Extreme violation of equipartition in mixtures

Andrés Santos*

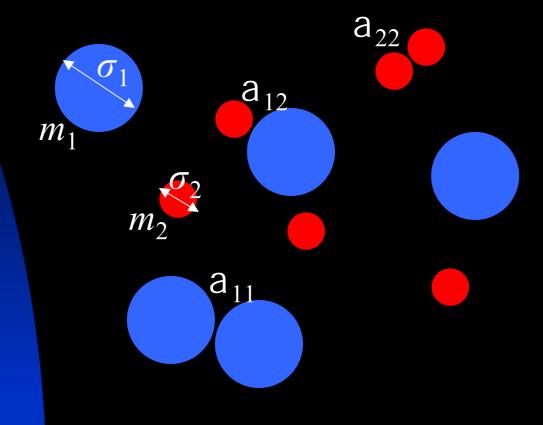
Departmento de Física, Universidad de Extremadura, Badajoz (Spain)

* In collaboration with J.W. Dufty

Outline

- Introduction (3-5)
- Kinetic theory description (6-8)
- Examples (9-13)
- Phase diagrams (14-24)
- Heated systems (25)
- Conclusions (26-27)

Binary granular mixture



Breakdown of Energy Equipartition in a 2D Binary Vibrated Granular Gas

Klebert Feitosa* and Narayanan Menon[†]

Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-3720

TABLE I. Some material properties of the spheres used in the experiment.

Particle	Mass [mg]	Effective inelasticitya	Mass ratio w/glass
Glass	5.24	0.17	_
Aluminum	5.80	0.31	0.92
Steel	15.80	0.21	0.33
Brass	18.00	0.39	0.28

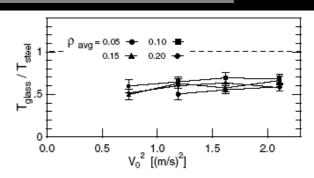


FIG. 4. Temperature ratio, $\gamma = T_{\rm glass}/T_{\rm steel}$, in a steel-glass mixture plotted against squared vibration velocity, v_0^2 . Different markers represent different number densities of the mixture. The number fraction is fixed at x=1/2. The horizontal dashed line represents equipartition $(\gamma=1)$.

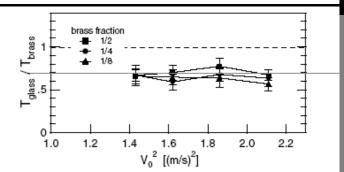


FIG. 5. Temperature ratio, $\gamma = T_{\rm glass}/T_{\rm brass}$, in a brass-glass mixture versus the squared vibration velocity of the cell, v_0^2 . Different markers represent different number fractions of brass for the same total number of particles ($\rho_{\rm avg} = 0.049$). The horizontal dashed line represents equipartition ($\gamma = 1$).

Formulation of the problem

- Binary mixture of smooth inelastic hard spheres
 - √ Heavy species (1):

$$m_1, \sigma_1, x_1 = n_1/n, a_{11}, a_{12}.$$

✓ Light species (2):

$$m_2$$
, σ_2 , $x_2 = n_2/n = 1 - x_1$, a_{22} , $a_{21} = a_{12}$.

In the homogeneous cooling state,

$$m_1$$
à m_2 ï , v_1^2 Ú, v_2^2 Ú=?

Enskog-Boltzmann equation

$$\partial_t f_1(v) = J_{11}[f_1, f_1] + J_{12}[f_1, f_2]$$

$$\partial_t f_2(v) = J_{21}[f_2, f_1] + J_{22}[f_2, f_2]$$

$$\partial_t \langle v_1^2 \rangle = -\zeta_1 \langle v_1^2 \rangle, \quad \partial_t \langle v_2^2 \rangle = -\zeta_2 \langle v_2^2 \rangle$$

Rates of change
$$\zeta_1 = \nu (\xi_{11} + \xi_{12}), \quad \zeta_2 = \nu (\xi_{21} + \xi_{22})$$

Cooling rates

Thermalization rates

$$\nu = \frac{8\pi}{3} n g_{12} \sigma_{12}^2 \langle v_2 \rangle \frac{1 + \alpha_{12}}{2} \frac{m_2}{m_1 + m_2}$$

Effective collision frequency

"Order" parameter

$$\phi \equiv \frac{\langle v_1^2 \rangle}{\langle v_2^2 \rangle}$$

$$\partial_t \phi = -(\zeta_1 - \zeta_2) \phi$$

Condition for HCS:

$$\zeta_1 = \zeta_2$$

Maxwellian approximation

PHYSICAL REVIEW E

VOLUME 60, NUMBER 5

NOVEMBER 1999

Homogeneous cooling state for a granular mixture

Vicente Garzó* and James Dufty

$$f_i(v) = n_i \left(\frac{m_i}{2\pi T_i}\right)^{3/2} \exp\left(-\frac{m_i v^2}{2T_i}\right), \quad \langle v_i^2 \rangle = \frac{3}{2} \frac{2T_i}{m_i}$$

$$h_2 \sim \frac{m_2}{m_1} \ll 1$$

$$\xi_{11}(\phi) \to x_1 \sqrt{\phi} \beta_1, \quad \xi_{12}(\phi) \to x_2 \sqrt{1+\phi} \left(1-\frac{h_2}{\phi}\right),$$

cooling rates

thermalization rates

$$\xi_{22}(\phi) \to x_2 \beta_2, \quad \xi_{21}(\phi) \to x_1 \sqrt{1+\phi} h_1^2 \left(1 + \frac{\phi_0 - \phi}{h_2}\right)$$

$$\beta_1 \sim \frac{1 - \alpha_{11}^2}{h_2}, \quad \beta_2 \sim \frac{1 - \alpha_{22}^2}{h_2} \left(\frac{\sigma_2}{\sigma_1}\right)^2 \phi_0 = \frac{1 - \alpha_{12}}{1 + \alpha_{12}}, \quad h_1 = \frac{1 + \alpha_{12}}{2}$$

$$\phi_0 = \frac{1 - \alpha_{12}}{1 + \alpha_{12}}, \quad h_1 = \frac{1 + \alpha_{12}}{2}$$

Elastic collisions: $\phi = h_2 \Gamma$ $T_1/T_2 = 1$ Energy equipartition!

Florida-Paris Workshop on **Granular Fluids**

A few representative cases

1. Quasi-elastic cross collisions:

$$\alpha_{11} = \alpha_{22} = 1, 1 - \alpha_{12} = O(h_2)$$

$$\beta_1 = \beta_2 = 0, \quad \phi_0 \sim h_2$$

$$\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \to x_2 \left(1 - \frac{h_2}{\phi}\right),$$

$$\xi_{22}(\phi) = 0, \quad \underbrace{\xi_{21}(\phi) \to x_1 \left(1 + \frac{\phi_0 - \phi}{h_2}\right)}_{$$

$$h_2 < \phi < h_2 + \phi_0$$

Weak breakdown of energy equipartition "Normal" state $f \sim h_2$, $T_1 \sim T_2$

2. Inelastic cross collisions:

$$\alpha_{11} = \alpha_{22} = 1$$
, $1 - \alpha_{12} = O(1)$

$$\beta_1 = \beta_2 = 0, \quad \phi_0 \lesssim 1$$

$$\phi = \phi_0 = \frac{1 - \alpha_{12}}{1 + \alpha_{12}}$$

Regardless of the concentrationsî

$$\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \to x_2,$$

$$\xi_{22}(\phi) = 0, \quad \xi_{21}(\phi) \to x_1 \sqrt{1 + \phi} h_1^2 \frac{\phi_0 - \phi}{h_2}$$

No Brownian dynamics $(x_1\ddot{o} \quad 0)$

No Lorentz gas $(x_2\ddot{o} \ 0)$

Strong breakdown of energy equipartition $f \sim 1$, $T_1/T_2 \ddot{o}$

"Ordered" state

3. Inelastic heavy-heavy collisions:

$$\alpha_{12} = \alpha_{22} = 1, 1 - \alpha_{11} = O(1)$$

$$\beta_2 = \phi_0 = 0, \quad \beta_1 \sim h_2^{-1}$$

$$\beta_2 = \phi_0 = 0, \quad \beta_1 \sim h_2^{-1}$$

$$\xi_{11}(\phi) \to x_1 \sqrt{\phi \beta_1}, \quad \xi_{12}(\phi) \to -x_2 \frac{h_2}{\phi}$$

$$\xi_{22}(\phi) = 0, \quad \xi_{21}(\phi) \to x_1$$

$$\phi \sim h_2^{4/3} \to 0, \quad T_1/T_2 \sim h_2^{1/3} \to 0$$

Again, strong breakdown of energy equipartition

"Sub-normal" state

4. Inelastic light-light collisions + disparate sizes:

$$\alpha_{11} = \alpha_{12} = 1$$
, $1 - \alpha_{22} = O(1)$, $s_i \sim m_i^{1/3}$

$$\beta_1 = \phi_0 = 0, \quad \beta_2 \sim h_2^{-1/3}$$

$$\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \to x_2$$

$$\xi_{22}(\phi) \to x_2\beta_2, \quad \xi_{21}(\phi) \to -x_1\frac{\phi}{h_2}$$

$$\phi \sim h_2^{2/3} \to 0, \quad T_1/T_2 \sim h_2^{-1/3} \to \infty$$

Intermediate between normal and ordered states

"Sub-ordered" (or "Super-normal") state

5. Inelastic light-light collisions + Brownian limit:

$$\alpha_{11} = \alpha_{12} = 1$$
, $1 - \alpha_{22} = O(1)$, $x_1 = O(h_2)$

$$\beta_1 = \phi_0 = 0, \quad \beta_2 \sim h_2^{-1}$$

$$\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \to \phi^{1/2}$$

$$\xi_{22}(\phi) \to \beta_2, \quad \xi_{21}(\phi) \to -\frac{x_1}{h_2} \phi^{3/2}$$

$$\phi \sim h_2^{-2/3} \to \infty$$

Very strong breakdown of energy equipartition

"Super-ordered" state

Classification of states

$$h_2 \sim \frac{m_2}{m_1}, \quad \phi = \frac{\langle v_1^2 \rangle}{\langle v_2^2 \rangle} \sim h_2^{\eta}, \quad \frac{T_1}{T_2} \sim h_2^{\eta - 1}$$

State	η	$\langle v_1^2 \rangle / \langle v_2^2 \rangle$	T_1/T_2	Example
Sub-normal	$\eta > 1$	0	0	$\alpha_{11} < 1$
Normal	$\eta = 1$	0	finite	$1 - \alpha_{12} \sim m_2/m_1$
Sub-ordered	$0 < \eta < 1$	0	∞	$\alpha_{12} < 1$
Ordered	$\eta = 0$	finite	∞	$\alpha_{22} < 1, \sigma_i \sim m_i^{1/3}$
Super-ordered	$\eta < 0$	∞	∞	$\alpha_{22} < 1, x_1 \sim m_2/m_1$

Scaling laws

$$1 - \alpha_{11} \sim h_2^{a_1}, \quad (1 - \alpha_{22})(\sigma_2/\sigma_1)^2 \sim h_2^{a_2}, \quad 1 - \alpha_{12} \sim h_2^b$$

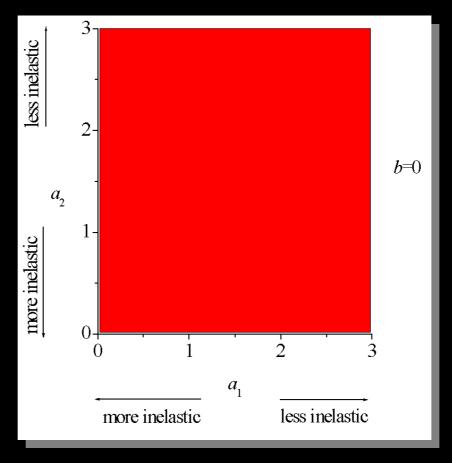
 $a_1=0$ ï Inelastic heavy-heavy collisions $a_1=\P$ ï Elastic heavy-heavy collisions

b=0ï Inelastic cross collisions b=1ï Elastic cross collisions

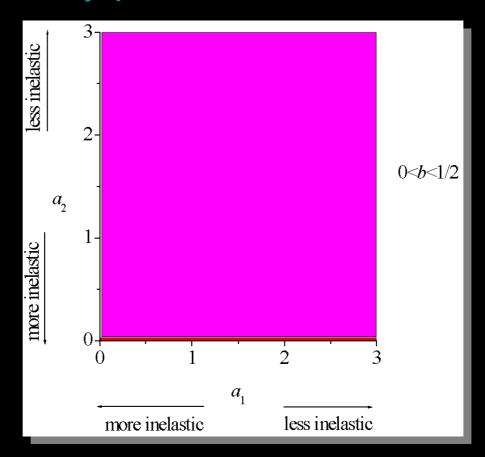
 a_2 =0 $\ddot{\text{i}}$ Inelastic light-light collisions + comparable sizes a_2 = \P $\ddot{\text{i}}$ Elastic light-light collisions

$$\phi \sim h_2^{\eta}, \quad \eta \stackrel{?}{=} \eta(a_1, a_2, b)$$

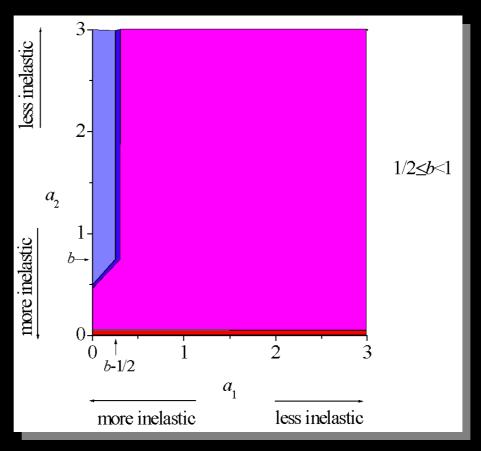
Inelastic cross collisions



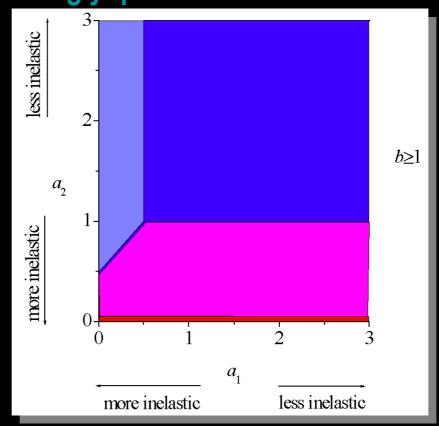
Weakly quasi-elastic cross collisions



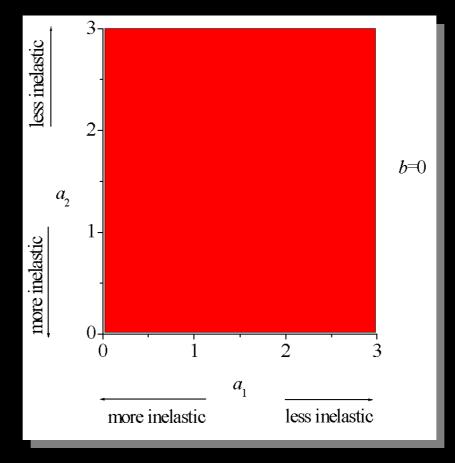
Quasi-elastic cross collisions



Strongly quasi-elastic cross collisions



Inelastic cross collisions



$$1 - \alpha_{12} = \mathcal{O}(1)$$

$$1 - \alpha_{11} \sim h_2^{a_1}$$

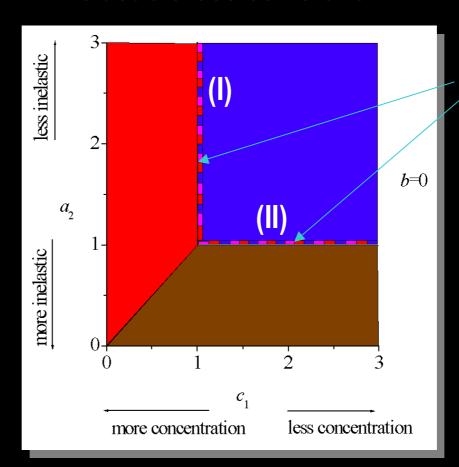
$$(1 - \alpha_{22})(\sigma_2/\sigma_1)^2 \sim h_2^{a_2}$$

$$x_1 \sim h_2^{c_1}$$

Sub-normal Normal Sub-ordered Ordered Super-ordered

Phase diagram (Brownian limit)

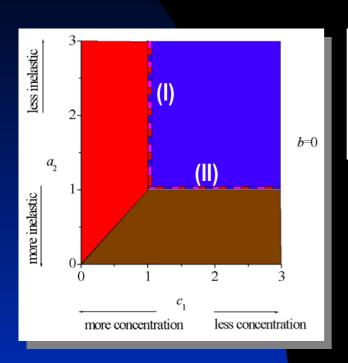
Inelastic cross collisions



Critical lines

Critical lines (Brownian limit)

(I)
$$x_1 \sim h_2$$
, $b_2 \ddot{o} = 0$



$$\frac{x_1}{h_2} \frac{1 - \alpha_{12}^2}{4} \begin{cases} <1 \Rightarrow \phi \sim h_2 \\ =1 \Rightarrow \phi \sim h_2^{1/2} \\ >1 \Rightarrow \phi \sim 1 \end{cases}$$

(II)
$$1-a_{22} \sim h_2, x_1/h_2 \ddot{0} = 0$$

$$\beta_2 \begin{cases} <1 \Rightarrow \phi \sim h_2 \\ =1 \Rightarrow \phi \sim h_2^{1/2} \\ >1 \Rightarrow \phi \sim 1 \end{cases}$$

norma

sub-ordered

ordered

Case (II) $1-a_{22} \sim h_2, x_1/h_2 \ddot{o} = 0$

VOLUME 86, NUMBER 21

PHYSICAL REVIEW LETTERS

21 May 2001

Critical Behavior of a Heavy Particle in a Granular Fluid

Andrés Santos* and James W. Dufty[†]

PHYSICAL REVIEW E, VOLUME 64, 051305

Nonequilibrium phase transition for a heavy particle in a granular fluid

Andrés Santos* and James W. Dufty†

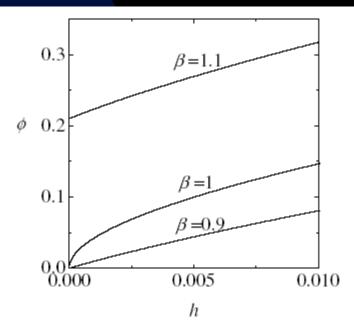


FIG. 1. Ratio of mean square velocities, ϕ , as a function of the mass ratio parameter h for $\beta = 0.9$, 1, and 1.1.

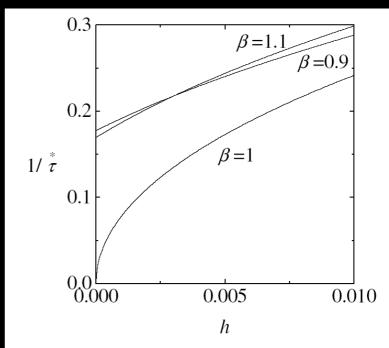


FIG. 3. Inverse characteristic time $\tau^{*-1} \equiv (\nu^* \tau)^{-1}$ as a function of the mass ratio parameter h for $\beta = 0.9, 1$, and 1.1.

Case (II) $1-a_{22} \sim h_2, x_1/h_2 \ddot{o} = 0$

How good is the Maxwellian approximation?

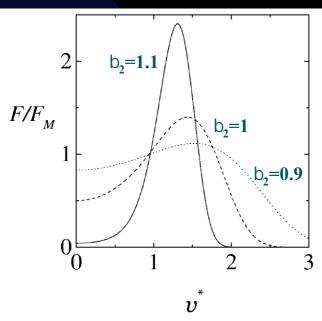


FIG. 4. Velocity distribution function of the impurity particle, F, relative to the Maxwellian, F_M , for $h = 10^{-2}$ and $\beta = 0.9$ (dotted line), $\beta = 1$ (dashed line), and $\beta = 1.1$ (solid line).

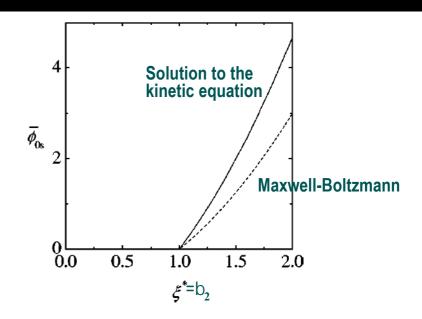


FIG. 9. Plot of the order parameter in the deterministic limit, $\bar{\phi}_{0s}$, as a function of ξ^* . The dashed line is the maximum entropy estimate $\bar{\phi}_s = \xi^{*2} - 1$ of Sec. II.

And if the system is heated?

□ Gaussian thermostat

$$\partial_t f_i(v) \to \partial_t f_i(v) + \gamma \frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{v} f_i(v)$$

NESS: $z_1 = z_2$ NO CHANGES

□White noise

$$\partial_t f_i(v) \to \partial_t f_i(v) - D \frac{\partial^2}{\partial v^2} f_i(v)$$

NESS: $z_1 f = z_2$ MINOR CHANGES

Conclusions

Depending on the control parameters (coefficients of restitution, size ratio, and concentrations), the mean square velocity ratio , $\mathbf{v_1}^2\dot{\mathbf{U}}$, $\mathbf{v_2}^2\dot{\mathbf{U}}$ (and the temperature ratio T_1/T_2) in a free cooling granular mixture exhibit a rich diversity of scaling behaviors in the disparate-mass limit $m_1/m_2\ddot{\mathbf{O}}$, ranging from the "sub-normal" state $(T_1/T_2\ddot{\mathbf{O}} \ \mathbf{O})$ to the "super-ordered" state $(\mathbf{v_1}^2\dot{\mathbf{U}},\mathbf{v_2}^2\dot{\mathbf{U}})$.

If the cross collisions are **inelastic** $(a_{12}<1)$, the state is always "ordered" (v_1^2U, v_2^2U-1) . As a consequence, in this case there is neither Brownian dynamics (when $x_1 \ddot{o} = 0$) nor Lorentz gas (when $x_2 \ddot{o} = 0$).

Conclusions

- \square A "normal" state $(T_1/T_2 \sim 1)$ is only possible if the three types of collisions are sufficiently quasi-elastic.
- \Box A "super-ordered" state is only possible in the Brownian limit (when x_1 \ddot{o} 0). There is no "sub-normal" state in that case.
- □ In the Brownian limit, there exist critical lines in the phase diagram where the state can be normal, ordered or sub-ordered.
 - The same scenario as for free cooling mixtures holds essentially in the heated case.

THANKS!

