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Non-Newtonian Granular Hydrodynamics. What Do the Inelastic Simple Shear Flow
and the Elastic Fourier Flow Have in Common?
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We describe a special class of steady Couette flows in dilute granular gases admitting a non-Newtonian
hydrodynamic description for strong dissipation. The class occurs when viscous heating exactly balances
inelastic cooling, resulting in a uniform heat flux. It includes the Fourier flow of ordinary gases and the

simple or uniform shear flow (USF) of granular gases as special cases. The rheological functions have the

same values as in the USF and generalized thermal conductivity coefficients can be identified. These
points are confirmed by molecular dynamics simulations, Monte Carlo simulations of the Boltzmann
equation, and analytical results from Grad’s 13-moment method.
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The study of granular matter is interesting from a tech-
nological point of view because its understanding has
many applications in technology and in sciences other
than physics, such as biology [1,2]. Furthermore, it is
also important from a more fundamental point of view
[3]. For example, the Boltzmann equation (BE) for low-
density granular gases describes a generalization of the
contraction from a microscopic to mesoscopic scale and
thus a generalization of fundamental concepts in the fields
of statistical and fluid mechanics. The BE for granular
gases (usually modeled as smooth inelastic hard spheres)
has been widely employed to analyze several granular flow
problems and a large number of research works have been
recently published in this field [1,4]. A standard approach
used for solving the BE for ordinary gases consists in
obtaining a perturbative solution, which results in
Navier—Stokes (NS) or Burnett type hydrodynamic equa-
tions [3]. However, the kinetic energy loss in the collisions
renders the granular steady flows inherently non-
Newtonian [3,5,6].

We report in this Letter on strong evidence of non-
Newtonian hydrodynamic steady states in the planar
Couette flow geometry for a wide range of inelasticities.
Furthermore, our description is inclusive in the sense that it
comprises a class (manifold) of steady flows, whose ele-
ments correspond both to granular and ordinary gases. This
novel class occurs when the heat flux q is constant across
the system, due to an exact local balance of inelastic
cooling and viscous heating, even though the temperature
and the shear rate are in general not uniform. As a con-
sequence, this class of nonlinear flows has several surpris-
ing hydrodynamic properties: (i) the nonlinear temperature
profiles T(y) are indistinguishable from those of the
Fourier steady state of an ordinary gas with the same
temperature difference (Fourier flows are the ‘“‘elastic-
limit” elements of the manifold); (i) when the spatial
coordinate y normal to the moving plates is eliminated
between temperature and flow velocity the resulting pro-
files T(u,) are linear; (iii) the non-Newtonian rheological
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properties (shear stress and anisotropic temperatures) are
uniform and have the same values as those obtained in the
well known simple or uniform shear flow (USF) of granu-
lar gases [3], which is in fact the particular case q = 0 of
the manifold; and (iv) the heat flux vector is proportional to
the thermal gradient (generalized Fourier’s law) with an
effective thermal conductivity tensor. Because of
property (ii), we will refer henceforth to these flows as
“linear T'(u,) flows,” or simply, “LTu” flows. Property (iv)
can be interpreted as a method for measuring the intrinsic
thermal conductivity coefficients of the USF state directly
from LTu steady states. All these results are supported by
three independent and complementary routes: an approxi-
mate analytical solution from Grad’s 13-moment (G13)
method to the BE, direct simulation Monte Carlo
(DSMC) numerical solutions of the BE, and molecular
dynamics (MD) simulations. The existence of the special
LTu class at NS order was theoretically proven in a recent
work [7], but the applicability of the NS description is
restricted to the quasielastic limit and so the general proof
of LTu states requires a non-Newtonian description, as
carried out in this Letter.

Conservation of momentum in the steady state Couette
flow implies P;, = const, where P; j is the stress tensor. As
for the energy balance equation, it reads

—d,q, = 3/2nT{ + Pou, ey

where r is the number density and £ is the inelastic cooling
rate. Equation (1) is valid for all steady states in the system,
whether hydrodynamics applies or not. As can be seen, the
signature of the heat flux gradient is determined by the
balance between two terms: the first one on the right-hand
side comes from inelastic cooling and is inherently posi-
tive; the second term is due to viscous heating and is
inherently negative. Thus, the condition for homogeneous
heat flux is that these two terms exactly balance in the
whole bulk region. Moreover, the streamwise heat flux
component g, (absent at NS order) turns out to be “syn-
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chronized” to the crosswise component g, in the sense that
it becomes homogeneous when so does g,

Application of the classical G13 method [8] to the BE
for inelastic collisions yields { = 3 »(1 — a?) (where « is
the coefficient of normal restitution and » = % X

Jmno?T/m is an effective collision frequency, o and
m being the diameter and mass of a sphere, respectively)
and a closed set of coupled equations for the hydrodynamic
fields, the stress tensor, and the heat flux. This set allows
for an LTu solution characterized by nT = const,

v 'o,T=A=const, v 'o,u, =ala)=const (2)

P..
— = 0,(a) = const, (3)

P,, = —n(a)d,u, = const, T

gy = —AMa)d, T =const, gq,= ¢(a)d, T =const. (4)

Since the trace of the stress tensor is 3nT, one has 6, +
6, + 6, = 3. Equation (2) implies that 7/ du, = A/a(a),
so that 7 is indeed a linear function of u,. Equations (2)—
(4) define a class of solutions because the constant A is
arbitrary. On the other hand, the dimensionless shear rate
a(a) (which is the Knudsen number associated with the
shearing), the effective shear viscosity %"(a)=
1n(a)/nns(1), the temperature ratios 0;(«), and the effec-
tive thermal conductivities A*(a) = A(a)/Ans(1) and
¢*(a) = ¢p(a)/Ans(1) are independent of A, their values
depending on inelasticity only. Here nyg(1) = nT/v and
Ans(1) = 15mg(1)/4m are the NS transport coefficients
of the elastic gas [8]. The quantities a(a) and 1" () are
related to each other by the exact balance equation (1) and
the LTu condition dyqy = 0,

a*(@) = 3" (a)/27"(a), &)

where {*(a) = {/v. Equation (5) shows that in the elastic
limit (@ — 1) the LTu shear rate vanishes (¢ — 0) and thus
the conventional Fourier flow (A # 0) for an ordinary gas
is included in the LTu class as a special case. Conversely,
the USF is recovered as another special case in the limit
A — 0 with @ < 1. This is sketched in Fig. 1. The explicit
expressions predicted by the G13 method for the transport
coefficients are [9]

= Bi g =Pt 3
(B + ) Bt

A= ,82(700), —20 + 635*/B2)/(50,3% — 63a?),

& = 7a(210, — 6 + 108,7°)/(5083 — 632,

where Bi(a)=(1+ a)2+ a)/6 and By(a)
(1 + a)(49 — 33a)/32. It must be noticed that n*(a)
(@ = (B +397"  and  A(@) # As(a)
(B —3¢)7"

To validate the G13 theoretical predictions, we have
performed DSMC simulations of the BE and MD simula-
tions (global solid fraction = 7 X 103) for a granular gas
of hard spheres enclosed between two plates located at y =

6, = 6.

It

me/astil:ity

(Equilibrium)

FIG. 1 (color online). Each point of this diagram represents a
Couette flow steady state. The surface defines the LTu class,
which contains the lines representing the Fourier flow for ordi-
nary gases and the USF for granular gases.

+h/2 and moving with velocities U. (see Ref. [7] for
technical details). Diffuse boundary conditions character-
ized by wall temperatures 7+ (T_ = T, ) are applied. In
what follows, quantities are nondimensionalized by the
choice of units m = 1, T(—h/2) =1, n(—h/2) = 1, and
v(—h/2) = 1. In these units, the quantity A represents the
maximum value across the system of the Knudsen number
associated with the thermal gradient [7]. The separation
between the plates has typically been set 4 = 5-20 and we
have considered a wall temperature difference in the range
AT =T,./T_ — 1= 0-20. We have looked for Couette
flows belonging to the LTu class by fixing AT and varying
the applied shear y = (U, — U_)/h. Once the steady
state is reached, we monitor the parametric plot of tem-
perature versus flow field, T(u,). We have observed in all
the cases a definite sign of the curvature parameter
9’T/ou? in the bulk, with no inflection point.
Interestingly, as the shearing increases and a certain thresh-
old value y = 7y, is crossed, the sign of 9>T/du> under-
goes a change from negative to positive. At the threshold
shear yy,, 0>°T/du> = 0 and this signals the onset of the
LTu flow, as explained above. This transition is accompa-
nied by a change in the slope of ¢g,, so one also has g, =
const at y = . This is illustrated by DSMC data in
Fig. 2(a), while Figs. 2(b) and 2(c) show some representa-
tive LTu temperature profiles. Figure 2(b) is especially
noteworthy since it clearly shows that all the LTu
T(y)-profiles sharing the same temperature values near
the walls collapse into a common curve independent of
the inelasticity of the particles. Therefore, the temperature
profile reached by the granular gas in the LTu flow is
indistinguishable from that of an ordinary gas in the con-
ventional Fourier flow. This surprising result is a conse-
quence of the applicability of hydrodynamics to granular
gases, even with strong inelasticity. According to the first
equation in (2), ayT3/2 = AvT'/2 = const, so T¥2(y) is a
linear function that is completely fixed by the values near
the walls, regardless of the value of « [see inset in 2(c)]. On
the other hand, since dT/du, = A/a(a), the slope in the
T(u,) profiles is a dependent, as shown in Fig. 2(c).
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FIG. 2. (a) Profiles of the heat flux component ¢, for & = 0.7,

AT = 5, and a shear rate 8% smaller than the threshold value
(A), equal to the threshold value ([J), and 4% larger than the
threshold value (H). (b) Temperature profiles in the LTu flow for
a common fluid temperature difference T(h/2) — T(—h/2) = 4
and @ = 0.5 (), @« = 0.7 (A), and @ = 1 (A). In the latter case
(ordinary gas), the simulated state is the conventional Fourier
flow (without shearing). The inset shows T%/2(y). (c) T(u,)
profiles for the LTu class with T(h/2) — T(—=h/2) = 4 and @ =
0.5 (0) and @ = 0.7 (A). The shown data have been obtained by
DSMC simulations.

For each value of a we have computed the reduced shear
rate a defined by the second equation of (2), as well as the
generalized transport coefficients defined by Egs. (3) and
(4). While the threshold value ¥y, depends on AT, we have
observed that, as predicted by theory, a(a), n*(a), 6;(a),
AM(a), and ¢*(«) are insensitive to the choice of AT. In
particular, as shown in Fig. 3, the reduced shear rate a(«)
and the rheological quantities n*(«) and 6;(«) are the same
in the LTu class of Couette flows (regardless of the value of
AT) as in the USF (AT = 0) [10], even though the bound-

ary conditions are quite different: boundary-driven in the
case of the Couette flow [11] and Lees—Edwards periodic
boundary conditions [12] in the USF case. Figure 3 also
shows the close agreement between DSMC and MD results
as well as the reliability of the theoretical predictions from
the G13 approximation.

Now we turn to the heat flux coefficients. One of the
most striking theoretical predictions is the linear relation-
ship between both components of the heat flux and the
thermal gradient (generalized Fourier’s law), as described
by Eq. (4). This means that ¢; = A and this is illustrated in
Fig. 4(a) for a = 0.7 and a = 0.9. The (reduced) heat flux
transport  coefficients are evaluated as A"(a)=
—(2m/5nT)q,/A and ¢*(a) = (2m/5nT)q,/A, and are
plotted in Fig. 4(b). It can be observed that the streamwise
component g, becomes larger in magnitude than the cross-
wise component g, for @ =< 0.9, what represents a strong
non-Newtonian effect. Interestingly, this effect, as well as
the general dependence of the transport coefficients are
very well captured by our simple G13 approximation. As
happens with the rheological properties, Fig. 4(b) shows a
good agreement between DSMC and MD data for the
generalized thermal conductivities.

To sum up, we have described a special class of steady
Couette flows (LTu class) in a low-density gas of inelastic
hard spheres. This state encompasses the Fourier flow of
elastic particles (9,7 # 0, a = 1) and the USF of inelastic
particles (9,7 = 0, a <1) as special cases. In this sense,
LTu can be seen as a ‘“‘natural” extension (i) of the con-
ventional Fourier flow in ordinary gases to the realm of
granular gases and (ii) of the granular USF to states with
nonzero heat flux. Therefore, the LTu uncovers a wide
spectrum of inelasticities and wall temperatures within a
unified framework, for both granular and elastic gases (see
Fig. 1). Three complementary and independent approaches
have been followed: an approximate solution based on the
G13 method, DSMC simulations of the BE, and MD
simulations of a dilute system. Here, in contrast to what

FIG. 3 (color online). Plot of a(a), n*(a), 8,(), and 6,(c) in
the LTu flow as obtained from DSMC simulations (4 = 15) with
AT =2 (X) and AT = 10 (+), and from MD simulations (h =
7) with AT =2 (A) and AT =5 (). Also DSMC data (O) of
the USF (AT = 0) [10] are included. The lines represent the
analytical results obtained from the G13 approximation. Note
that both in theory and simulation the values of 6, are hardly
distinguishable from those of 7*.
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method shows that the existence of the class of LTu flows
reported in this Letter is not an artifact of the BE, which is
based on the absence of spatial and velocity correlations
(molecular chaos assumption). This fact can stimulate
experiments with Couette geometry [14], where it would
be possible to test whether the linear relationship between
temperature and flow velocity is attainable or not. Finally,
it must be stressed that the analysis carried out here pro-
vides a nontrivial example of the existence of a hydro-
dynamic description for a strongly inhomogeneous state
beyond the NS regime for a dilute granular gas of hard
spheres.
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