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Finite-size estimates of Kirkwood-Buff and similar integrals
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Recently, Krüger and Vlugt [Phys. Rev. E 97, 051301(R) (2018)] have proposed a method to approximate
an improper integral

∫ ∞
0 dr F (r ), where F (r ) is a given oscillatory function, by a finite-range integral∫ L

0 dr F (r )W (r/L) with an appropriate weight function W (x ). The method is extended here to an arbitrary
(embedding) dimensionality d . A study of three-dimensional Kirkwood-Buff integrals, where F (r ) = 4πr2h(r ),
and static structure factors, where F (r ) = (4π/q )r sin(qr )h(r ), h(r ) being the pair correlation function, shows
that, in general, a choice d �= 3 (e.g., d = 7) for the embedding dimensionality may significantly reduce the error
of the approximation

∫ ∞
0 dr F (r ) � ∫ L

0 dr F (r )W (r/L).

DOI: 10.1103/PhysRevE.98.063302

I. INTRODUCTION

In the statistical-mechanical theory of liquids, the
Kirkwood-Buff (KB) integral plays a distinguished role [1–3].
It has the form

I[F (r )] ≡
∫ ∞

0
dr F (r ), (1)

where, in the case of three-dimensional (3D) systems, F (r ) =
4πr2h(r ), h(r ) being the (total) pair correlation function
[4–6]. The KB integral is the zero-wave-number limit
(q → 0) of the Fourier transform of h(r ), defined as

h̃(q ) =
∫

ddr e−iq·rh(r )

= (2π )d/2
∫ ∞

0
dr rd−1 Jd/2−1(qr )

(qr )d/2−1
h(r ), (2)

where d is the number of spatial dimensions and Jν (x) is
the Bessel function of the first kind. Therefore, h̃(q ) has the
structure of Eq. (1), this time (again for 3D systems, d =
3) with F (r ) = (4π/q )r sin(qr )h(r ). Apart from the limit
q → 0, the physical importance of h̃(q ) lies in its direct
relation to the static structure factor [5,6], namely

S(q ) = 1 + ρh̃(q ), (3)

where ρ is the number density of the fluid.
If h(r ) is obtained from computer simulations or from nu-

merical solutions of integral-equation theories, its knowledge
is limited to a finite range r < L, so that the conventional
method consists in estimating the KB integral or the structure
factor by a truncated integral, i.e.,

I[F (r )] �
∫ L

0
dr F (r ). (4)

On the other hand, the correlation function h(r ) is usually
oscillatory, which generally makes the convergence of the
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estimate (4) rather slow. It is then highly desirable to devise al-
ternative approximate methods to estimate improper integrals
of the form I[F (r )] that, while relying upon the knowledge of
F (r ) for r < L only, are much more efficient than Eq. (4). The
general problem of computing highly oscillatory integrals has
aroused a large body of work by applied mathematicians, as
summed up in a recent monograph [7]. A method recently pro-
posed in the physics literature [8,9] consists in approximating
Eq. (1) by a finite-size integral of the form

IL[F (r )] ≡
∫ L

0
dr F (r )W (r/L), (5)

with an appropriate weight function W (x) �= 1.
Of course, the computational problem described above is

not limited to KB integrals and structure factors but extends,
with different physical interpretations of the isotropic os-
cillatory function F (r ), to other branches of physics where
improper integrals of the form (1) are relevant. In those other
more general cases, r could not represent a spatial variable
but, for instance, a wave number or a time variable.

In Ref. [9], Krüger and Vlugt proposed a simple, practical,
and accurate general prescription to approximate an improper
integral of the form (1) by the finite-size integral (5), where
the weight function W (x) is given by

W
(2)
3 (x) = 1 − 23x3

8
+ 3x4

4
+ 9x5

8
. (6)

More specifically,

I[F (r )] = IL[F (r )] + O(L−3). (7)

Let me rephrase and summarize the two main steps leading
to the derivation of Eqs. (6) and (7). First, it is tacitly assumed
that I[F (r )] comes from the 3D volume integral

I[F (r )] =
∫

d3r
4πr2

F (r ), (8)
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after passing to spherical coordinates and integrating over the
angular variables. Next, use is made of the authors’ proof that∫

d3r
4πr2

F (r )y3(r/L)

= I[F (r )] − 3

2L
I[F (r )r] + O(L−3), (9)

where 4πy3(x) is the intersection volume of two spheres of
unit diameter separated a distance x, i.e.,

y3(x) =
(

1 − 3x

2
+ x3

2

)
�(1 − x). (10)

Actually, the proof in Ref. [9] extends Eq. (9) to nonspherical
shapes, in which case the function y3(x) depends on the
particular shape, L = 6V/A (V and A being the volume
and surface area, respectively), and, in general, O(L−3) →
O(L−2). On the other hand, a spherical shape, and hence
Eq. (10), is needed for the derivation of Eq. (6) as

W
(2)
3 (x) = y3(x)

(
1 + 3x

2
+ 9x2

4

)
. (11)

In their paper [9], Krüger and Vlugt motivate the result
posed by Eqs. (6) and (7) as a useful way to estimate 3D
KB integrals, in which case F (r ) = 4πr2h(r ). On the other
hand, as said before, the result is not restricted a priori to
3D KB integrals, i.e., F (r ) can be in principle any function
such that the (formally one-dimensional) integral I[F (r )]
converges. It is then tempting to wonder how the procedure
summarized above would be generalized by freely assuming
that the function F (r ) is embedded in a d-dimensional space
and rewriting I[F (r )] as a d-dimensional volume integral.
The main goal of this paper is to perform such an extension
and, additionally, show that a choice d �= 3 allows one to
obtain alternative weight functions W (x) that are generally
more efficient than Eq. (6), even in the case of 3D KB integrals
and structure factors.

The organization of the remainder of this paper is as
follows. Section II presents the extension to a generic dimen-
sionality of the scheme devised in Ref. [9]. This is followed in
Sec. III by a discussion on the application of the generalized
method to the numerical or computational evaluation of KB
integrals and static structure factors. Finally, the main conclu-
sions of the paper are summarized in Sec. IV.

II. EMBEDDING IN A d-DIMENSIONAL SPACE

Let us assume that the isotropic function F (r ) is embedded
in a vector space of d dimensions. In such a case, the counter-
part of Eq. (8) is

I[F (r )] =
∫

ddr
�drd−1

F (r ), (12)

where �d = 2πd/2/�(d/2) is the total solid angle in d dimen-
sions. Following essentially the same steps as done in Ref. [9]
to derive Eq. (9), it is possible to generalize it as∫

ddr
�drd−1

F (r )yd (r/L)

= I[F (r )] − ad

L
I[F (r )r] + O(L−3), (13)

where

ad ≡ 2π−1/2�(1 + d/2)

�(1/2 + d/2)
(14)

and �dyd (x) is the intersection volume of two d-dimensional
spheres of unit diameter separated a distance x, so that
yd (0) = 1 and yd (x) = 0 if x � 1. This quantity appears, for
instance, in the context of the virial expansion of the pair
correlation function [6]. Three equivalent representations of
yd (r ) are

yd (x) =I1−x2 (1/2 + d/2, 1/2)

= 1 − ad

∫ x

0
dt (1 − t2)(d−1)/2

= ad

∫ 1

x

dt (1 − t2)(d−1)/2, (15)

where Iz(a, b) = Bz(a, b)/B(a, b) is the regularized incom-
plete beta function [10,11]. If d = odd, yd (x) − 1 is an odd
polynomial of degree d [12–14], namely

yd (x) = 1 − ad

(d−1)/2∑
j=0

cj,dx
2j+1, (16)

where

cj,d ≡ (−1)j�(1/2 + d/2)

(2j + 1)j !�(1/2 + d/2 − j )
. (17)

If d = even, Eq. (16), with the upper summation limit
(d − 1)/2 replaced by ∞, gives the power series expansion
of yd (x). In such a case (d = even), yd (x) can be more
conveniently expressed as

yd (x) = 2

π
[cos−1 x − x

√
1 − x2Pd/2−1(x2)], (18)

where

Pm(z) =
m∑

j=0

pj,mzj (19)

is a polynomial of degree m with coefficients given by p0,m =
π
2 a2m+2 − 1 and the recurrence relation (j � 1)

pj,m = 1

2j + 1

[
2jpj−1,m + π

2

a2m+2(−1)j (m + 1)!

j !(m + 1 − j )!

]
.

(20)

Regardless of whether d is even or odd, it can be seen from
Eq. (15) that yd (x) ∼ (1 − x)(d+1)/2 in the region x � 1.

The explicit values of ad and expressions of yd (x) for
embedding dimensionalities 1 � d � 9 are given in Table I.
Henceforth, for simplicity, only the cases d = odd will be
explicitly shown because the corresponding functions yd (x)
are just polynomials. However, it can be checked that the
results for d = even follow patterns similar to those for d =
odd. In fact, the results obtained with dimensionalities d and
d + 1 become closer and closer as d increases.
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TABLE I. Coefficient ad and function yd (x ) for the first few odd
values of d . The Heaviside function �(1 − x ) is omitted for clarity.

d ad yd (x )

1 1 1 − x

2 4
π

2
π

(cos−1 x − x
√

1 − x2)

3 3
2 (1 − x )2(1 + x

2 )

4 16
3π

2
π

[cos−1 x − x

3

√
1 − x2(5 − 2x2)]

5 15
8 (1 − x )3(1 + 9x

8 + 3x2

8 )

6 32
5π

2
π

[cos−1 x − x

15

√
1 − x2(33 − 26x2 + 8x4)]

7 35
16 (1 − x )4(1 + 29x

16 + 5x2

4 + 5x3

16 )

8 256
35π

2
π

[cos−1 x − x

105

√
1 − x2(279 − 326x2 + 200x4 − 48x6)]

9 315
128 (1 − x )5(1 + 325x

128 + 345x2

128 + 175x3

128 + 35x4

128 )

The replacement F (r ) → F (r )rn in Eq. (13) yields (pro-
vided the integrals exist)

I[F (r )rn] =
∫

ddr
�drd−1

F (r )rnyd (r/L)

+ ad

L
I[F (r )rn+1] + O(L−3). (21)

Recursive application of Eq. (21) in Eq. (13) up to n = k

gives

I[F (r )] = I (k)
L,d [F (r )] + O(L−3), (22)

where

I (k)
L,d [F (r )] ≡

∫ L

0
dr F (r )W (k)

d (r/L), (23)

W
(k)
d (x) ≡ yd (x)

k∑
n=0

(adx)n. (24)

Equations (22), (23), and (24) generalize Eqs. (7), (5), and (6),
respectively, which correspond to the particular choices d = 3
and k = 2. Incidentally, the choice d = 1 with k = 2 leads to
W

(2)
1 (x) = 1 − x3, which is the weight function proposed in

Ref. [8] by a different method.
Figure 1 shows the weight functions (24) with d = 3, 5, 7,

and 9, and k = 2 and 3. All of them have a similar qualitative
shape, but, due to the behavior yd (x) ∼ (1 − x)(d+1)/2, the
curves have a flatter shape near x = 1 as d increases. While
the functions W

(2)
d (x) decay monotonically with increasing

x, W
(3)
d (x) present a practically unobservable maximum at

0.09 < x < 0.10. This maximum, however, becomes more
noticeable as k increases (not shown). In fact, W

(k)
d (x) →

yd (x)(1 − adx)−1 in the limit k → ∞, so that it artificially
diverges at a value x < a−1

d < 1. From a more practical of
view, it turns out that the results obtained with k � 4 are
generally worse than those obtained with k = 3 (not shown).
Because of this, in what follows only the cases k = 2 and 3
will be explicitly considered.

Notice that

W
(k)
d (x) = 1 + O(x−3), k � 2, (25)

so that the influence of the choice of d and k � 2 on
W

(k)
d (r/L) is of O(L−3), i.e., of the same order as the terms

FIG. 1. Plot of the weight functions W
(k)
d (x ) for embedding

dimensionalities d = 3, 5, 7, and 9 and indices k = 2 and 3.

neglected in Eq. (22). On the other hand, from a practical point
of view, the error |I (k)

L,d [F (r )] − I[F (r )]| can be minimized
by an appropriate choice of the embedding dimensionality d

and of the index k for a given function F (r ) and a given cutoff
distance L.

III. DISCUSSION

One might reasonably argue that the choice of the em-
bedding dimensionality d in the approximation (22) must
be dictated by the dimensionality of the physical problem
underlying the evaluation of the (one-dimensional) integral
I[F (r )]. According to this reasoning, if the physical prob-
lem consists in the computation of the 3D KB integral, i.e.,
F (r ) = 4πr2h(r ), or of the 3D structure factor, i.e., F (r ) =
(4π/q )r sin(qr )h(r ), then one should take d = 3. On the
other hand, from a strict mathematical point of view, the
integral one wants to approximate by application of Eq. (22)
is blind to the physical origin of the problem, so one can
always assume that F (r ) is embedded in a higher-dimensional
space.

A. Three-dimensional Kirkwood-Buff integrals

To further elaborate on the previous point, let us take
F (r ) = 4πr2h(r ) and consider the same model 3D pair cor-
relation function as given by Eq. (25) of Ref. [9], namely

h(r ) =
⎧⎨
⎩

−1, r < 19
20 ,

3 cos
[

2π

(
r− 21

20

)]
2r

e−(r−1)/χ , r > 19
20 ,

(26)

where χ represents the correlation length. As said before, the
discussion is restricted to odd dimensionalities d = 3, 5, 7,
and 9, and to indices k = 2 and 3.

Figures 2(a) and 2(b) show the relative error
|I (k)

L,d [F (r )]/I[F (r )] − 1| versus L for χ = 2 and 20,
respectively. Although not shown, in the case χ = 20 one
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FIG. 2. Plot of the relative error |I (k)
L,d [F (r )]/I[F (r )] − 1| vs L,

where F (r ) = 4πr2h(r ) and h(r ) is given by Eq. (26). Panels (a)
and (b) correspond to χ = 2 and 20, respectively. Only the values
corresponding to L = integer are shown.

can check that the error presents rapid oscillations as a
function of L, except for the combinations (d, k) = (7, 2),
(9,2), and (9,3). To make cleaner the general picture, only
integer values of L are considered in Fig. 2. We observe
that an appropriate choice of (d, k) can significantly reduce
the error. In contrast to what is inferred from Ref. [9], the
cases with k = 3 generally perform better than with k = 2.
On the other hand, the optimal dimensionality d depends on
the correlation length: it is d = 3 for χ = 2 and d = 7 for
χ = 20. Interestingly, when even values of d are included,
the best choices are d = 2 (outperforming d = 3) and d = 6
(outperforming d = 7) for χ = 2 and 20, respectively (not
shown).

To investigate the influence of the correlation length χ

on the relative error, Figs. 3(a) and 3(b) show the relative
error |I (k)

L,d [F (r )]/I[F (r )] − 1| versus χ for L = 5 and 20,
respectively. The best behaviors are presented by d = 3 if
L = 5 and by d = 7 if L = 20, in both cases with k = 3.
Although not shown, it turns out that d = 6 outperforms
d = 7 if L = 20.

As a second (and more realistic) illustrative example, let
us take the exact solution of the Percus-Yevick (PY) integral
equation for 3D hard spheres [6,15–19], which is exactly
known for any packing fraction φ. The results are displayed in
Figs. 4 and 5. Again, the choices with k = 3 are typically more
accurate than with k = 2. Also, as happened in the case of
Eq. (26), the optimal choice of d depends on the range of h(r ):
while d = 3 is appropriate for φ = 0.2, d = 7 is preferable
for φ = 0.5. When even dimensionalities are included (not
shown), the best results are again obtained with d = 2 and
6 for φ = 0.2 and 0.5, respectively.

FIG. 3. Plot of the relative error |I (k)
L,d [F (r )]/I[F (r )] − 1| vs χ ,

where F (r ) = 4πr2h(r ) and h(r ) is given by Eq. (26). Panels (a) and
(b) correspond to L = 5 and 20, respectively.

FIG. 4. Plot of the relative error |I (k)
L,d [F (r )]/I[F (r )] − 1| vs L,

where F (r ) = 4πr2h(r ) and h(r ) is the exact solution of the PY
integral equation for hard spheres. Panels (a) and (b) correspond to
φ = 0.2 and 0.5, respectively. Only the values corresponding to L =
integer are shown.
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FIG. 5. Plot of the relative error |I (k)
L,d [F (r )]/I[F (r )] − 1| vs φ,

where F (r ) = 4πr2h(r ) and h(r ) is the exact solution of the PY
integral equation for hard spheres. Panels (a) and (b) correspond to
L = 5 and 10, respectively.

B. One-dimensional Kirkwood-Buff integrals

In the case of more general functions F (r ) where the
sought integral I[F (r )] is not known, the optimal choice
of the embedding dimensionality d and the index k can be
estimated by plotting I (k)

L,d [F (r )] versus L−3 for several com-
binations of (d, k) and selecting the one with the smoothest
variation allowing for an easy extrapolation to L−3 → 0.

To illustrate this method, let us now consider the one-
dimensional (1D) KB integral of hard rods (Tonks gas). In
that case, F (r ) = 2h(r ) is exactly known [6,20–26], but we
can pretend that the associated KB integral I[F (r )] is un-
known. Figure 6 shows the integrals I (k)

L,d [F (r )] versus L−3

at a packing fraction φ = 0.8. In all the cases, the integrals
I (k)

L,d [F (r )] are seen to converge to the exact value I[F (r )] =
φ − 2 = −1.2. In general, the amplitudes of the oscillations
are smaller with k = 2 than with k = 3 and decrease as the
embedding dimensionality d increases. On the other hand, the
slopes of the lines around which the oscillations take place
are smaller with k = 3 than with k = 2 and decrease as d

decreases. Thus, the optimal choice of (d, k) would depend
on the accessible region of L: if L ∼ 5, (d, k) = (9, 3) seems
to be a good choice for the extrapolation to L−3 → 0, while
(d, k) = (7, 3) seems preferable if L ∼ 10.

C. Three-dimensional structure factors

As shown by Eqs. (2) and (3), a relevant physical quantity
directly related to integrals of the form (1) is the static
structure factor of a liquid. In the case of 3D systems, h̃(q ) =
I[F (r )] with F (r ) = (4π/q )r sin(qr )h(r ), which reduces to

FIG. 6. Plot of I (k)
L,d [F (r )] vs L−3 (L � 5), where F (r ) = 2h(r )

and h(r ) is the exact pair correlation function for a 1D system of hard
rods at a packing fraction φ = 0.8. The inset is a magnification of the
small framed region (L � 10) in the main figure.

the KB integral in the limit q → 0. If q �= 0, the oscillations
of F (r ) are not only due to h(r ) but also to the term sin(qr ).
Therefore, the optimization of the numerical or computational
estimate of h̃(q ) when h(r ) is known only for r < L is again
an extremely important goal.

Let us take once more the exact solution of the PY
integral equation for hard spheres [6,15–19] as a physi-
cally motivated benchmark to assess the performance of
the approximations I[F (r )] � I (k)

L,d [F (r )], this time as func-
tions of the wave number q. Figure 7 shows the rela-
tive error |I (k)

L,d [F (r )]/I[F (r )] − 1| versus q, where F (r ) =
(4π/q )r sin(qr )h(r ) and h(r ) is the PY pair correlation
function at a packing fraction φ = 0.5. The oscillations in
the q dependence of the relative error are typically smaller
with k = 2 than with k = 3, and tend to smooth out as d

increases. As happened for the KB integrals (see Figs. 2–6),
the error is generally smaller if k = 3 than if k = 2. As for
the influence of the embedding dimensionality d, we see in
Fig. 7 that the best general estimates are obtained with d = 7
and 3 for a cutoff value L = 5 and 10, respectively, this time
outperforming d = 6 and 2 (not shown).

IV. CONCLUSION

In summary, the generalization to any embedding dimen-
sionality d and any index k of the weight function W

(2)
3 (x),

Eq. (6), proposed in Ref. [9] can significantly improve the
cutoff estimate I (k)

L,d [F (r )] of the improper integral I[F (r )]
of an oscillatory function, even if I[F (r )] represents a KB
integral corresponding to a 3D or 1D pair correlation function.
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FIG. 7. Plot of the relative error |I (k)
L,d [F (r )]/I[F (r )] − 1| vs q,

where F (r ) = (4π/q )r sin(qr )h(r ) and h(r ) is the exact solution of
the PY integral equation for hard spheres at a packing fraction φ =
0.5. Panels (a) and (b) correspond to L = 5 and 10, respectively.

In the cases of KB integrals and structure factors, the
results reported here show that an optimal choice of the index
is k = 3. As for the embedding dimensionality, its optimal
value tends to increase as the correlation length increases,
i.e., as the error due to the finite cutoff distance L grows.
As a practical compromise between simplicity and accuracy,

a recommended weight function seems to be the one corre-
sponding to d = 7 and k = 3, namely

W
(3)
7 (x) = (1 − x)4

(
1 + 35x

16

)(
1 + 1225x2

256

)

×
(

1 + 29x

16
+ 5x2

4
+ 5x3

16

)
. (27)

It must be noted that any method based on Eq. (5) with
a weight function 0 < W (x) < 1 ceases to be valid if the
integrand F (r ) is not asymptotically an oscillatory function;
if the magnitude of F (r ) decays monotonically, then the bare
truncated integral (4) itself represents a better estimate than
Eq. (5). Thus, in the case of interaction potentials with an
attractive tail, Eq. (5) must be discarded in the computational
evaluation of KB integrals below the so-called Fisher-Widom
line [27–33], where h(r ) decays monotonically. On the other
hand, even in that case, Eq. (5) may be useful for the evalua-
tion of the structure factor for moderate wave numbers.

Finally, let me point out that, while in this paper the
addressed examples have been related to liquid state physics,
given the ubiquitous appearance of integrals involving oscil-
latory integrands and semi-infinite intervals in many fields of
physics, one would expect that the results presented here will
be useful for other physical problems as well.
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