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Critical Behavior of a Heavy Particle in a Granular Fluid
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A second order phase transition is observed for the homogeneous cooling state of a heavy impurity
particle in a granular fluid. The order parameter ¢ is the ratio of impurity mean square velocity to
that of the fluid, with a conjugate field 4 proportional to the mass ratio. A parameter 8, measuring the
fluid cooling rate relative to the impurity-fluid collision rate, is the analog of the inverse temperature.
For B < 1 the fluid is “normal” with ¢ = 0 at & = 0, as in the case of elastic collisions. For 8 > 1
an “ordered” state with ¢ # 0 occurs at &~ = 0, representing an extreme breakdown of equipartition.
Critical slowing and qualitative changes in the velocity distribution function near the transition are noted.

DOI: 10.1103/PhysRevLett.86.4823

The simplest statistical mechanical model for an acti-
vated granular fluid is a system of smooth, inelastic hard
spheres. The inelasticity is specified in terms of a restitu-
tion coefficient « = 1. Qualitative differences between
the cases a = 1 (elastic spheres) and a # 1 have been
demonstrated in many ways using both theoretical and
simulation methods [1]. Among these is the replacement
of the Gibbs state for an isolated uniform system by a ho-
mogeneous cooling state (HCS). The HCS is inherently
time dependent due to the loss of energy in each binary
collision. It is postulated that the time dependence of this
ensemble occurs entirely through a scaling of the velocity
by its root mean square (“thermal”) velocity vr(¢) and the
associated normalization [2]. In this case, the dynamics
(Liouville equation or kinetic equation) can be transformed
to a stationary state form using suitable dimensionless vari-
ables. The time dependence of vr () also follows from
this scaling, so that only a time independent dimensionless
cooling rate must be determined self-consistently. Simi-
lar results apply for a multicomponent system, although
the analysis is complicated by the existence of many scal-
ing velocities [3]. The HCS results when the cooling rates
for all mean square velocities are the same. This condi-
tion then determines all scaling velocities in terms of that
for one species. It is the analog of energy equipartition
for a system with a = 1, but deviations from equiparti-
tion occur for all @ # 1. These deviations can be weak or
strong depending on the mechanical differences between
the species and the degree of dissipation.

Many of the new effects to be expected in multicom-
ponent systems can be illustrated by the simplest case of
a single impurity particle in a one component system [4].
The fluid (impurity) particle diameter, mass, and restitu-
tion coefficient are denoted by o (oy), m (mgp), and «
(ag). There are two mean square velocities and associated
cooling rates for the fluid and impurity particles,
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The angle brackets denote an average over the HCS, and
the subscript 0 denotes properties of the impurity particle.
The cooling rates for a moderately dense fluid can be cal-
culated to good accuracy from the Boltzmann-Enskog and
Lorentz-Enskog kinetic equations for the fluid and impu-
rity reduced distribution functions [3]. These rates then
depend on the velocity distributions for the fluid and im-
purity particle in the HCS and can be estimated to good
approximation using Maxwellians (see justification below)
with the results
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where n is the fluid density, g is the pair correlation
function for two fluid particles, and no?gvr is a char-
acteristic collision rate for the fluid particles. Similarly,
v* = v/no*gur = (16\/7/3)h(go/g) (/0)? is a cor-
responding dimensionless average impurity-fluid particle
collision rate, where @ = (o + 0()/2 and g is the corre-
sponding fluid-impurity particle pair correlation function.
The dependence on the mass ratio occurs entirely through
h =m(l + ag)/2(m + mg). The time independent ratio
of mean square velocities,

¢ = vio/vr, )
is determined by the condition that the cooling rates be
equal,
_ ¢
(1 + ppr

The constant 8 is a measure of the fluid cooling rate rela-
tive to the fluid-impurity collision rate,

& —a2)§<g>2_

h [(1+ ¢)'* - B]. (5)
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B = * - 42h g\ T
The elastic collisions limit is given by 8 = 0, for which
the solution is ¢ = h/(1 — h) = m/mg. This is the re-
quired result from the equipartition theorem. If only the
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fluid particle collisions are elastic (8 =0, a9 # 1), a
recent exact result of Martin and Piasecki, ¢ = m(1 +
ap)/[2my + m(1 — ap)] is recovered [5]. More gener-
ally, Eq. (5) determines ¢(B3,h) for the entire physical
domain of & and B. The solution is found to have qualita-
tively different behavior at small 4 for different values of
B. The asymptotic behavior for # — 0 is found to be

(1—=p8)""h, B<I,
¢(,3’h)—>{m, B=1, ()
B2—1+2B4B>—1'h, B>1.

Thus ¢ vanishes at h = 0 for 8 < 1 butis finiteat 8 > 1.
The condition 8 < 1 is “normal” in the sense that ¢
scales as the mass ratio just as for systems with elastic
collisions and the consequent equipartition of kinetic en-
ergy. This normal state has been studied recently for
h < 1, where the kinetic theory implies a corresponding
Fokker-Planck description [4]. The condition 8 > 1 cor-
responds to an extreme violation of equipartition such that
the mean square velocities of the fluid and impurity par-
ticles remain comparable even though their mass ratio is
zero. Figure 1 shows the more complete dependence of
¢ (B,h)on hfor B = 0.9, 1, and 1.1, confirming the above
asymptotic analysis.

This behavior at small £ is analogous to a thermody-
namic transition at 8 = 1 between two different states of
the system characterized by the order parameter ¢, con-
jugate field %, and inverse “temperature” 8. To develop
this analogy a Helmholtz free energy F (B, ¢) is obtained
from the “equation of state” (5) by integrating the defi-
nition & = dF (B, ¢)/d¢ [with the boundary condition
F(B,0) = 0, for simplicity]. Next, the Gibbs free en-
ergy is constructed from F by the Legendre transforma-
tion ®(B,h) = F — h¢. The first and second derivatives
of ®(B, h) provide the order parameter ¢, “entropy” 3,
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FIG. 1. Ratio of mean square velocities, ¢, as a function of
the mass ratio parameter 4 for 8 = 0.9, 1, and 1.1.
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“susceptibility” y g, “expansion coefficient” ay, and “heat
capacity” Cj,. The results are
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The behavior of these functions near A = 0 follows
directly from (7). For example, the response functions xg,
ay,and Cj, at h = 0, 1072, and 1073 are shown in Fig. 2.
In the limit 2~ — O, the entropy and order parameter are
continuous at 8 = 1, so the divergence of yg and the dis-
continuity of a;, at § = 1 identifies this as a second order
phase transition. Near the critical region (h < 1, |8 —
1| < 1), the free energy adopts the Landau-like form
®(B.h) =~ x(1 — B)p> + ¢ 3 — hep, which yields h ~
(1-pB)o + %d)z. As a consequence, the free energy
and the equation of state in the critical region satisfy
the scaling relations ®(A(8 — 1),A%%) = A’D(B —
1,h) and ¢(A(B — 1),A%h) = AP~¢¢(B — 1,h), with
a =72 and b = 3. These scaling relations suffice to
determine the critical exponents [6] & = a/(b — a) = 2,
B =b —a=1,and ¥y = 2a — b = 1, while the criti-
cal exponent & =2 — b = —1 is negative, indicating
that Cj, is continuous at the critical point.

If the ratio between the initial mean square velocities
of the fluid and impurity particles is not that given by the
solution to (5), there is an evolution to the HCS described
by (1) which can be written in the Ginzburg-Landau form

. . D (B, h; ¢)
b = L&)~ €I = —u(e) “TEEL
(13)
where a new time scale ds = no?guvy(t)dt has been intro-
duced. Here, ® (B, h; ¢) is a variational free energy given
by Eq. (8) with the order parameter ¢ considered as an in-
dependent variable, and the kinetic coefficient u(¢) is

p(d) = v + ¢)*/2 (14)

The stationary solution occurs for 0D (8, h; ¢)/d¢p = 0,
which is just Eq. (5). For states near the HCS the equa-
tion can be linearized and a characteristic response time 7
identified according to
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FIG. 2. Inverse susceptibility (xg b, expansion coefficient
(arp,), and heat capacity (Cj) as functions of 8 for h = 1072
(dotted line), & = 1073 (dashed line), and & = 0 (solid line).

—dy 11'1|¢ - ¢HCS| = 7'_1 = (IL‘L/\/[;I)QSHCS’ (15)

where ¢ ycs denotes the solution to (5). In the elastic limit
T is just the equilibration time for the impurity particle to
attain a mean kinetic energy equal to that of the fluid par-
ticles. Similarly, for inelastic collisions it is the time (in
units of the fluid mean free time) for the impurity particle

to reach a cooling rate equal to that of the fluid. This char-
acteristic time is a smooth function of % and 8 except in
the limit 4~ — O where 7 diverges at 8 = 1. This critical
slowing follows directly from the fact that 7 = yg. Other-
wise, the relaxation times away from B8 = 1 are finite and
comparable for the normal and ordered states. Figure 3
shows the dependence of the inverse time 7%~ ! = (v*7)7!
on h for B = 0.9, 1, and 1.1. The quantity 7° measures
the relaxation time for the impurity particle in terms of the
number of impurity-fluid particle collisions.

The above analysis is based on an approximate evalua-
tion of the cooling rates using Maxwellians for the impurity
and fluid particle velocity distributions. This is known to
be accurate for the fluid particles [2], but the new features
in the critical domain and in the ordered phase 8 > 1 re-
quire closer inspection of the impurity particle distribution.
Based on the Lorentz-Enskog kinetic equation, it is possi-
ble to determine the impurity particle velocity distribution
for the HCS asymptotically close to § — 1 and h — 0
with the result

F(v") — Cexp{—%[(l - B2 + % ¢v*4“,
(16)

where v* = vg/vrg and C is a normalization constant.
The asymptotic equation of state is determined from
[dv*(v*? — %)F(V*) = 0. The equation of state is simi-
lar to that of Eq. (7) with only minor quantitative changes
in some coefficients. This justifies the preceding analysis
based on the Maxwellian approximation to &;. Neverthe-
less, the distribution function itself shows new qualitative
differences. As expected, for 8 <1, ¢ — h/(1 — B)
and the Maxwellian is recovered. For 8 > 1, ¢ —
10(8 — 1)/3 and the velocity distribution becomes

sharp at v* = ./3/2, F(v*) — (6m) '6(v* — /3/2).
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FIG. 3. Inverse characteristic time 7*~! = (v*7)~! as a func-
tion of the mass ratio parameter 4 for 8 = 0.9, 1, and 1.1.
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FIG. 4. Velocity distribution function of the impurity particle,
F, relative to the Maxwellian, Fy, for 4 = 1072 and B =09
(dotted line), B = 1 (dashed line), and 8 = 1.1 (solid line).

Furthermore, at the critical point (8 = 1), ¢ — ~/10Ah
and F(v*) — Cexp(—Av**), where A = 0.24. This
crossover from Gaussian to exponential quartic to delta
distributions is illustrated in Fig. 4 for 7 = 1072 and
B =09, 1.0, and 1.1.

The origin of this transition can be traced to the fact
that the cooling of the fluid is due to collisions that de-
pend on the restitution coefficient & but not the mass ra-
tio (or h), while cooling of the impurity depends on the
mass ratio but not «. The equality of cooling rates is en-
forced by adjusting the ratio of the mean square veloci-
ties, ¢». In general, for fixed mechanical properties, this
is possible for small mass ratio only if ¢ is nonzero (the
ordered state); the cooling rate for the impurity has an ex-
plicit proportionality to 2 which must be countered by ¢.
This implies that the mean kinetic energy of the impu-
rity particle diverges relative to that of the fluid particles.
However, if this explicit decrease of the impurity cool-
ing rate with & is tempered by a large size ratio and/or
weak fluid particle dissipation then the normal behavior
with ¢ = 0 is restored. The parameter 8 quantifies the
meaning of “tempered.” To give an explicit example, con-
sider the case @ = a¢ = 0.95 and m/my = 1072. Also,
for simplicity consider low density so that g = gog — 1.
Then 8 = 1.79(0/7)? and the system is close to the or-
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dered state for o = o but close to the normal state for
oo = 20. It is possible to study the crossover through
the critical domain using direct Monte Carlo simulation of
the Boltzmann-Enskog and Lorentz-Enskog kinetic equa-
tions, and by molecular dynamics simulation. In fact, both
Monte Carlo molecular dynamics simulations for the do-
main 8 < 1 and m/my = 10”2 have been performed to
confirm Brownian motion in the normal state [7]. Ex-
tension of these studies to the critical and ordered states
should be straightforward.

For experimental purposes it is perhaps more relevant
to study these critical properties as reflected in the diffu-
sion coefficient D (or mean square displacement) for the
impurity particle. The dependence of D on 8 and % can
be calculated from the Lorentz-Enskog kinetic equation in
the same approximation as the cooling rates above. The
studies of the Fokker-Planck limit (2 — 0) in [4] suggest a
divergence of D as 8 — 1 although that analysis is strictly
limited to 8 < 1. A more complete description of D for
all B, h will be given elsewhere [8].
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