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The fundamental question addressed in this Letter is whether or not the partial Chapman–Enskog
expansion Pxy � �

P
1
k�0 �k�@ux=@y�

2k�1 of the shear stress converges for a gas of inelastic hard spheres.
By using a simple kinetic model it is shown that, in contrast to the elastic case, the above series does
converge, the radius of convergence increasing with inelasticity. It is argued that this paradoxical
conclusion is not an artifact of the kinetic model and can be understood in terms of the time evolution
of the scaled shear rate in the uniform shear flow.
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The hydrodynamic description of conventional fluids is
usually restricted to the Navier–Stokes (NS) constitutive
equations [1]. For instance, if the flow is incompressible
(i.e., r � u � 0, where u is the flow velocity), Newton’s
law establishes a linear relationship Pxy � ��0@ux=@y
between the shear stress Pxy and the shear rate @ux=@y,
where �0 is the shear viscosity and it has been assumed
that @uy=@x � 0. The NS constitutive equations represent
excellent approximations in most of the physical situations
of experimental interest, even if the regime is turbulent [2].
In the case of a dilute gas, they can be justified under the
assumption that the smallest of the characteristic hydro-
dynamic lengths (L) associated with the gradients of den-
sity (n), temperature (T), and flow velocity (u) are much
larger than the mean free path ‘ of the gas particles, i.e.,
� � ‘=L� 1. As a matter of fact, the Chapman–Enskog
(CE) method provides a systematic scheme to obtain the
normal solution of the Boltzmann equation as an expansion
in powers of the uniformity parameter (or Knudsen num-
ber)� [3]. The leading terms in the CE expansion yield the
NS constitutive equations, with the bonus of providing
expressions for the transport coefficients (like the shear
viscosity �0) in terms of the microscopic properties and of
the hydrodynamic quantities.

A fundamental question concerning the CE method is
the nature (convergent versus divergent) of the expansion
in powers of �. More than 40 years ago Grad [4] provided
compelling arguments on the asymptotic character of the
CE expansion. This means that, as expected on physical
grounds, the CE series truncated at a given order (e.g., NS,
Burnett, super-Burnett, etc.) becomes closer and closer to
the true value as � becomes smaller and smaller. Of
course, the asymptotic character of the CE expansion
does not imply (but is implied by) the stronger condition
of convergence. However, McLennan [5] was able to prove
convergence of the partial sum of the CE series made of
linear terms (i.e., terms of the form ri1ri2 . . .rikA, where
A � n, T, or u) for a general class of cutoff potentials.

What about the nonlinear terms of the series? To be
more specific, let us consider the following subclass of the

full CE series of the shear stress:

 Pxy � �
X1
k�0

�k�@ux=@y�
2k�1; (1)

where �0 is the NS shear viscosity, �1 is a super-Burnett
coefficient, and so on. The full CE series of Pxy reduces to
the partial series (1) if (and only if) @ui=@xj � _��ix�jy
and rn � rT � r _� � 0; i.e., the only nonzero hydro-
dynamic gradient is a uniform shear rate _� � @ux=@y.
Interestingly enough, there exists a physical state (the so-
called simple or uniform shear flow, USF) that is consistent
with those conditions [6,7]. In that state, the density and the
shear rate are constant in time, but the temperature in-
creases due to viscous heating. The identification of the
characteristic hydrodynamic length L is (except for a
numerical factor) unambiguous: L	

�������������
2T=m

p
= _� (where

m is the mass of a particle), so that the uniformity parame-
ter becomes � � _�=�, where �	

�������������
2T=m

p
=‘ is a charac-

teristic collision frequency. Thus, the CE expansion (1) can
be recast into the dimensionless form

 Pxy=nT � ��F��2�; F�z� �
X1
k�0

ckzk; (2)

where ck � ��k=nT��2k�1. Despite its simple definition,
the USF state is complex enough to prevent an exact
solution of the nonlinear Boltzmann equation. However,
the problem becomes solvable in the framework of the
Bhatnagar–Gross–Krook (BGK) model kinetic equation
[7], and the solution shows that, for a wide class of repul-
sive potentials, the CE expansion (1) is divergent [8]. More
specifically, the dimensionless coefficients ck behave for
large k as jckj 	 �2=d�kk! in the case of d-dimensional hard
spheres.

In the preceding paragraphs we have considered con-
ventional gases made of particles that collide elastically.
On the other hand, the same issues discussed above can be
applied to granular gases, i.e., large assemblies of (meso-
scopic or macroscopic) particles that collide inelastically
and are maintained in fluidized states. Apart from their
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practical interest, granular gases are physical systems
worth studying at a fundamental level because they are
intrinsically out of equilibrium and exhibit a wide reper-
toire of complex and exotic behavior [9,10].
Nonequilibrium statistical-mechanical concepts and tools,
in particular, the kinetic theory approach based on the
Boltzmann and Enskog equations suitably modified to
account for inelastic collisions, have proven to be useful
to understand the behavior of granular gases [11]. Most of
the theoretical efforts have focused on a minimal model of
granular gases consisting of smooth inelastic hard spheres
characterized by a constant coefficient of normal restitu-
tion �< 1. Specifically, the CE method has been applied
to the (inelastic) Boltzmann and Enskog kinetic equations
and the NS transport coefficients have been derived [12].

The question I want to address in this Letter is, does the
nonlinear subclass of the full CE expansion converge in the
case of a gas of inelastic hard spheres? Given that the
answer is negative when the gas is made of elastic hard
spheres (� � 1) [8], the strong challenges to the validity of
hydrodynamics in granular media [10], and the inherently
non-Newtonian nature of the steady USF of granular gases
[13], it seems plausible to expect that the (partial) CE series
(1) is divergent for granular gases. It will be shown below
that, paradoxically, the series (1) does converge in the case
of inelastic hard spheres and that, in fact, the radius of
convergence increases with increasing inelasticity.

The energy balance equation for inelastic hard spheres
in the USF is

 @tT�t� � ��2=dn� _�Pxy�t� � ��t�T�t�; (3)

where � is the so-called cooling rate [11]. From the
Boltzmann equation it is possible to show that it is ap-
proximately given by � � d�2

4d �1� �
2��0, �0 being an

effective collision frequency for elastic spheres. The cool-
ing term on the right-hand side of Eq. (3) competes with
the viscous heating term, so that, depending on the initial
state and the value of _�, the temperature either grows or
decreases with time until a steady state is eventually
reached [13,14]. In order to relate the shear stress Pxy�t�
to the shear rate _� and to the temperature T�t�, and thus
analyze the series representation (2), let us replace the
Boltzmann equation by the BGK-like kinetic model [15]

 �@t � v � r�f � ���f� f0� � ��=2�@v � �Vf�; (4)

where f is the velocity distribution function, V � v� u is
the peculiar velocity, f0 is the local version of the homo-
geneous cooling state distribution [11] (parametrized by
the actual fields n, u, and T), and � is an effective collision
frequency. Here the simple choice � � 1��

2 �0 is made, so
that � � �=� � d�2

2d �1� ��. Taking moments in Eq. (4)
one gets
 

@tPxy�t� � � _�Pyy�t� � 
��t� � ��t��Pxy�t�;

@tPyy�t� � n��t�T�t� � 
��t� � ��t��Pyy�t�;
(5)

where Pyy is a normal stress. Note that the explicit form of
f0 is not needed in the derivation of Eq. (5) and so no
assumption of f or f0 being close to a Maxwellian is taken.
Equation (5), with � � 1��

2 
1�
d�1
2d �1� ����0, is also

obtained from the Boltzmann equation in Grad’s moment
approximation [13]. Equations (3) and (5) constitute a
closed set of equations for the evolution of T, Pxy, and
Pyy. In order to describe the hydrodynamic regime and
analyze the CE expansion, we must focus on the nonlinear
dependence of the scaled viscosity function F��2�t�� �
�Pxy�t�=nT�t���t� as a function of the scaled shear rate (or
uniformity parameter) ��t� � _�=��t�. Elimination of time
in favor of z � �2 / 1=T in Eqs. (3) and (5) yields the
following single second-order ordinary differential equa-
tion:
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d
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�
F
��
: (6)

Insertion of the series expansion F�z� �
P
1
k�0 ckz

k into
Eq. (6) allows one to get a recursive relation expressing
the coefficient ck for k 
 1 in terms of the lower-order
coefficients fck0 ; 0 � k0 � k� 1g. With the help of a com-
puter algebra system, one can obtain the coefficients ck, for
given d and �, as exact rational numbers up to a maximum
value of k limited by computer time and internal memory.
The results of ck presented here have been obtained for k �
400.

The first few coefficients ck are listed in Table I for d �
3 and � � 0:5, 0.7, 0.9, 0.99, and 1 (elastic hard spheres).
As is already apparent from Table I, the magnitude of the
coefficients increases as the system becomes less inelastic,
this effect being more and more dramatic with increasing k.
For instance, the value of jc20j is 1:2� 10�5, 5:2� 10�3,
2:1� 105, 1:4� 1011, and 1:1� 1012 for� � 0:5, 0.7, 0.9,
0.99, and 1, respectively. Figure 1 shows a log-normal plot
of jckj for the four inelastic systems considered. The results
are consistent with an asymptotic behavior of the form
jckj � Ak�az�ks , where zs �

d
2 ��1� ��

2 is the steady-state
value of the square uniformity parameter. The exponent a
and the amplitude A are estimated by a linear fit of a plot of
ln�jckjz

k
s� versus lnk for 100 � k � 400, the fit being less

robust in the case � � 0:5 than in the other cases. The
numerical values of zs, as well as of the estimates of a and
lnA, are also included in Table I. In principle, the viscosity
function F�z� is different for each dimensionality.
However, inspection of Eq. (6) shows that, for a given
value of �, the dependence of F on z and d occurs only
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through the combination z=d. Therefore, seen as a function
of � and z=zs, F�z� is independent of d.

The large-k asymptotic behavior lnjckj 	 �k lnzs for
�< 1 implies that the CE series (1) is convergent for
inelastic hard spheres. Moreover, the radius of convergence
is @ux=@y � �z1=2

s and thus increases with inelasticity.
Equation (6) shows that z � zs is indeed a singular point
since the steady state �zs; Fs�, with Fs � �1� ���2, is the
solution of 1� �1� 2

d zF�
2F � �� 2

d zF � 0. What is
relevant here is that z � 0 is a regular point (except in
the elastic case) and z � zs is the singularity of F�z� in the
complex z plane closest to the origin. The convergent
character of the series (2) for the most inelastic case
considered here (� � 0:5) is illustrated in Fig. 2, where
the numerical solution [13] of Eq. (6) is compared with the
truncated CE series FN�z� �

PN
k�0 ckz

k for several values
of the truncation order N. One can observe that the trun-
cated series agree among themselves and with the numeri-
cal solution for z < zs. For z > zs, however, the CE
expansion becomes useless and one must determine F�z�
numerically from Eq. (6). An alternative method, success-
fully used in the elastic case [8], would consist of expand-
ing F�z� around the point at infinity as F�z� �
z�2=3 P1

k�0 ckz
�k=3. Figure 2 also includes results recently

obtained from Monte Carlo simulations of the Boltzmann
equation [14], which show that the predictions of Eq. (6)
are quantitatively accurate, even for strong inelasticity,
except that Eq. (6) underestimates the location of the
steady-state point �zs; Fs�. The simulation curve shown in
Fig. 2 is the collapse of data obtained by the direct simu-

lation Monte Carlo method starting from 20 different
initial conditions (ten for z < zs and ten for z > zs), letting
the system evolve in time, and discarding the kinetic
transients lasting a few mean free times. This explains
why the simulation curve does not reach the point z � 0.
For simulation details the reader is referred to Ref. [14].

Is the paradoxical regularization by inelasticity of the
CE series (1) an artifact of the kinetic model? The follow-
ing physical argument suggests that this is not the case. Let
us assume that the reference homogeneous state is per-
turbed at time t � 0 by a weak shear rate _�. Thus the
homogeneous state (� � 0) is stable or unstable against
this USF perturbation depending on whether the time-
dependent uniformity parameter ��t� � _�=��t� asymptoti-
cally goes to zero or grows with time. The first situation
occurs in a conventional gas of elastic hard spheres since
the viscous heating produces a monotonic increase of
temperature [cf. Eq. (3) with � � 0] and thus ��t� ! 0.
However, in a gas of inelastic hard spheres it is always
possible that the perturbation is small enough to make the
cooling rate prevail over the viscous heating rate and so the
temperature keeps decreasing in time [cf. Eq. (3) with � >
0] until the steady state is eventually reached; thus the

FIG. 2 (color online). Scaled viscosity function F�z� for d � 3
and � � 0:5. The thin solid line represents the numerical solu-
tion of Eq. (6), while the dashed lines represent the truncated CE
expansion FN�z� with N � 5, 20, 50, 100, and 200. The thick
solid line represents the results obtained from Monte Carlo
simulations of the Boltzmann equation [14]. The steady-state
points �zs; Fs� obtained from the kinetic model and the simula-
tions are indicated by the triangle and the circle, respectively.
The inset includes FN�z� with N � 1–4 in the region 0 � z �
1:5.

FIG. 1 (color online). Plot of sgn�ck� lnjckj for d � 3 and � �
0:5, 0.7, 0.9, and 0.99. The thin solid lines represent���k lnzs �
a lnk� lnA�, where a and lnA are fitting parameters.

TABLE I. CE coefficients ck for 0 � k � 6, steady-state value of the square uniformity parameter, zs, and estimates of the
parameters a and lnA associated with the asymptotic behavior of jckj.

� c0 c1 c2 c3 c4 c5 c6 zs a lnA

0.5 0.827 586 �0:380 155 0.067 708 5 0.040 419 6 �0:002 517 05 �0:011 976 7 �0:003 995 93 1.254 34 15.8 60.3
0.7 0.888 889 �0:536 326 0.146 688 0.110 743 �0:018 097 0 �0:072 768 1 �0:033 608 2 0.585 938 8.21 7.08
0.9 0.960 000 �0:798 195 0.377 471 0.376 385 �0:188 551 �0:778 076 �0:618 849 0.146 701 15.8 22.6
0.99 0.995 851 �0:976 777 0.627 438 0.720 350 �0:694 311 �3:200 37 �3:756 20 0.012 709 2 95.9 283
1 1 �1 0.666 667 0.777 778 �0:814 815 �3:827 16 �4:724 28 0 � � � � � �
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uniformity parameter grows, i.e., ��t� ! z1=2
s . Since the

CE expansion (2) measures the departure from the refer-
ence homogeneous state (� � 0), it is reasonable to expect
that the series diverges if ��t� goes to zero while it con-
verges if ��t� increases with time.

The above heuristic argument can also be applied to the
simplest CE series in a compressible flow, namely,

 Pyy � nT � �
X1
k�0

�0k�@uy=@y�
k�1: (7)

The full CE expansion of Pyy reduces to the series (7)
in the uniform longitudinal flow (ULF) characterized
by [16] @uy=@y � _��t� � _�0=�1� _�0t� and n�t� �
�n0= _�0� _��t�. The exact energy balance equation, @tT�t� �
��2=dn� _��t�Pyy�t� � ��t�T�t�, shows that the uniformity
parameter ��t� � _��t�=��t� increases with time if _�0 > 0,
both for elastic and inelastic collisions. However, if _�0 <
0, j��t�j ! 0 in the elastic case, whereas j��t�j increases
toward a stationary value in the inelastic case. Thus, the CE
expansion (7) is expected to diverge for conventional gases
and converge for granular gases. This expectation is con-
firmed by an analysis of the ULF based again on the kinetic
model (4).

It is important to note that the dependence on n, T, and �
of the transport coefficients �k and �0k in the partial CE
expansions (1) and (7), respectively, is not influenced by
the specific state under consideration. Accordingly, the
series (1) and (7) converge or diverge irrespective of
whether the system is in the USF, the ULF, or in any other
state. The advantage of the USF and ULF is that the full CE
series of the shear stress and the normal stress reduce to the
partial series (1) and (7), respectively, thus allowing us to
explore their character in a rather detailed way. Regarding
the CE subseries made of linear terms, it is reasonable to
expect that, as in the elastic case, it also converges for
inelastic collisions, especially if one takes into account the
exact mapping between the inelastic and elastic versions of
the Enskog–Lorentz equations [17].

The CE expansion is the main route to hydrodynamics,
and so its convergence or divergence has a renewed interest
in granular gases in view of some debate on the applica-
bility of hydrodynamics to this class of nonequilibrium
systems [10]. I expect that this Letter can contribute to a
clarification of this controversial issue by presenting a case
study where the application of the CE expansion to de-
scribe the nonlinear regime might have a larger practical
interest in granular than in conventional gases.

I am grateful to J. W. Dufty and V. Garzó for useful
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[13] A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69,
061303 (2004).

[14] A. Astillero and A. Santos, Europhys. Lett. 78, 24002
(2007).

[15] J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 97, 281
(1999).

[16] A. N. Gorban and I. V. Karlin, Phys. Rev. Lett. 77, 282
(1996); I. V. Karlin, G. Dukek, and T. F. Nonnenmacher,
Phys. Rev. E 55, 1573 (1997); A. Santos, Phys. Rev. E 62,
6597 (2000).

[17] A. Santos and J. W. Dufty, Phys. Rev. Lett. 97, 058001
(2006).

PRL 100, 078003 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

078003-4


