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The one-particle distribution function of a dilute gas under uniform shear flow is investi- 
gated by means of the Bhatnagar-Gross-Krook (BGK)  model kinetic equation. For repulsive 
interaction potentials of the form V(r)- r -I a hydrodynamic regime, characterized by a 
normal solution of the BGK equation, is identified in the proper limit, for arbitrary shear 
rates. This normal solution diverges at zero velocity, except for sufficiently small shear rates 
in the case of Maxwell molecules (1 = 4). Besides. it becomes highly distorted as compared to 
local equilibrium. 

I. Introduction 

The statistical mechanical description of systems in states close to thermal 
equilibrium can be considered as a well established theory [1]. For example, 
the constitutive equations for heat and momentum fluxes of a simple fluid are 
known. In far from equilibrium situations, however, the problem is much more 
complicated and a large number of questions still remain open. In particular, 
the constitutive relations must be generalized to include a nonlinear depen- 
dence on the hydrodynamic gradients [2]. Despite the lack of fundamental 
theoretical advances, a large number of nonequilibrium computer simulations 
have been carried out [3], some of them without a sound justification [4, 5]. 

The prototype system for the study of transport properties is a monatomic, 
dilute gas with short-range interaction. Instead of a fully statistical mechanical 
description in terms of the phase-space probability density, it is much more 
convenient to adopt a kinetic description, according to which the state of the 
system is characterized by the one-particle velocity distribution function (VDF) 
f (r ,  v; t). Its first five velocity momelits give the local densities of conserved 
quantities: 
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n(r, t )= f dv f(r, v; t) , 

n(r, t) u(r, t) = S dv  of(r, v; t) , 

~n(r, t) kBT(r,  t) = f dv  ½m[v - u(r, t)12f(r, v; t ) ,  

(1.1) 

(1.2) 

(1.3) 

where n, u, and T are the local number density, velocity and temperature, 
respectively. In eq. (1.3), rn is the mass of a particle and k B is the Boltzmann 
constant. The next moments of f provide the fluxes, such as the pressure tensor 

Pq(r, t) = S do into i - ui(r, t)l[vj -- uj(r, t ) l f (r ,  v; t) . (1.4) 

In a dilute gas, the evolution equation for the VDF is the Boltzmann 
equation (BE), which in standard notation reads [6] 

o f  "~- [ . ~ f  ~...~. S dU1 S d,.{~ Iv -- Vl]O's(IV -- UII , O ) ( f t S ; -  ffl) Ot (1.5) 

For a given specific problem, this equation must be solved subject to appropri- 
ate initial and boundary conditions. Nevertheless, for times much longer than 
the mean free time and for distances from the walls much larger than the mean 
free path, one expects the system to reach a hydrodynamic regime. In that 
regime, the BE is expected to admit a (so-called) normal solution, in which f 
depends on r and t only through a functional dependence on the hydrodynamic 
fields: n, u and T. The usual method to construct normal solutions to the BE is 
provided by the Chapman-Enskog (CE) theory [7], which is based on an 
expansion of the VDF in powers of gradients of the hydrodynamic fields. From 
a practical point of view, however, the usefulness of the CE method is 
restricted to the first few terms (Navier-Stokes and Burnett orders) [6, 8]. 

As said before, several important questions arise in the study of transport in 
far from equilibrium situations. In this paper, we shall be mainly concerned 
with (i) the existence of a time-dependent normal solution beyond the scope of 
the first few terms in the CE expansion, (ii) the character (asymptotic versus 
convergent) of the CE series, (iii) the distortion of the VDF far from 
equilibrium, and (iv) the influence on the above points of the interaction 
potential under consideration. 

Due to the wide diversity of possible nonequilibrium situations, we shall 
restrict ourselves to the well-known state of uniform shear flow (USF). This 
state has received much attention in simulation [3, 9, 10] as well as in 
theoretical studies [4, 5, 11-13]. At a macroscopic level, the USF is character- 
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ized by a linear profile of the x-component of the local velocity along the 
y-axis, a constant density, and a uniform temperature: 

u i = aiir i , aij = aSixSiy ,  a = const.,  (l.6a) 

n = const., (1.6b) 

VT = O. (1.6c) 

One of the advantages of this state is that fourteen of the possible hydro- 
dynamic gradients are zero, the only nonzero gradient ( d u x l a y )  being a 
constant. Moreover, there are no boundary effects, due to the absence of 
moving mechanical walls. These advantages are counterbalanced by the fact 
that the total energy does not remain constant, so that the temperature 
monotonically increases in time. Although external drag forces have been 
proposed to account for this viscous heating and get a stationary state [3], they 
do not seem to play a neutral role [4, 5] and, therefore, they will be omitted in 
this work. This time dependence of the USF, including the existence of an 
initial layer, renders the problem most interesting. 

To the best of our knowledge, the only exact results obtai :ed from the BE 
for the USF refer to the case of Maxwell molecules [13-15]. For other 
interaction potentials, one must resort to simulation [10]. Even in the case of 
Maxwell molecules, information about the VDF is obtained only indirectly 
through the knowledge of a finite, number of its moments. Consequently, in 
order to address the points quoted above, it is convenient to use the Bhat- 
nagar-Gross-Krook (BGK) kinetic equation [16] as a model of the BE. In this 
model, the Boltzmann collision operator is replaced by a single-time relaxation 
towards the local equilibrium distribution: 

O____f + v . V f  = - ~ ' ( f -  fEE) (1.7) 
Ot 

where 

/ m \3/2 [ 

fLE(r ,  V, t) = n(r ,  t) ~ 27rkBT(r ,  t )  ) expt [v  - =(r,  t)] 
m 

2k a T(r, t) ) 
(1 .8)  

is the local equilibrium VDF and ~'(r, t) is an effective collision frequency, 
which depends on position and time through the local density and temperature. 
The only influence ,_~ the interaction potential enters into the BGK equation 
through the temperature-dependence of the collision frequency. In a dilute gas, 
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is just linear in n. Its dependence on T is much less trivial. The simplest case 
corresponds to purely repulsive potentials of the form V ( r ) - - . r  -~ Then, 
dimensional analysis shows that 

~ = A n T  ~ , ~ - - 1 / 2 -  2 / I  , (1.9) 

where A depends on k a, m and the potential coefficient, but is otherwise a 
constant. In the particular case of Maxwell molecules (l = 4), o~ = 0, and the 
collision frequency becomes independent of the temperature. On the other 
hand, a = 1/2 for hard spheres (l--~ oo) and f grows then with the square root 
of the temperature. In the foll,Jwing, we shall restrict ourselves to collision 
frequencies given by eq. (1.9), considering t~ = 0 and o~ = 1/2 as limit cases. 

The BGK equation keeps the main physical properties of the BE, namely 
the conservation of mass, momentum and energy, and also the verification of 
an H-theorem [16]. Recent simulations in dilute gases show the relevance of 
the BGK predictions, even at a quantitative level, for states far from equilib- 
rium [10, 17]. As we shall see, the combined simplicity of the USF state and 
the BGK equation allows one to analyze with some detail the properties of 
nonequilibrium states. 

The organization of this paper is as follows. In section 2, the general solution 
to the BGK equation for a gas under USF is obtained and analyzed. In the 
especial case of Maxwell molecules (section 3), the general solution is easily 
seen to become a normal solution as time progresses. The corresponding VDF 
exhibits some unexpected features for shear rates beyond a certain threshold 
value. More general potentials are considered in section 4. The time-depen- 
dence of the collision frequency gives rise to mathematical and conceptual 
problems much more involved than in the case of constant collision frequency 
(Maxwell molecules). As a consequence, a normal state in a strong sense, i.e. 
after a large number of effective collisions per particle, is restricted to local 
equilibrium. However, a far from equilibrium ne,~mal state can be identified if 
the weaker condition of waiting until the temperature has increased by a large 
factor is adopted. The conclusions are summarized and discussed in section 5. 

2. General solution of the BGK equation for USF 

The problem we face is to find a solution to the BGK equation, eqs. (1.7) 
and (1.8), that is consistent with the USF state, eqs. (1.6). If the initial 
condition verifies eqs. (1.6), the consistency between eqs. (1.6) and (1.7) is 
satisfied by imposing generalized periodic boundary conditions. It is convenient 
to introduce the position R and the velocity V with respect to a frame moving 
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with the flow velocity: 

R,  = A~j(t) ri , A o ( t  ) =-- 6 o - a,,t , (2.1) 

V i = o i - aor ~ . (2.2) 

Eq. (1.7) can then be rewritten as 

Of + Ai~(t) Vj Of (2.3) 

where f'(R, V; t)=-f(r, v; t). At a macroscopic level, the USF is spatially 
uniform in this Lagrangian frame. This implies that the local equilibrium VDF 
]~.E is also uniform, 

m )3'2exp( mVZ ~ 
fLE(V, t )=  n (  2~rkt3 T( t  ) 2kB T ( t ) 1 .  

(2.4) 

If we restrict ourselves to uniform initial distributions f(V, to), then eq. (2.3) 
preserves this spatial uniformity in time, so that it misses the second term in 
the left side and reduces to 

Of a i y  j Of 
Ot b E  = - ~ ' ( f -  fLE), (2.5) 

where we have dropped the bar on f ( V ,  t).  Notice that eq. (2.5) is invariant 
under the transformations (V~, V,., V:) <--> (V x, I,:.,-V=) <--> ( - v  x , - v , . ,  v~). 

It is ~traightforward to get from eq. (2.5) the following dosed set of 
equations: 

0 
Ot P'j + (a'kPjk + aJkP'k) = - ~ ( P q  - p6q),  (2.6) 

where P~j is the pressure tensor defined by eq. (1.4) and p = -~ P,  = n k B T  is the 
hydrostatic pressure. In particular, 

0 

Ot 
0 

Ot 
0 

Ot 

(2.7) p = _ ~ aPx>., 

Px~, = - ~Px, - aPyy , 

Py>. = -KP.v,, + ~P " 

(2.8) 

(2.9) 
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Since P,:,. is positive definite, it follows from eq. (2.8) that if P~y were positive 
at a certain time, it would decrease monotonically until becoming negative, 
which is the physically meaningful sign. Thus, according to eq. (2.7), the 
temperature monotonically increases in time (except, perhaps, for a short 
initial period of time). In general, this viscous heating has an important 
influence on the average collision rate, which will increase with time according 
to eq. (1.9). An exception is the case of Maxwell molecules, where the rate at 
which collisions take place remains constant. 

The general solution of eq. (2.5) is 

f(V, t)= exp(-s)exp[( t - -  to)a#V j OlOVil f(V, to) 
t 

+ f dt '  ~ ' ( t ' ) exp[ - ( s -  s')] exp[( t -  t')aijV j 0/0V/] fLE(V, t ' ) ,  

to (2.10) 

where t o < t is the initial time, 

t 

s(t) = f dt' ~(t') 
t o 

(2.11) 

is the  average n u m b e r  o f  col l is ions per particle b e t w e e n  t o and t, s' - s ( t ' ) ,  and 
exp(taiy  / 0/0V~) is a shift operator: 

exp(taiyj O/OVi) g(V) = g ( a ( - t ) .  V) . (2.12) 

In order to have an explicit solution, one must proceed as follows. Given the 
initial VDF f(V, to), one gets the initial values p(to), Pxy(to) and Pry(to). By 
solving the set (2.7)-(2.9), where ~'ocp ~, the temperature T(t), t>  t o, is 
obtained. Its knowledge, along with that of s(t), allows one to obtain f(V, t) at 
any desired time t > t o. 

In transport phenomena, however, one is not mainly interested in the time 
evolution of the VDF corresponding to a specific initial condition. As discussed 
in the introduction, it is expected that, after a certain transient period, the 
VDF reaches a form in which all the space and time dependencc occurs 
through the hydrodynamic fields (n, u and T), the functional dependence being 
independent of the initial conditions. Such a VDF is called a normal solution to 
the kinetic equation, and holds in the so-called hydrodynamic stage of the 
temporal evolution. The existence of a normal solution also requires to 
consider points far enough from the boundaries of the system. Since those 
boundaries do not exist in the USF, we can concentrate on the initial layer. 
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The standard method to construct the normal solution is the Chapman-Enskog 
method [6, 7]. Although quite general and elegant, this method is restricted, at 
least from a pract:cal point of view, to states close to equilibrium. In order to 
investigate the possible existence of normal solutions far from equilibrium, it is 
better to consider particular simple states as illustrative examples. The USF is a 
suitable time-dependent state affording a detailed analysis. 

In order to explore the possible existence of a hydrodynamic regimc, it is 
convenient to introduce dimensionless quantities. A natural velocity scale is 
defined by the temperature 

V* -- [2kB T( t) / m l -  ' /2V . (2.13) 

Accordingly, the reduced VDF is defined as 

1 
f *  - n [2kBT( t ) /ml3 '2 f  " (2.14) 

The remnant time dependence, as well as the parametric dependence on the 
shear rate a, is accounted for through the reduced shear rate 

a*=--a/~(t) . (2.15) 

The physical meaning of a* is evident. It represents a uniformity parameter, 
namely the ratio between the mean free path and a characteristic hydro- 
dynamic length. In other words, a* is the only relevant parameter measuring 
the deviation from equilibrium. When applying the Chapman-Enskog method 
to the USF, a* turns out to be the dimensionless expansion parameter. 

Notice that for every initial condition f (V ,  to) we have a VDF f (V ,  t) that can 
be mapped onto the corresponding f*(V*; a*). Consequently, there exists in 
principle a different f*(V*; a*) for every f (V ,  to). Nevertheless the existence of 
a normal solution to the kinetic equation means that f*(V*; a*) must reach in 
the long-time limit (t - to--> oo) a well defined form independent of the initial 
conditions. If that limit is understood in the strongest sense, a rather trivial 
result arises. Due to viscous heating, the collision frequency increases in time, 
except in the case of Maxwell molecules (where ~" = const.). Thus, a*-~ 0 when 
t -  to--> ~ and the normal VDF become~ the local equilibrium one. According 
to this, a far from equilibrium normal solution would be only meaningful in the 
case of Maxwell molecules. As we shall see, that is not the case. The task of 
obtaining the normal f * ( V * ; a * )  from the general solution (2.10) will be 
carried out in section 3 for Maxwell molecules and in section 4 for more 

general interaction potentials. 
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Before closing this section, notice that the definitions (2.13) and (2.14) imply 
the following normalization conditions: 

f dV* f*(V*; a*) = 1, (2.16) 

f dV*V*f*(V*;  a*) = 0 ,  (2.17) 

f dV* V*2f*(V*; a*) = 3. (2.18) 

Since the V D F ) :  (V*; a*) depev_ds on the three components of V*, it is useful 
to introduce some marginal distributions functions. We define 

f*(V~, V~y; a * ) -  ~ dW z f*(V*; a * ) ,  
- - , a t :  

(2.19) 

(+)  . 
F x (Wx, a*)=-- dWv f*(Wi 

o 

, W;; a* ) ,  (2.20) 

(+) . f l ~ *  F r (V~y. )-- dV~ f*(V'~ 
o 

,Wy;a*) .  (2.21) 

3. Maxwell molecules 

In the case of Maxw,,IL molecules, the collision frequency remains constant, 
since a = 0 in eq. (1.9). Consequently, the only effect of viscous heating is to 
increase the thermal velocity without modification of the rate of collisions. In 
particular, the reduced shear rate a* = a/~ is a constant, so that the "distance" 
of the system from equilibrium does not change in time. 

From a mathematical point of view, the fact that ~ = const, makes the set of 
equations (2.7)-(2.9),  or equivalently the closed third order differential 
equation 

) 20 22 
+ l~ -~ p = ~ a i; p , (3.1) 

linear. It is worth mentioning that eqs. (2.7)-(2.9) and (3.1) also hold in the 
context of the BE for Maxwell molecules under USF, ~ being then related to 
an eigenvalue of the linearized BE [13, 15]. The general solution of eq. (3.1) is 
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p ( t )  = C ! exp(At) + exp(/, t)  (C 2 cos tot + C 3 sin tot), (3.2) 

where A and/~ +- ito are the roots of the characteristic equation 

A*(1 + A*) 2 2 _,2 A* = ~ .  , - A/g". (3.3) 

More explicitly, 

4 ~" shE[ ~ ch- '(1 + 9a*~)l 
t 3V2a,2 + 9a,4)it3 ~[(1 + 9a .2 + 

+ (1 + 9a *2-3X/2a .2 +9a '4 )  1~3- 2], (3.4) 

/x = - ( ½ A  + ~'), (3.5) 

to = [a( a + ¢)1  '`5 . ( 3 . 6 )  

The constants C,, C 2 and C 3 are determined by the initial values p(to) ,  P~,.(to) 
and Pyy(to).  The first term in the right side of eq. (3.2) grows in time, while the 
second term decreases. Thus, for ~'t >> 1, 

p ( t )  = C 1 exp(At). (3.7) 

By inserting this into eq. (2.6) and using eq. (3.3), one can see that the 
reduced pressure tensor Pi*j =- Po/P asymptotically reaches the following steady 
values: 

3 A* 
P* = (3.8) xy 2 a* " 

P,*v = P~*~ = (1  + A * ) - ' ,  ( 3 . 9 )  

P,,* = P*z =0, (3.10) 

where h*=  A/~. Notice that eqs. (3.8)-.(3.10) hold for arbitrary initial condi- 
tions in the long-time limit, so that they clearly correspond to the normal 
solution of the kinetic equation. It might seem that an exception corresponds 
to a particular initial condition for which C 1 = 0. But such an initial condition is 
incompatible with a positive definite VDF, since then p( t )  would take negative 
values for time periods of length ~r/to. From eqs. (3.8) and (3.9) one can get 
expressions for the generalized shear viscosity, 
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P,,*v 3 A* 2 sh2[ ~ ch_~( 1 + 9 a , Z )  ] (3.11) 
rl * ( a * ) --- a*  = 2 a *-'-~ = a *--5 

and viscometric functions, 

/" yY - P * x  
gt,(a*) -- a ,  2 = - 2 ( 1  + a,)-3, (3.12) 

P ~ * -  P*v,. = 0 .  (3.13) ~2(a*) = a ,  2 

These are the main transport coefficients in this problem. The quantity A* is a 
function of z -  a .2. The only singularity for finite z is a branch point at 
z = - 2 / 9 .  In particular, the origin z = 0 is a regular point,  which implies that 
the expansions of A*, 7/* and gt 1 in powers of z converge for Izl < 2/9. The first 
few terms are 

~ * =  32-(Z-- 4Z2 + "~Z 3 + . .  ") ,  

gt = _ 2 ( 1 _ 2 z  + ~ z  2 + . . . ) .  

(3.14) 

(3.15) 

(3.16) 

We see that the USF for Maxwell molecules provides an example where the 
CE method converges. 

For large shear rates, it is convenient to rewrite eq. (3.4) as 

A*= ~z1~3[(9 + z - l  + 9~/1 + 2z-1)1/3 

2 ,3] .  + ( 9 + z  -~ - 9~/1 + ~z - 2 z  -t (3.17) 

This shows that, in order to expand about the point at infinity, the natural  
expansion variable is z -~3. The results are 

'~*= zl/3[(2) 1/3 -- 2Z-1/3 "at- 1(3)I /3z-2/3 -1-" ' ' ] ,  (3.18) 

17 *= Z-2/3[(~) 213-  Z-I~3 + 1(3)4/3Z-2/3 + ' ' ' ]  , (3.19) 

q', = - z - ' [ 3 -  3( )"3z -"3 + ( )2'3z-Z13 + . . . ] .  (3.20) 

Most of the above results in this section can be found in ref. [12]. Let us turn 
our attention now to the VDF itself. With the definitions (2.13) and (2.14), eq. 
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(2.10) becomes 

f*(V*,t)=exp(-s)exp[(t-to)aoV~j O/OV~] To To V*,t,, 
t 

+ "tr -s/2 f dt '  ~ ' ( t ' ) exp[ - ( s -  s')] exp[(t- t')%V~ a/OV~ ] 
t o 

x \.~--;/ exp(-V*ZTIT'), (3.21) 

where T-= T(t), T '=- T(t') and To--- T(to). Eq. (3.21) provides the general 
solution and not just the normal one. To obtain the latter, we must take the 
limit t-to---~oo. In appendix A it is shown that, for any initial distribution, 

,_,o__, --~- o l i m  (T(t))'vf*(~/T(t)~ V*,to=) 8(V*) , (3.22) 

where 6(V*) is Dirac's delta function. Both eqs. (3.21) and (3.22) are valid for 
any interaction potential. In the particular case of Maxwell molecules, the 
number of collisions s, defined by eq. (2.11), is just proportional to t -  t o. 
Thus, the first term in the right side of eq. (3.21) vanishes in the limit 
t -  to---> oo. Concerning the second term, we can make, according to eq. (3.7). 

T 
T' = exp[A(t - t ' ) ] .  (3.23) 

Although eq. (3.23) is not strictly true for times t' such that t' - t o is not large, 
the contribution to the integral coming from those times is negligible in the 
limit t - to--> oo because of the factor exp[-(s  - s')]. After inserting eq. (3.23) 
into eq. (3.21), making the change of variable s 1 = ( t -  t')~', and explicitly 
taking the limit t -  to----> 0% we finally get 

S . ( v . ; , , . )  =  -3,2 j ds 1 exp(-s,)exp(3A*sl)exp(a*slW,, a / a ~ )  
O 

x exp[-exp(A*s~) V*21. (3.24) 

Eq. (3.24) gives the explicit expression for the VDF representing the normal 
solution to the BGK equation for Maxwell molecules under USF. Notice that, 
although f(V, t) depends on time, the reduced VDF f* given by eq. (3.24) is 
constant in time for every value of the reduced velocity V. In this sense, the 
normal state for Maxwell molecules can be considered as equivalent to a steady 
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state [4]. The dependence on the reduced shear rate a* appears explicitly and 
also through the function A*(a*) given by eq. (3.4). We see that the normal 
solution is analytic at a * =  0. Consequently, the CE expansion of the VDF, 

f*(V*;a*)= ~ a*kftk)(V*), 
k=O 

(3.25) 

is convergent. This could be expected from the convergence of the expansions 
(3.14)-(3.16), but, in general, analyticity of the moments does not imply 
analyticity of the distribution function. The first few terms of the CE expansion 
of (3.24) can be easily obtained by making use of eq. (3.14): 

f*(V*; a*) = "11 - - 3 / 2  f d s  1 exp ( - s l )  [1 + a*Esl + ~(a*4)] 
o 

~ 0 2 
0 1 ~ . 2 ~ 2 I , r . 2  ~ 1 a , 3 _ 3 i , , , , 3  

x l + a * s l ~  O~ + ~" ~l'y 0~2+~ ~ , ,  - -  

x [ 1 -  2a*Zs~V*2 + 6(a '4)]  exp( -V*2) .  

c~ 3 

OW.,.3 + ~'(a*4)) 

(3.26) 

They are given by 

ft°)(V*) = ~r -3/2 exp( -V*2) ,  (3.27) 

f~')(V*) = -2W~ w.,: f ' ) ( v * ) ,  (3.28) 

f~Z~(v*) = [1 - 2II'2 z ~ ,  - 2V 7 (1 - 2v*xz)lf~°)(V*), (3.29) 

f~3'(V*) = 4V~xV'C,:[Wy2(3- 2Wx 2) + 2 V , 2 -  ~lf~°)(V.). (3.30) 

As said before, the expansions (3.14)-(3.16) converge for a * <  V~/3. This is 
presumably also the radius of convergence of the expansion (3.25). For much 
larger values of the shear rate, the VDF diverges to infinity at V= O. This 
unexpected result happens when A*~> 2/3, i.e. a* I>5/3. In order to look at 
this point more closely, let us take ~ = 0. In that case, eq. (3.24) becomes 

f*(V~,O, W~;a*)- 
- 3 t 2  

T¢ 

A* 
v7  2'*" ' 3 '2 ' r (  - a* ', 

where V~ 2 =-- V~ 2 + W: 2 and 

(3.31) 

F(x, e) - f dt t* 1 exp(-  t) 
I 

(3.32) 
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is the incomplete gamma function [18]. It is well defined for all e if x > 0, and 
for e > 0 if x <~ 0. Its behavior in the limit e--~ 0 ÷ is obtained in appendix B (cf. 
eqs. (B.10)-(B.12)).  Consequently, 

f*(V~ , O, V'~ ; a*)~. 

-3 •2  
,.ff 

1 - 3A* ' 

- 3av -3'2 In V~ 2 , 

~r-312a,-'F( ~ _ X , - t )  V~ 2(a'-'-312) 

A * < 2 / 3 ,  
(3.33a) 

A* = 2 /3 ,  
(3.33b) 

, A* > 2 / 3 ,  

(3.33c) 

in the limit W~2---~0. Eqs. (3.33b) and (3.33c) show that f*(V*;  a*) diverges 
when V*--~ 0 if A*/>2/3. According to eq. (3.3), the corresponding range of 
shear rates is a * ~  > 5/3. The origin of this divergence at vanishing velocity is 
related to the viscous heating effect inherent to the USF. Two exponential 
terms compete in eq. (3.24). The first one, exp( - s l ) ,  gives the fraction of 
particles that have not collided after s~ collision times. The second term, 
exp( 3 A,sl ), is the ratio [ T(s I )/To] 312, which is a consequence of the nondimen- 
sionalizations (2.13) and (2.14). The first term goes to zero when s~-~ ~, while 
the second one goes to infinity. For sufficiently small shear rates ( a * <  5/3),  
the viscous heating is not enough to overcome the effect of collisions, so that 
the VDF is finite at V* = 0. However, the concentration of particles around 
V* = 0 is no longer counterbalanced by the collisions if a* t> 5/3, which results 
in the divergence of the VDF.  

From eq. (3.24) it is a simple matter to obtain the functions defined in 
(2.19)-(2.21): 

f*(V~, Wy; a*) = rr -~ f ds~ exp[-(1  - A*)sl] exp(a*s~Wy O/OW; ) 
0 

F~.+)(V'~; ; a*) - 

F(+)(V*" a*) = y x -  y ~  

x exp[ -exp(h*s , )  (Wx 2 + W~2)I, 

- , , 2 7  e x p [ - ( 1 -  ½ A*)s,] 
exp( -exp(A*s l )  ar J ds I _ , 2 ~ 2 x l / 2  2 ( l + u  ~,) 

(} 

( a*sl ) 
_,22),/2 ~ exp(~A*s}) , xe r f c  ( l + u  ~1 " - 

- 1 / 2  
ds I e x p [ - ( 1 -  ½A*)sl] expI-exp(A*s,)  V'~ 2] 

2 
O 

× erfc[a*sy~y exp(½ A ' s , ) ] ,  

(3.34) 

, 2  2 
l + a s  1 

(3.35) 

(3.36) 
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where erfc(x) is the complementary error function [18]. The functions f* and 
F~.+r ) now diverge at the velocity origin for a* ~ V-6 and a* I> 3V~, respectively. 

Fig. 1 shows the ratio 

]*(V'~, l,~y ; a*) 
q~(V'~,V~y;a*)= 7(O)(v,~, V'~y) ' (3.37) 

for a* = 1 and - 2  <~ W~,y <~ 2, where 

.f~°)(W~, Wv) = ,rr -1 exp[-(W~ 2 + Wy2)] (3.38) 

is the local equilibrium function. The distortion from local equilibrium at this 
rather large shear rate is quite apparent. In fact, the value a* = 1 is beyond the 
convergence region (a*~  < V~/3) of the CE expansion (3.25). 

A much larger distortion occurs when a* exceeds the threshold value 
a* = X/-6. As an example, the case a* = 4 is considered in fig. 2. The qualitative 
shape is very different from that of fig. 1. However, the divergence at 
V~ =Wy = 0 does not show up in fig. 2. This is because the trend to that 
divergence is only apparent for values of W~ and Wy much smaller than the grid 
size chosen in fig. 2. The region -0.005 <~ Vx,y ~<0.005 is amplified in fig. 3, 
where now the expected behavior of/~ in the neighborhood of the origin is 
clearly observed. 

The knowledge of the VDF allows one to get explicit expressions for the 
velocity moments 

V. ° 
° 

I 

-2 ~ ~-2 

Fig, 1. Surface plot of  the V D F  relative to local equilibrium, ~(W,,  V,* ; a*). in the case of  Maxwell 
molecules for a reduced shear rate a* = I. Maximum value is 10.5. 
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[: 

-2 "-2 

Fig. 2. Same  as fig. 1, but for a* = 4. Maximum value is 21.6, 

Mt,,.t2.t3(a* ) -- f dV* ~ *' V~.,. *2V~ k'f*(V*; a*). (3.39) 

The only nonvanishing moments correspond to k I + k 2 and k s even. In that 
ease, substituting eq. (3.24) into eq. (3.39). one has 

Mkl.k2,k3(a*) 

f .:, --~r ds, e x p [ - ( 1 - ~ A * ) s , ]  dV*exp[-exp(A s , )V 
[J 

O .  s 

o 

s 
-0.05 -0.05 

Fig. 3. Same as fig. 2, but for  a much smaller  region of velocities. Max imum value is I IN. 
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k I (k,)r(k, q+l) F(k'+l) 
q =o q 2 2 2 

q + k  I =even 

x ds l ( - a * x l )  'lexp - 1+ 2 " A* s I . 
o 

(3.40) 

After performing the s t -integration, we finally get 

M,,.k~_.,,(a*) 

kl 

"/1"-312 E 

q =t| 
q+kl=Cvcn 

× (--a*)q(1 + 

kl! F (  k l - q + l  + q  1 + (k ; - -q )  ) r (  k" + 
! 2 

kl + k2 + ks ]-Cl+q~ 
2 " A* ) (3.41) 

In particular, eqs. (2.16), (2.18), (3.8) and (3.9) are recovered. 
Once we have analyzed in some detail the VDF given by eq. (3.24), it is 

instructive to obtain the rate of change of the entropy density 

S(t) = - k ~  f dV f(V, t)In f(V, t) (3.42) 

after the hydrodynamic stage is reached [19]. Rather than the detailed struc- 
ture of eq. (3.24), which is crucial is the fact that, for a given value of the 
reduced velocity V*, the reduced V D F f *  does not change in time, since a* is a 
constant. This is not true for interactions other than Maxwell's [19]. Use of the 
changes (2.13) and (2.14) gives 

[( m )"" ] 
S(t) = - n k  B dV* f*(V*; a*) in  n 2kBT(t ) f*(V*; a*) , (3.43) 

and, therefore, 

dS(t) s 1 dT(t) 
dt = ~-nkR T(t) dt (3.44) 

Comparison of this equation with the thermodynamics fundamental equation 
(for an ideal gas) 

dS = ~nk~ dT  p dn (3.45) 
T T n ' 



A. Santos. J.J. Brey I Velocity distribution of a gas 371 

shows that  local equilibrium thermodynamics holds for a gas of Maxwell 
molecules under USF arbitrarily far from equilibrium. Eqs. (3.7) and (3.44) 
also show that S(t) grows linearly in time. 

4. Power-law repulsive potentials. Hard spheres 

In this section, we are going to consider interaction potentials of the form 
V ( r ) -  r -I, for which the collision frequency is given by eq. (1.9). Since the 
particular case of Maxwell molecules (a  = 0) has already been analyzed in the 
previous section, we shall consider now the case a > 0, with special attention to 
a = 1/2 (hard spheres). Eventually, the limit a - * 0  + will be taken to recover 
some of the results of section 3. 

For Maxwell molecules the reduced shear rate a* = a/£. is a constant, so that 
the system is always the same distance apart  from equilibrium. It was then 
natural to expect the system to reach a hydrodynamic regime after a certain 
transient period. Nevertheless, a* decreases in time in the more general case of 
a > 0. Thus,  as time grows, the state of the syste~ is closer and closer to that 
of (local) equilibrium. Consequently, the existence of a normal solution 
beyond states asymptotically close to equilibrium is not evident. As we shall 
see, a far from equilibrium normal solution exists in the limit of infinite times 

but finite collision times. 
Let us start by analyzing the nonlinear set of equations (2.7)-(2.9) ,  with 

a¢ p". Elimination of t in favor of z -  a . 2  yields, after some algebra. 

O 2 3 ,2 
- -  - 4oez-'[1 +2z (~  - a)'q*] Oz" q" ~0¢2Z4 , Og 2 17,2 g _ _ _  

+ "q*[1 + ~ ( 2 -  a)zrt* + c,(~ - a)(1 - a)z2r1.2] = 1,  (4.1) 

where we recall that ~1 * -= - (Pxy /p ) / a*  is the reduced shear viscosity. The 

evolution equation for a* is 

1 c~a* _ _  2 ,2 ,2  
- r t  • ( 4 , 2 )  

a 3t 

Given an initial VDF f (V,  to), one gets the initial values of the shear rate (a,~;), 
the shear viscosity (r/~), and the derivative rh~'= (37q*/Oz):=,,. The latter is 

given by 

3 , - 4 [  (-~ 
= _ a)  p,.,.(to) r/~' 4 a a "  1 a~ .~(1- . (4.3) 

P* (to) / ] " 
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With the above initial conditions, eq. (4.1) provides 7t*(a*) for a * <  a~. In 
principle, there are as many particular solutions as initial conditions. As an 
example, let us take the following two-parameter family of initial VDFs: 

f(V, to) = n(-~)3'Zexp(eV~ O/OV+) exp(-13V2) . (4.4) 

This function is an anisotropic Gaussian. The parameter e is a measure of the 
coupling between V~ and V+., while fl is related to the initial temperature T o or, 
equivalently, to the initial shear rate a~. Fig. 4 shows the numerical solutions 
of eq. (4.1) in the case of hard spheres (t~ = 1/2) for the initial condition (4.4) 
with e = 0.01 and 1, and a~ = 1 and X/2. It is seen that the four particular 
solutions tend to overlap for values of a* sufficiently smaller than the initial 
one. A similar behavior can be observed when starting from other initial 
conditions. Thus, there must exist a special solution of eq. (4.1) that "attracts" 
all the particular solutions. It seems then logical to identify that special solution 
with the generalized hydrodynamic viscosity ~*(a*). 

In order to get a useful representation for the hydrodynamic viscosity, one 
could try a (CE) power expansion, 

~*(a*) = 1 + ~'. c , z  k (4.5) 
k = !  

0 

0 
0 

' • ' ' I " ' ' + I ' ' " ' I ' 1 , • 

° 

\1 
| | I I I a I ! I I | I . ~ 

0.5 1.5 2 
~Ze  2 

Fig. 4. Particular solutions of eq. (4.1) for hard spheres (u = 1/2) corresponding to 4 initial 
conditions of the form given by eq. (4.4). The dotted line corresponds to the special solution 
repre~nted by the .series (4. I0). 
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In the case of Maxwell molecules, this expansion, given by eq. (3.15), is 
convergent. Substituting eq. (4.5) into eq. (4.1) for a > 0, one can obtain the 
coefficients c k recursively (see appendix C). The first few ones are 

c, = - 2 ( 2 -  a ) ,  (4.6a) 

c 2 = 4(7 - 131 + 412 ) ,  (4.6b) 

c 3 = 8(-10 - 391 - 3912 + 9 1 3 ) .  (4.6c) 

A dominant-term analysis carried out in appendix C shows the consistency of 
the behavior 

Ic ,  I * .~a) (4.7) 

for large k. Therefore, the series (4.5) is only asymptotic. The divergence of 
the series (4.5) and the asymptotic behavior (4.7) have been numerically 
confirmed in the case of hard spheres [20]. Thus, the series (4.5) holds for any 
solution of eq. (4.1) and does not characterize a particular solution, not even 
the hydrodynamic one. 

The generalized hydrodynamic viscosity can be obtained by means of a 
power expansion around the point at infinity. An analysis of eq. (4.1) for large 
z indicates that either 

r/* ~ ,ffz ~1 -,),2~, (4.8) 

with .~ arbitrary, or 

'1~* ¢-0 Z - 2 / 3  - (4.9) - -  , ¢ , ,  = + + 

The first asymptotic behavior, eq. (4.8), corresponds to the general solution of 
eq. (4.1). The second behavior, eq. (4.9), is universal (in the sense that the 
power of z is independent of the value of a)  and defines a special solution of 
eq. (4.1). Such a special solution can be represented by the expansion 

r/*(a*) = z -2;3 ~ ( , ( z - ' ;3 )  '~ , (4.10) 
k=O 

which has the same form as in the case of Maxwell molecules, eq. (3.19). The 
first three coefficients are t? 0, given in eq. (4.9), and 

1 6 + 5 1  
~71 2 3 + 5 1  + 2 ~  2 ' 

(4.11a) 
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]4 2 \ -2 9 +  4 (6+  7tQ6~ +4(3 + 7~t - :¢t~ )c~ 
3~ 2)c-- ° (4.11b) 6~ = - 4 ( 3  + 7 a  + ~ c~ 

In contrast to the series (4.5), the series (4.10) is convergent. In the case of 
hard spheres, for instance, I(~[ "~ (3-2/3) k and the series (4.10) converges for 
a * >  1/3 [20]. The dotted line in fig. 4 corresponds to the hydrodynamic 
viscosity for hard spheres as obtained from the series (4.10). The same function 
is plotted in fig. 5 for a wider range of shear rates. For comparison, the 
viscosity for Ma.,well molecules, eq. (3.11), is also shown. It is seen that the 
general shape of the reduced shear viscosity is rather insensitive to the details 
of the interaction potential. This is somewhat unexpected if one takes into 
account the fact that both functions differ in an important qualitative feature, 
namely the convergent character of the series expansion around the origin, eq. 
(4.5). 

Regarding the other components of the pressure tensor, eq. (2.6) yields, in 
reduced units, 

2 o t a , 2 1 o ,  eq ) * * * * * g , , , D *  D *  
-x:. Oa* + 1 Pq + aikP,j  + aikP,i  3,, .~ xy--ij = 6 i j  • (4.12) 

In a normal state, we have 

P* = * (4  13) ,.. P = 0  

' 1 , I ' I ' I ' 

q° 

tO 

O 

0 2 4 6 8 10 
( t  o 2  

Fig. 5. Plot of the (hydrodynamic) shear viscosity for Maxwell molecules (dotted line), hard 
spheres (solid line), and an approximation of the latter, given by eq. (4.35) (dashed line). 
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e*- • • • -, p*2 "Y ,, p ,  OP.,y 
P""P"" "" = ~ ' a* ~ a a *  .w Oa* (4.14) 

Consequently,  the viscometfic functions are 

,O*-- 1 
qtl(a*) = 3 ~ + 2(1 - a)rt *z - 2 a z  ~rt*2 z 0z ' (4.15) 

~ , ( a * )  = 0 .  (4.16) 

The expansions (4.5) and (4.10) give, respectively, 

qtl(a*) = -2[1 - 2(1 - a ) z  +8(~  a)( 4 -a)z" + " ' 1  (4.17) 

i - 2  - I / 3  ~ l ( a* )  = - z - ' [ 3 -  2(1 + -~a)c,,z + - - - ] .  (4.18) 

Let us discuss now the idea underlying in the method used to take the 
hydrodynamic limit of long times and get the representation (4.10) for the 
shear viscosity. If one fixes an initial condition at a given time t,, (which 
corresponds to a certain a~) and then takes the limit t -  t,,---, : c  it is clear that 
the result is a * =  0. This strategy is inadequate,  since it reduces the normal 
solution to states asymptotically close to equilibrium. Rather  than fixing the 
present at to and to look towards an infinitely far future (t--,~:).  it is more 
useful to fix the present at t and push away the initial condition to the remote 
past (to--> - ~ ) .  According to the second point of view, we fix a value of a* and 
obtain the normal solution corresponding to it by formally applying the initial 
condition for a~---->:c or, equivalently, T.--->0. An important  consequence is 
that,  except in the case of Maxwell molecules, the effective number of 
collisions taking place between t 0 and t, given by eq. (2.11), is kept finite as 

t o ----> _ ~ :  

lim s ( t ) =  ~ . da* '  [a*'S-q*(a*')] -1 , (4.19'b 
1( f .m~ - -  

where use has been made of eq. (4.2). From eq. (4.9) we see that a*~Tl*(a *) 

a *5/s for large a*, so that  the integral in eq. (4.19) is finite. Consequently, the 
VDF,  eq. (3.21) possesses a contribution associated to the initial condition 
term. This contribution, however, becomes independent of the details of the 
initial distribution in the long-time limit, as shown by eq. (3.22). Therefore,  
the normal solution to the BGK equation reads 
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f*(V*;  a*) = exp( - o ' / a )  8(V*) 
t r  

+ -- do" exp[-(o" - o" ) / a l  \ 7 /  
o 

x exp ~ W,,a/aW,. exp - \  a* / V * " ] ,  (4.20) 

where o" = a s ,  1" -- otat, a* '  --  a*(o"),  and r '  = ~-(o-'). The variables a*, r and o" 
are related each other by the differential equations 

~ a *  2 
Otr "~a*3r/*(a*) (4.21) 

19"g 
= a * .  (4.22) 

Otr 

Eqs. (4.21) and (4.22) follow directly from eqs. (2.11) and (4.2). The solution 
of eq. (4.21), where 7/*(a*) is given by the series (4.10), with the boundary 
condition a*----~ ~ when o-----> 0, gives tr as a function of a* or, equivalently, a* 
as a function of o'. Inserting the latter into eq. (4.22) and applying the 
boundary condition ~----->-~ when o'---~0, one gets r as a function of o- or, 
analogously, as a function of a*. Substitution of all these functions into eq. 
(4.20) provides the normal VDF f*(V*;  a*) for any desired value of the 
reduced shear rate a*. All of this can be achieved numerically very easily. 

The choice of the variables o- and r instead of s and t, respectively, is 
suggested by the convenience of making the dependence on the potential 
parameter a in eq. (4.20) as explicit as possible. Of course, the functions o'(a*) 
and "r(a*) depend on the value of o~, since so does the shear viscosity rt*(a*). 
Nevertheless, given the weak influence of a on r/*(a*) observed in fig. 5, one 
can also expect a small influence on tr(a*) and z ( a * ) .  This is confirmed by fig. 
6, where a*-2 is plotted versus o" for hard spheres (oz = 1/2) and for Maxwell 
molecules (a = 0j. Ti~e first curve is obtained from the numerical solution of 
eq. (4.21), while the second one can be obtained analytically (see appendix D): 

OrM(a*) = ~,h * - I  +in(1 + A*- ' ) ,  (4.23) 

where the subindex M is used here to emphasize that eq. (4.23) corresponds to 
the singular limit of Maxwell molecules (a--->0). In fact, the function o'(a*) 
does not have any special meaning in the context of Maxwell molecules. Let us 
remind that s ( a * )  represents the total effective number of collisions per particle 
needed to reach a shear rate a* when starting from a much larger value an 
(formally, a~--*~). Such a number of collisions strongly depends on the 
interaction potential through the parameter a. The "quasi-universal" behavior 
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04 

0 1 2 3 4 5 6 
CT 

Fig. 6. Plot o f  a *~ : versus or for hard  spheres (solid line) and Maxwell molecules  (dotted line). 

of c,(a*) indicates that, roughly speaking, s ~ a -  t. Since a*- :  = T : " ,  the curve 
for hard spheres in fig. 6 can also be understood as a plot of T versus s. The 
slope of this curve gives directly the shear viscosity, according to eq. (4.21). 
This was essentially the method used by Naitoh and Ono [21] to measure the 
shear viscosity from molecular dynamics data. 

The main qualitative difference between the VDF for Maxwell molecules, 
eq. (3.24), and the one for more general potentials, eq. (4.20), is the presence 
in the latter of the delta term. It represents the contribution to the VDF of the 
fraction of particles that have not collided yet after a period of time equivalent 
to s = cr/ct collisions. In a strict sense, all those particles have still the same 
velocities as initially. However, due to viscous heating, those velocities are 
negligibly small as compared to the thermal velocity at the time under 
consideration. From this point of view, the VDF (4.20) is independent of the 
initial conditions and hence can be considered as normal. If the stronger 
criterion of an infinite number of collision times were imposed, then the 
normal VDF would reduce to that of local equilibrium. 

The presence of the delta term is reminiscent of the divergence of the VDF 
for Maxwell molecules, given by eq. (3.24), in the limit V*---> 0. In contrast to 
the latter, however, the divergence exists now for any value of a*. The first 
terms in the CE expansion (3.25) are still given by eqs. (3.27)-(3.29), even if 
a =~ 0 [19], and are regular at V* = 0. Consequently, the CE expansion of eq. 
(4.20) is only asymptotic. 

As a check of consistency, it is straightforward to verify that eq. (4.20) 
identically satisfies the conditions (2.16) and (2.17) with independence of the 
form of the functions or(a*) and "r(a*). On the other hand, eq. (2.18) implies 
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or 

1 do" 1+ 
ql 

~-- - r ' ) - ' ]  [ 1 
exp - - (o- - o-' 

og / 3 
+ in a* ] J  = 1. (4.24) 

This is an implicit equation for ~*(a*). By differentiating with respect to or, 
one has 

o" 

_ f [ 1 ( o-, a*"~l r / * ( a * ) -  1 1 d o ' ' ( r - ' r ' ) e x p  - -  o ' -  + I n  (4.25) 
ol 2 a* tz a * / J  " 

0 

The above equation can also be obtained by multiplying both sides of eq. 
(4.20) by V~.~ V~,. and integrating over V*. Eq. (4.25), along with eqs. (4.21) and 
(4.22), provides the special solution of eq. (4.1) compatible with the boundary 
condition (4.9), in a representation different from that of eq. (4.10). 

Fig. 7 shows the regular part of the ratio (3.37) for a* = 4 in the case of hard 
spheres (a  = 1/2). The general appearance is not very different from that of 
fig. 2. However, the magnification of the small velocity region, fig. 8, does not 
have any resemblance with fig. 3. The continuous, although very sharp, 
increasing of the distribution near V = 0 for a = 0 is replaced by a delta-peak, 
not shown in fig. 8, in the case of ~ # 0. 

In order to compare more closely the distribution functions corresponding to 
Maxwell molecules and hard spheres, it is convenient to consider the one- 
variable functions (2.20) and (2.21). In the case of Maxwell molecules, those 
functions are given by eqs. (3.35) and (3.36). On the other hand, for a -# 0, eq. 
(4.20) yields 

V I 

""~.~. ! ~ i I i i i '~, /~ . , \L 'V '  '\ 

. 2 >  < 

,•.E" X 

2 

- 0  

-2 

Fig. 7. Surface plot <)f the  V D F  relative to local equ i l i b r ium,  5(V~.  V:~ • a* ) .  in the case of ha rd  
sphe re s  tor  a reduced shear  ra te  a * =  4. M a x i m u m  v;,luc is 17.3. 
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Fig. 8. Same as fig. 7, but for a much smaller region of velocities. Minimum and maximum values 
are i.3 and 3.8, respectively, 

] ,ff-3/2 i r ( 
• , do'' e x p [ - ( o ' -  o - ' ) / a l  a*']  '+.2'' F!,.+~(V'~j • a * ) =  2 a a* / 

0 

a J a* ! 

[ ta* '~  ''~-~ ( ~ - ~ ' ) m  ] 
× erfc[~-~-, .  ) {1 + I(~" ¢)/<~1 -~)''-~ ~'~ " 

-3/2 i r 
1 rr d o "  

F!"+ '(W-~ ; a*) = 2 a 
0 

') 
a* 

×exp[_(a , , la , )~t ,~  ~.2 ]erfc [ ( ~ ' t  ' t : ' '  r_____-'r' ] \ a* / a ~ ' 

1/2a 

(4.26) 

(4.27) 

where only the regular part of the VDF has been considered. The ratios 

tv,.; ) = 
F!,+'(~ • a*) 

F'"¿(~I) 

F~,+ '(V~ ; a *) 
,t,!,+ ~ ( ~ ;  ,~*) = 

F"iI(W.C ) ' 
(4.29) 

where F ~°) is the corresponding local equilibrium function, are shown in figs. 9 
and 10 for a * =  1. For this not too large shear ratc, the distributions for 
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Fig. 9. The VDF relative to local equilibrium, ~!,+ '(V~,:; a*), versus ~ for a* = 1. The dotted line 
corresponds to Maxwell molecules, the solid line corresponds to hard spheres, and the dashed line 
refers to an approximation of the latter, eq. (4.34). 

Maxwell molecules and for hard spheres agree rather well. Since a * =  1 is 
smaller than the threshold value a * =  3X/3, the functions for Maxwell mole- 
cules remain finite in the vicinity of ~ = 0 and ~ --0.  Regarding the case of 
hard spheres, the practical importance of the delta term is very smal l  since 
s = 5.28 for a* = 1. Figs. 11 and 12 show the same as figs. 9 and 10, but for 

~y ,2 

0 
~'~... 

0 I t i I i , h i n i 

-2 -I 0 i 

v¢ 
Fig. 10. Same as fig. 9. but for q/,' J(V~ ;a*I as a ~unction of W 
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Fig. 11. Same as fig. 9,  but for , , * = 6 .  

a * =  6. The qualitative differences between Maxwell molecules and hard 
spheres are now quite evident. In the latter case, the number of collisions is 
s = 0.80, so that 45% of the particles have zero velocity. 

Despite the feasibility of the numerical evaluation of eq. (4.20),  its intricate 
dependence on a* makes difficult the analysis of such features as the nature of 
the singularity at a * =  0 and its disappearance in the limit of Maxwell mole- 
cules (t~----> 0). For that reason, it is useful to construct an approximate V D F  

t "'g 

o 

O , i I , 

- - 2  - - 4  

I 

o 

Fig. 12. Same as fig. 10, but for a* = 6. 
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starting from eq. (4.20) and trying to keep the most relevant features of the 
actual VDF. This approximate model will be obtained following two steps. In 
the first step, we notice that the integrand in eq. (4.20) has a very sharp 
maximum at or = or' in the limit a---~O*. In that case, eqs. (4.21) and (4.22) 
yield, near the maximum, 

a.t.w 
In = 3a*2rl*(a *) (or - or'), (4.30) a* 

~- - r ' - -  a*(o" - o") .  (4.31) 

Consequently, eq. (4.20) becomes 

trlct 

-3/2 f .f*(g*; a*) = exp( -  or/a) a(g*)  + "rr ds, exp ( - s  I ) exp(a*2rf"sl) 
o 

x exp(a*s,W(.a/OW.~)exp[-exp(3a*2rf*st) V*2], (4.32) 

where we have performed the change o-'--~s~ = ( o r - o " ) / a .  Similarly, eq. 
(4.25) becomes 

(riot 

r#~" (a*) = f 
") :t" dst st exp[-(1 + ~a*-n)s~] 

0 

1 
2 .2 ,.)2 { 1 - e x p [ - ( 1  + 3a*2n*)cr/a] 

(1 + ~ a  77' 
2 :1:2 , x [ l + ( l + ~ a  r/ )or/a]}. (4.33) 

Eq. (4.33) is still a very difficult implicit equation for rf~:(a*). Consequently, 
the a*-dependence in eq. (4.32) is still very involved. On the other hand, we 
have already seen that r/*(a*) and tr*(a*) are rather insensitive to the value of 
a. Thus, our second step consists of replacing the functions r/*(a*) and ~r*(a*) 
appearing on the right sides of eqs. (4.32) and (4.33) by the ones correspond- 
ing to Maxwell molecules, as given by eqs. (3.11) and (4.23). Therefore, one 
finally gets 

~r~ rr ~ 

f*(V*; a*) = exp(--o-M/a ) 8(V*) + - 3 , 2  f ds, exp(-s~)  
0 

x exp( ~, A's,)  exp(a*s, V~ OlOV T ) exp[-exp(A*s,)V .2] 
(4.34) 
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3 A* 
rl*(a*) = 2 a*" { 1 -  exp[ - ( I  + ,~')o'~,/c~l II + (1 + ~),r~,/,~l}. (4.35~ 

Several comments about these equations arc in order. Eqs. (4.34) and (4.35) 
are nothing but gross caricatures of eqs. (4.20) and (4.25), respectively, Due to 
the inconsistency of keeping finite the upper limit in the integrals of eqs. (4.32) 
and (4.33) and, however, not including higher order terms in eqs. (4.30) and 
(4.31), eqs. (4.34) and (4,35) cannot be justified from a rigorous mathematical 
point of view, even for small a. In this respect, it is worth mentioning that eq, 
(4.34) verifies the conditions (2.16) and (2.17). is consistent with eq. (4.35). 
but does not satisfy eq. (2.18). 

The main advantage of eqs. (4.34) and (4.35) is that they exhibit an cxplkit 
dependence on both a* and a. Since o" M --- ~a*-" for small a*. it is evident that 
the functions f* and 71" given by eqs. (4.34) and (4.35)present an egsential 
singularity at a*=  0. Seen as functions of a, they also have an essential 
singularity at a = 0. Both singularities are coupled, in the limit a---,0", cqs. 
(4.34) and (4.35) become eqs. (3.24) and (3.11), respectively, which are 
regular at a*=  0. All these features are expected to hold also for the exact 
expressions (4.20) and (4.25). 

The model shear viscosity given by eq. (4.35) for a = 1/2 is plotted in fig. 5. 
The model VDF given by eq. (4.34) is also plotted in figs. 9-12. Wc obscrvc 
that, while the model is hardly distinguishable from the case of Maxwell 
molecules for intermediate and small values of a*, it is much closer to hard 
spheres for large values of a*. This shows the usefulness of eq. (4.34) not only 
to isolate the main qualitative features of eq. (4.2(}), but also to give decent 
quantitative estimates. 

5. Conclusions 

The exact solution of the BGK equation for a system under (time-depen- 
dent) uniform shear flow (USF) has been obtained and analyzed in this paper. 
This state is spatially uniform in the Lagrangian frame of reference and is 
characterized by only one nonequilibrium parameter: the reduced shear rate 
a*. These advantages, along with the mathematical simplicity of the BGK 
kinetic equation, allow a quite detailed study of situations arbitrai ily ~-- ~---- l d |  i i U i l i  

equilibrium. Special attention has been paid to the velocity distribution func- 
tion (VDF) itself, rather than only to the transport coefficients. Moreover. the 
influence of the interaction potential has been monitored for potentials of the 
form V(r) - , ,  r -t through the parameter a = 1 / 2 -  2/I ,  ranging from 0 to 1/2. 
The following points summarize the most important conclusions and their 
relationship to the questions raised in section 1. 
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1) For sufficiently long times, the system reaches a hydrodynamic regime, 
even far from equilibrium. "Hydrodynamic" is understood here as "indepen- 
dent of the initial conditions". Except in the case of Maxwell molecules, this is 
achieved after a finite number of collisions. If the conventional criterion of 
infinitely many collision times is imposed, the hydrodynamic regime is re- 
stricted to states close to equilibrium. This distinction between a strong 
criterion and a weak one is related to viscous heating effects and does not 
apply for situations where the system eventually reaches a steady state. 

2) The Chapman-Enskog (CE) method provides a representation of the 
normal solution in the form of a series that, in general, is only asymptotic. The 
exception corresponds again to Maxwell molecules, where the CE series is 
convergent. 

3) The state of the system is highly distorted far from equilibrium. Some of 
the qualitative features could be anticipated on the basis of the first few terms 
of the CE expansion. On the other hand, highly nonlinear effects that are not 
present in the CE expansion, such as the divergence of the VDF at zero 
velocity, emerge 1for large shear rates. 

4) Even near local equilibrium, there exists a substantial formal difference 
between the VDFs for Maxwell molecules and for more general repulsive 
interactions. In the latter case, a Dirac delta term around zero velocity 
appears. The amplitude of this term is the fraction of particles that have not 
collided yet since the infinitely remote initial time. This amplitude vanishes if 
the strong criterion referred to in point 1 is applied. 

5) Nonetheless the transport properties, such as the shear viscosity, are 
relatively insensitive to the details of the potential when they are properly 
scaled. The fact that an expansion in powers of the shear rate is convergent 
only for M~xwell ~rnolecules does not seem to have a quantitative effect. 

6) Finally, a lot of caution is needed when extending some of the above 
conclusions to other nonequilibrium states. For instance, the singular role 
played by Maxwell molecules and the existence of the delta term are essentially 
due to the peculiarities of the USF and the viscous heating effects associated to 
it. Previous studies of stationary nonequilibrium states [22] do not exhibit some 
of these feat:,,res. On the other hand, the divergence of the CE series and the 
distortion of the VDF far from equilibrium seem to be much more general 
properties. 
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Appendix A 

In this appendix, the result (3.22) is derived. Since T(t)/T.--.x when 
t -  to--~ ~, eq. (3.22) is equivalent to 

lim y 3g( yg ) = 8( g ) ,  ( A. I ) 
,y.--4 ~ 

where g (g )  is an arbitrary function subject to the following normalization 
conditions (of. eqs. (2.16)-(2.18)): 

~ d ~  g(~:) = 1, (A.2) 

f dlj ~g(~.)=O, (A.3) 

f d~ ~ 2 g ( ~ )  _ 3 (A.4) 

If we define 

v ) -  (A.5) 

eqs. (A.2)-(A.4) become 

f d~ G(~; 3,) = 1, (A.6) 

f d~ ~G(~; 3")=0,  (A.7) 

f d~ sC2G(g; 3,) = 33"-2 (A.8) 

In the limit 3,---> 0% G(~; 3') becomes a function with unit norm and vanishing 
first moments. Consequently, 

iim G(~;  3,) = ~ ( ~ )  (A.9) 
-y-----~ ~c 

with independence of the detailed form of g(~). Notice that G(g; y) is 
obtained from g(~) by shrinking the three components of ~ by a factor of y 
and, at the same time, scaling the function to preserve the norm. As 3,---~. 0~, the 
whole function g(~:) is concentrated around a vanishing neighborhood of 
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As an illustration, let us assume that g ( ~ )  is a Gaussian: 

g (  ~ ) ---- ,,ff-3/2 e x p ( -  ~:2). (A.10) 

Then,  

a ( ~ ;  7 )  = ,.ff-3/2 3 exp(_,g2~:2) (A . I1 )  

and eq. (A.9) clearly holds. 

Appendix B 

Some properties of the incomplete gamma function will be derived in this 
appendix. First, define the function 

F(x, r(x, + ( -  1 
k=o k! k + x 

k +x  
, 

which is convergent for any x and (positive) e. Insertion of the recurrence 
relation [18] 

F(x,  e) = e *-1 e x p ( -  e) + (x - 1)r(x - i ,  e) (B.2) 

into eq. (B.1) yields 

F(x, e) = (x - 1)F(x  - 1, e) . (B.3) 

Another  important  property of the function F(x,  e) is that it does not depend 
o n  ~ 

OF(x, e) x-i .,--, ~ '  ( - 1 )  k k 
0e = - e  e x p ( - e ) + e  z., k! e = 0 .  (B.4) 

k =o 

Therefore,  F(x,  e) = lim~.__,~+ F(x,  e). By taking this limit in eq. (B. 1) for x > O, 
we get 

F(x, e ) =  F ( x ) ,  (B.5) 

where F(x)  =- F(x ,  0) is given by the integral (3.32) with e = 0. Such an integral 
does not exist if x < 0 .  However,  F(x) still can be defined (except for 
x = 0 , - i , - 2  . . . .  ) as an analytic continuation by means of the recurrence 
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relation r (x )  = (x - l )F (x  - I). Since this relation coincides with cq. (B.3), 'a:c 
conclude that eq. (B.5) holds for any x different from a non-I'~sifivc inlcgcr. 
With that exception in mind, eqs, (B. I )  and (B.5) yield 

( - I )  t I r(x. t ) =  r ( x ) -  ,~ t ~ ' '  (B.O) 
~. k! k + x " 

Let us now take the limit x-- ,0 .  Eq, (B.6) can be rewritten as 

,( r(x. ,-)= ~. r (x  + 1 ) -  ~ (-I)~ e * ' ' "  t '  ~ )  
~ , ,  k! k + x + I  e , (B07) 

where use has been made of eq. (B.2). Application of L'H6pilal 's  ru!c ~vicl~ 

,A ( 1 
!'(0. t )  = -Vu - In t - 2 ,  - i  k! k " (B,S) 

where ~ = - F ' ( I )  is Euler 's  constant. Repeated application of cq~ ~B.2~ 
allows one to get l'(.r. ¢) from F(O. e) when x --- ~n  is a negative imcgcr  "n~c 
result is 

1 
F ( - n .  ~,) -- n! ( - 1 )'T(O. ~) 

Eqs. (B.6).  (B.8). and (B.9) give useful reprcs cntation-~ o~ the incomplete 
gamma function for all values of x and ~- > 0. In the mimi~ .~ . . . .  ~ .  ~c h~t~c 

F(x), x > 0,  (B, 10) 

x<O. ( B . | l )  
X 

F(O. e)~ - In s .  (B.12) 

A p p e n d i x  C 

The consistency of the asymptotic behavior  

jc~.l--,.kk! (C.1) 

for the coefficients of the expansion (4.5) will be shown in this appendix. Let 
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us get first the recursive relation for those coefficients. Eq. (4.5) gives 

art* = ~ c'kz k , c~ ---(k + l )ca+,  , (C.2) 
az k =o 

a'-'Q* 
= ~ c~,z k c~ =-(k + l)c~+, = ( k  + 1)(k + 2)ck+ 2 . (C.3) 

a Z  2 k - -O ' 

Inserting eqs. (4.5), (C.1), and (C.2) into eq. (4.1), one gets 

ca = -~,,,~[(c"(cc)),,_., + (c(c'c')L_,l + ~(cc'),,_2 

+ !~a(~ - a)(c(cc'))k_ 3 - 32-(2- cz)(cc)k_ , 

- ~(~-o t ) ( l -o t ) ( c (cc ) ) t , _2 ,  k>>-4, (C.4) 

where we have introduced the short-hand notation 

k k 

(ab)k---- y~ ak_,,,b m = ~ bk-mam 
m = O  m = O  

(c.5) 

for the expansion coefficients of the product of two functions whose coefficients 
are a k and b k, respectively. Now, if the behavior (C.1) is assumed, c k grows so 
rapidly that the summations of the form (C.5) can be replaced by its largest 
term. For instance, 

1 1( 0 2lqi  I(ccL -2c,,I <- ~ _ Iq-ml ICml- 21ql 

1 ~, ( k - ~ ) ; m  v 
.--~ " " - 1  

- 2 dx +2 m=o (1 + x) ~ 
0 

I 
k + l  

= ( k  + l ) j d x  1 - x  
1 - x z 

o 

e . . ~ [  / l .  t _ b . t  ^pi-~tt  + I) + - n , , ,  x)] i 

= k  ~+2k  - z + 8 k  3 + © , ( k - a ) .  (C.6) 

Similarly, 

~( ~ "-I ( c L - ~ ( k  + l ) c~ ,~ - - r  c~.z .  (C.7) 
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( c ' c ' ) ,  --- 2(k + 1)ClCk+ I , 

( C ( C C ' ) ) k " ( k  + 1)Ck+ 1 " - - r - ' c k + 2  , 

(c (c ' c ' ) ) ,  "-- 2(k + 1)ClC,+l "" 2 r - t c l c , + 2 ,  

(c"(cc)) k --- (k + 1)(k + 2)c,+ 2 --- r -2c ,+a .  

Consequently,  the dominant terms in eq. (C.4) are 

2 -~ C k - ~o t  r "c, + 8otr- lct ,  , 

which implies 

r = 4  .~ot. 

389 

(c.8) 

(C.9) 

(c.11) 

(c.1,.) 

(c.t4) 

Appendix D 

The function o-(a*) for Maxwell molecules is derived in this appendix. Let us 

rewrite eq. (4.21) as 

0o" 3 1 1 1 
Oz 4 z2rt * 3 A'z(1 + A*) z ' 

(D . l )  

where z = a .2  and use has been made of eqs. (3.3) and (3.11) in the last step. 

From eq. (3.3) one also has 

0z  
0A* = 3(1 + A*)(1 + 3A*). (D.2) 

Therefore,  eq. (D.1) becomes 

do- 1 1 + 3A* 
Oh* 2 A*2(1 + A*) 2 " 

The solution of eq. (D.3) with the condition o'(A*---~ oc) = 0 is 

(D.3) 

o ' =  ~A*-'  + ln(l + A*-~). (D.4) 
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