratios,
one has T rot

2 /T rot
1 > 1 and T tr

2 /T tr
1 > 1, i.e., the larger disks

have larger temperatures than the smaller disks. Additionally,
the singularity of T rot

1 /T tr
1 in the limit β → −1 has a reflection

in the rotational-rotational ratio: either T rot
2 /T rot

1 converges to
a finite value or it diverges, depending on whether α = 1 or
α < 1, respectively. While the ratio T tr

2 /T tr
1 of translational

temperatures remains finite, the huge disparity between the
rotational and translational temperatures of both components
in the quasismooth limit (ifα < 1) has a nonnegligible effect on
T tr

2 /T tr
1 : it tends to a value higher than the one directly obtained

in the case of perfectly smooth spheres. Therefore, a tiny
amount of roughness has dramatic effects on the temperature
ratio T tr

2 /T tr
1 , producing an enhancement of nonequipartition.

It is interesting to compare the results displayed in Fig. 4
with those of Fig. 2 of Ref. [69] for the counterpart case of
spheres (i.e., n2/n1 = 1, α11 = α12 = α22 = α, β11 = β12 =
β22 = β, κ1 = κ2 = 2

5 , σ2/σ1 = 2, and m2/m1 = 8). It turns
out that, whereas the rotational-translational nonequiparti-

tion is stronger in disks than in spheres, the opposite hap-
pens with the component-component nonequipartition. For
instance, at α = 0.5 and β = 0 one has T rot

1 /T tr
1 = 1.56 (1.36),

T rot
2 /T rot

1 = 4.01 (5.25), and T tr
2 /T tr

1 = 1.75 (2.49) for disks
(spheres).

Figure 5(a) displays the phase diagram for the two
rotational-translational temperature ratios T rot

i /T tr
i corre-

sponding to the parameters of Fig. 4. The solid and dashed lines
represent the loci T rot

1 /T tr
1 = 1 and T rot

2 /T tr
2 = 1, respectively.

As a consequence, T rot
i /T tr

i < 1 in region I, while T rot
i /T tr

i > 1
in region II. In the intermediate region III, T rot

1 /T tr
1 < 1 but

T rot
2 /T tr

2 > 1. Apart from that, T rot
2 /T rot

1 > 1 and T tr
2 /T tr

1 > 1
in the whole plane, as said before. The same qualitative picture
is present if the mass ratio is reduced to m2/m1 = 2 (so that
m2/σ

2
2 = 1

2m1/σ
2
1 ), as shown in Fig. 5(b), except that the loci

T rot
1 /T tr

1 = 1 and T rot
2 /T tr

2 = 1 approach to each other and thus
region III has shrunk with respect to the case of Fig. 5(a). The
situation is reversed in the case of Fig. 5(d), where m2/m1 = 1
(so thatm2/σ

2
2 = 1

4m1/σ
2
1 ). In that case, the locusT rot

1 /T tr
1 = 1

lies below the locus T rot
2 /T tr

2 = 1, so that region III has been
replaced by region IV, where T rot

1 /T tr
1 > 1 but T rot

2 /T tr
2 < 1.

In addition, T rot
2 /T rot

1 < 1 and T tr
2 /T tr

1 < 1 in the whole plane,
i.e., the larger disks have now a smaller temperature. This
qualitative change with respect to the cases of Figs. 5(a) and
5(b) is a consequence of the competition between size and
mass in the collision frequencies [cf. Eq. (3.20)]. The transition
takes place at m2/m1 = 1.56541 (i.e., m2/σ

2
2 � 0.39m1/σ

2
1 ),

as shown in Fig. 5(c). Here, not only the two loci T rot
1 /T tr

1 = 1
and T rot

2 /T tr
2 = 1 collapse into a single one (actually, the same

as shown in Fig. 3 for a monodisperse system), but also
T rot

2 /T rot
1 = 1 and T tr

2 /T tr
1 = 1 in the whole plane. Thus, from

the point of view of the mean kinetic energies, the bidisperse
gas becomes indistinguishable from a monodisperse gas. This
is an example of the mimicry effect further discussed in Sec. VI.

VI. MIMICRY EFFECT IN THE HOMOGENEOUS
COOLING STATE

Imagine a monodisperse granular gas (denoted by the label
i = 1) in the HCS, so that its temperature ratio T rot

1 /T tr
1 is the

one described in Sec. V A. Then, we generate a polydisperse
gas by adding s − 1 components with the same coefficients
of restitution and reduced moments of inertia as the original
component 1, i.e., αij = α11, βij = β11, and κi = κ1. In gen-
eral, the addition of the s − 1 extra components produces a
new HCS where T rot

1 /T tr
1 is no longer that of a monodisperse

gas and, moreover, each component has a different rotational
and translational temperature. For instance, this is the situation
illustrated in Figs. 4, 5(a), 5(b), and 5(d) for a bidisperse
system.

The interesting question is, can we fine-tune the composi-
tion, masses, and sizes of the “invader” components, so that
T rot

1 /T tr
1 is unaltered and T tr

i = T tr
1 , T rot

i = T rot
1 ? If so, one can

say that a “mimicry” effect is present since the s − 1 new
components mimic the mean kinetic energies of the host gas.
To explore that possibility, let us set T tr

i = T tr
1 and T rot

i = T rot
1

in the expressions of ξ tr
ij and ξ rot

ij given in Table III. This results
in

ξ tr
ij = ξ tr

11Xij , ξ rot
ij = ξ rot

11 Xij , (6.1)
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FIG. 5. Phase diagrams in the case of an equimolar binary mixture (n2/n1 = 1) with σ2/σ1 = 2 and (a) m2/m1 = 4, (b) m2/m1 = 2, (c)
m2/m1 = 1.56541, and (d) m2/m1 = 1. In regions I and II, one has T rot

i < T tr
i and T rot

i > T tr
i , respectively. In panels (a) and (b), T tr,rot

1 < T
tr,rot

2

in the whole plane and T rot
1,2 ≶ T tr

1,2 in region III. On the other hand, in panel (d), T
tr,rot

1 > T
tr,rot

2 in the whole plane and T rot
1,2 ≷ T tr

1,2 in region IV.
Finally, T tr

1 = T tr
2 and T rot

1 = T rot
2 (mimicry effect) in panel (c).

where

Xij ≡ νij

ν11

2mj

mi + mj

= χijnjσij

χ11n1σ1

√
2m1mj

mi(mi + mj )
. (6.2)

The key point is that the quantities Xij are the same in ξ tr
ij and

ξ rot
ij . From Eqs. (4.2), one has

ξ tr
i = ξ tr

11Xi, ξ rot
i = ξ rot

11 Xi, (6.3)

where Xi ≡ ∑s
j=1 Xij . The HCS condition (5.2b) implies

ξ tr
11 = ξ rot

11 , whose solution gives the ratio T rot
1 /T tr

1 already
analyzed in Sec. V A. Next, Eq. (5.2a) is equivalent to

X1 = X2 = · · · = Xs. (6.4)

For simplicity, let us assume that the total packing fraction
is low enough to make χij → 1. Thus, Eq. (6.4) makes a set
of s − 1 constraints on the 3(s − 1) ratios ni/n1, σi/σ1, and
mi/m1 for i = 2, . . . ,s. In particular, if we freely choose the

2(s − 1) ratios ni/n1 and σi/σ1, the solution to Eq. (6.4) gives
the values of the s − 1 mass ratios mi/m1 such that the mimicry
effect occurs. Without loss of generality, we can assume n1 �
n2 � · · · � ns .

In general, the set (6.4) needs to be solved numerically, but
an analytic solution is possible if the intruders have sizes and
masses close to those of the host disks. By writing σi = σ1(1 +
δσ ∗

i ) and mi = m1(1 + δm∗
i ), and neglecting terms nonlinear

in δσ ∗
i and δm∗

i , it is straightforward to obtain

Xij = nj

n1

(
1 + δσ ∗

i + δσ ∗
j

2
+ δm∗

j − 3δm∗
i

4

)
, (6.5)

Xi = n

4n1
(2δσ ∗

i − 3δm∗
i ) + Y, (6.6)

where the quantity Y ≡ ∑s
j=1(nj/n1)(1 + δσ ∗

j /2 + δm∗
j /4) is

common for all the components. Therefore, Eq. (6.4) yields
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FIG. 6. The hatched region represents the values of m2/m1 and
σ2/σ1 where mimicry is possible in a binary mixture [see Eq. (6.9)].
The boundaries of the region correspond to the extreme compositions
n2/n1 → 0 and n2/n1 = 1.

2δσ ∗
i − 3δm∗

i = 0 for i = 2, . . . ,s or, equivalently

mi

m1
≈ 1 + 2σi/σ1

3
(σi ≈ σ1), (6.7)

regardless ofni/n1. Since it has been assumed thatσi ≈ σ1, and
thus all the components are similar, it is convenient to convert
Eq. (6.7) into a form independent of the choice for the reference
component. This is accomplished by replacing mi ∝ 1 +
2σi/σ1 by mi ∝ 1 + 2σi/〈σ 〉, where 〈σ 〉 = n−1 ∑s

j=1 njσj is
the mean diameter. Therefore,

mi

m1
≈ 1 + 2σi/〈σ 〉

1 + 2σ1/〈σ 〉 . (6.8)

As will be seen in Secs. VI A to VI C, Eq. (6.8) turns out to be
an excellent approximation.

A. Binary mixture

In the case of a binary mixture (s = 2), the condition X2 =
X1 becomes

n2

n1
=

σ12
σ1

√
m1
m2

−
√

m1+m2
2m1

σ12
σ1

√
m2
m1

− σ2
σ1

√
m1+m2

2m2

. (6.9)

Thus, if n2/n1 and σ2/σ1 are freely chosen, Eq. (6.9) gives
the value of m2/m1 corresponding to the mimicry effect. In
particular, in the tracer limit n2/n1 → 0 the solution is

m2

m1
=

√
3

4
+ σ2

σ1
+ σ 2

2

2σ 2
1

− 1

2

(
n2

n1
→ 0

)
. (6.10)

In this tracer limit, 〈σ 〉 = σ1, so that Eqs. (6.7) and (6.8) are
identical. Interestingly, Eq. (6.10) deviates very little from
Eq. (6.7), the maximum relative deviation (less that 10%)
taking place in the limit σ2/σ1 → 0.

Figure 6 plots the mass ratio m2/m1 as a function of the size
ratio σ2/σ1 for n2/n1 → 0 and n2/n1 = 1. The curves corre-
sponding to intermediate values of n2/n1 lie in the hatched
region comprised by those two curves. For instance, if n2/n1 =
1 and σ2/σ1 = 2, then m2/m1 = 1.56541, and this is the case

considered in Fig. 5(c). The slope of the curves n2/n1 = const.
at σ2/σ1 = 1 is 2

3 with independence of the value of n2/n1,
in agreement with Eq. (6.7). In fact, the deviations from the
linear behavior given by Eq. (6.7) are small in the tracer case
(n2/n1 → 0), as said before, and not particularly large in the
equimolar case (n2/n1 = 1). On the other hand, if n2/n1 = 1,
Eq. (6.8) yields the nonlinear approximation m2/m1 = (1 +
5σ2/σ1)/(5 + σ2/σ1), which performs excellently well, with a
maximum deviation 0.036 at σ2/σ1 = 0.

From Fig. 6 we can observe that m2/m1 > (σ2/σ1)2 and
m2/m1 < (σ2/σ1)2 if σ2/σ1 < 1 and σ2/σ1 > 1, respectively.
Therefore, a necessary condition for the existence of the
mimicry effect is that the smaller disks must have a higher
solid density than the larger disks.

B. Ternary mixture

Obviously, the ternary case (s = 3) is more complex
than the binary one. Now we have the freedom to choose
n2/n1, n3/n1, σ2/σ1, and σ3/σ1. Then, m2/m1 and m3/m1 are
obtained from X1 = X2 = X3.

To be more specific, let us choose three possible com-
positions: (n2/n1,n3/n1) = (1,1), (1,0), and (0,0). The first
case corresponds to an equimolar ternary mixture, while in
the third case the two intruder components i = 2,3 are tracer
particles; in the second case, tracer particles of component i =
3 are added to an equimolar binary mixture already exhibiting
mimicry. Additionally, σ2/σ1 = 0.5 and σ2/σ1 = 2 are chosen.
For those six systems, Fig. 7 shows m2/m1 and m3/m1 as
functions of σ3/σ1. From the rough estimate of Eq. (6.7), one
obtains m2/m1 ≈ 0.7 and m2/m1 ≈ 1.7 for σ2/σ1 = 0.5 and
σ2/σ1 = 2, respectively, with independence of composition
and σ3/σ1. A much better prediction for m2/m1 is obtained
from Eq. (6.8), which yields a maximum deviation of 0.015
in the case (n2/n1,n3/n1) = (1,1) and (σ2/σ1,σ3/σ1) = (2,0).
Moreover, the curves representing m3/m1 as functions of
σ3/σ1 are also roughly similar to the linear behavior (6.7),
but again the approximation (6.8) is very accurate, with a
maximum deviation of 0.047 taking place at the same state
[(n2/n1,n3/n1) = (1,1) and (σ2/σ1,σ3/σ1) = (2,0)] as before.

C. Toward a continuous size distribution

Consider now a polydisperse gas with a continuous size
distribution n(σ ) such that n(σ )dσ is the number of disks per
unit area with a diameter between σ and σ + dσ . In that case,
Eq. (6.4) becomes

∂

∂σ
X(σ ) = 0, X(σ ) ≡

∫ ∞

0
dσ ′ n(σ ′)X(σ,σ ′), (6.11a)

X(σ,σ ′) ∝ σ + σ ′
√

m(σ )

√
m(σ ′)

m(σ ) + m(σ ′)
, (6.11b)

where m(σ ) is the mass of a particle of diameter σ . Given a
certain size distribution n(σ ), Eq. (6.11a) is an integrodiffer-
ential equation for m(σ ) which, in general, can be difficult to
solve.

On the other hand, using Eq. (6.7) as a starting guess, it
is quite possible to solve numerically Eq. (6.4) for a discrete
mixture with a large number of components, thus mimicking
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FIG. 7. Plot of m2/m1 and m3/m1 versus σ3/σ1 for mimicry in
a ternary mixture with (a) σ2/σ1 = 0.5 and (b) σ2/σ1 = 2. The solid
line, dash-dotted line, and dashed line correspond to the compositions
(n2/n1,n3/n1) = (1,1), (1,0), and (0,0), respectively.

a continuous distribution [27]. As an example, let us take an
equimolar mixture (ni/n1 = 1) with a number of components
s = odd and sizes

σi

σ1
=

{
2 i−2

s−1 , 2 � i � s+1
2 ,

2 i−1
s−1 , s+3

2 � i � s.
(6.12)

Note that σ1 coincides with the mean diameter, i.e., 〈σ 〉 = σ1,
so that Eqs. (6.7) and (6.8) are fully equivalent. In the limit s →
∞ this discrete mixture becomes a continuous system with a
uniform distribution of sizes between σ = 0 and σ = 2〈σ 〉.

The solution of Eq. (6.4) for the above class of mixtures
converges to a mass distribution very close to the simple
estimate (6.7). This is observed in Fig. 8, which plots the
difference �mi/m1 = mi/m1 − (1 + 2σi/σ1)/3 versus σi/σ1

for s = 2q + 1 with q = 3,4,5,6. As can be observed, the
convergence to a continuous curve is quite apparent, the results
obtained with s = 25 + 1 = 33 being highly consistent with
those obtained with s = 26 + 1 = 65. Again, the maximum
deviation (�mi/m1 = 0.039) takes place in the limit σi → 0.

The mimicry effect described in this section assumes that
all the components have common coefficients of normal
and tangential restitution. As an important consequence, the
conditions for mimicry turn out to be independent of the
specific values of those coefficients. Of course, this is not
the general case. If not all the coefficients of restitution are
equal, the conditions for mimicry are obtained by inserting
T tr

i → T tr and T rot
i → T rot into the production rates ξ tr

ij and

FIG. 8. Plot of the difference between mi/m1 and the estimate
(6.7) versus σi/σ1 for mimicry in a polydisperse gas described by
Eq. (6.12).

ξ rot
ij , and applying Eqs. (5.2). This gives the ratio θ ≡ T rot/T tr

and provides, in general, 2(s − 1) constraints on the s − 1
density ratios {ni/n1}, the s − 1 size ratios {σi/σ1}, the s − 1
mass ratios {mi/m1}, the s reduced moments of inertia {κi},
the s(s + 1)/2 coefficients of normal restitution {αij }, and the
s(s + 1)/2 coefficients of tangential restitution {βij }.

VII. CONCLUDING REMARKS

Granular gases of inelastic and rough hard disks have a two-
fold importance. On the one hand, they are prototypical models
for most of the experimental setups related to granular matter
under conditions of rapid flow. On the other hand, they pose
an interesting physical problem by its own since, in contrast to
the case of spheres, the two vector subspaces associated with
the translational and angular degrees of freedom are mutually
orthogonal.

While monodisperse frictional hard-disk systems have been
analyzed by kinetic-theory tools before [10,28,39,47], the em-
phasis here has been on the crossed collisional rates of change
of energy (ξ tr

ij and ξ rot
ij ) for a multicomponent gas. Starting

from the collisional rules (2.4), together with Eq. (2.10), the
energy production rates can be expressed in a formally exact
way in terms of the two-body distribution function f

(2)
ij [see

Eqs. (2.11c), (2.11d), and (3.9)]. Next, the original function
f

(2)
ij has been replaced by its precollisional orientational aver-

age f̄
(2)
ij [see Eq. (3.11)], this assumption being justified if the

density and/or the heterogeneities are small. This allows for the
expression of the collisional rates of change as combinations
of two-body averages, as shown in Table I. Explicit results as
functions of densities, temperatures, and mean angular veloc-
ities are then obtained by a maximum-entropy approach [see
Eq. (3.16)], implying molecular chaos, rotational-translational
statistical independence, and a Maxwellian translational veloc-
ity distribution. The final expressions, summarized in Table III,
represent the primary contribution of this paper.

The most immediate application of the results reported
here has been the study of the HCS regime (where all the
partial temperatures decay at the same rate), even though the
transient regime to the asymptotic state can present interesting
and counterintuitive phenomena [91–93]. In comparison to the
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hard-sphere case, it is found that the degree of break-
down of energy equipartition in hard-disk gases has a
dual character: disks typically present a stronger rotational-
translational nonequipartition but a weaker component-
component nonequipartition than spheres.

Special attention has been paid to the mimicry effect. This
effect consists in the possibility of adding to a monodisperse
gas (i = 1) an arbitrary number (s − 1) of components with
arbitrary concentrations (ni) and arbitrary diameters (σi), but
with the same coefficients of restitution (αij = α11, βij = β11)
and reduced moment of inertia (κi = κ1) as in the host system,
in such a way that the translational and rotational temperatures
are the same as those of the original monodisperse system (i.e.,
T tr

i = T tr
1 , T rot

i = T rot
1 ). This requires the fine-tuning of the

mass (mi) of each invader component as a function of the values
of {nj } and {σj }, the results being independent of α11, β11,
and κ1. A simple (but yet rather accurate) coarse-grained
recipe turns out to be mi ∝ 1 + 2σi/〈σ 〉, so that the mass per
unit area mi/( π

4 σ 2
i ) decreases with increasing size. It might

seem artificial that all the disks have the same coefficients
of restitution and reduced moment of inertia (thus apparently
being made of the same material) and yet have different
masses per unit area. But, in contrast to the case of spheres,
there is a simple possibility of experimental realization by
considering that the disks actually correspond to vertically
aligned cylinders with different diameters (σi) and heights (hi)
but the same mass per unit volume (ρ), so that mi = ρ π

4 σ 2
i hi .

In that case, the approximate condition mi ∝ 1 + 2σi/〈σ 〉
translates into hi ∝ σ−1

i (σ−1
i + 2〈σ 〉−1).

Analogously to the case of hard spheres [71,72], the
expressions derived in this work are expected to compare
well with computer simulations, and a critical assessment
is planned in the near future. In addition, once the energy
production rates are known, the study of hard-disk gases
driven stochastically [62] is straightforward and will also be
carried out and compared with simulation. Finally, and more
importantly, the results derived here lay the basis for the study
of nonuniform situations. Taking the local version of the HCS
as the reference state, a Chapman-Enskog method can be
followed to derive the Navier-Stokes constitutive equations
and analyze the linear stability conditions of the HCS, in
analogy with what has recently been done in the case of rough
spheres [60,65]. Moreover, in the case of a binary mixture, the
hydrodynamic equations stemming from the HCS can be used
to study the conditions for segregation under the presence of a
thermal gradient [94,95].
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