
PHY$1CA 
ELSEVIER Physica A 213 (1995) 409-425 

Exact moment solution of the Boltzmann equation 
for uniform shear flow 

Andrrs Santos, Vicente Garz6 
Departamento de F[sica, Universidad de Extremadura, E-06071 Badajoz, Spain 

Received 2 June 1994 

Abstract 

The Ikenberry-Truesdell exact solution to the Boltzmann equation for Maxwell molecules is 
revisited. This solution refers to a state characterized by a linear profile of the velocity flow and 
spatially uniform density and temperature. The solution is extended to include explicit expressions 
for the fourth-degree moments. It is shown that if the shear rate is larger than a certain critical 
value, the fourth-degree moments do not reach stationary values, even when the temperature is 
kept constant. The explicit shear-rate dependence of the moments below this critical value are 
obtained. 

1. Introduct ion 

The so-called uniform shear flow state has been extensively used in computer simu- 

lations [ 1 ] as well as in theoretical studies [ 2,3 ] to analyze rheological properties, i.e. 

nonlinear shear viscosity and viscometric effects. From a macroscopic point of  view. it 

is characterized by a linear velocity field and uniform density and temperature. 

Uniform shear flow is also interesting because it gives rise to one of  the rare exact 

solutions of  the Boltzmann equation in non-homogeneous situations, which was obtained 

almost forty years ago by Ikenberry and Truesdell [4] .  This solution is restricted 1o 

Maxwell molecules (i.e. particles interacting via a repulsive potential ~ ( r )  c~ r - 4 ) ,  
in which case the infinite hierarchy of  velocity moments can be recursively solved. In 

particular, Ikenberry and Truesdell [4,5] obtained explicit expressions for the second- 

degree moments (i.e. the elements of  the pressure tensor) as functions of  time and 
for arbitrary values of  the shear rate. In the long-time limit, the pressure tensor adopts 
a form consistent with a "normal" solution of  the Boltzmann equation. The nonlinear 

shear-rate dependence o f  the pressure tensor exactly coincides with the one obtained 
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from the Bhatnagar-Gross-Krook (BGK) model kinetic equation [6,7]. In addition, the 
time evolution of the third-degree moments (which vanish in the normal state) have 

also been obtained [5]. 
To the best of our knowledge, a study of the fourth-degree moments has not been 

carried out thus far. Since these moments are not directly related to hydrodynamic 

quantities, they are apparently less interesting than the lower moments. In our opinion, 
however, there exist at least three reasons for considering them. First, since the moment 
method does not provide an explicit expression for the velocity distribution function, 
one could use the solution of the BGK equation [7] to gain insight into the main 

features of  the exact distribution. Thus, the knowledge of the fourth-degree moments 

allows one to assess the reliability of the BGK model. Second, fourth-degree moments 
are necessary [ 8 ] to analyze the validity of a variational principle recently proposed for 
nonequilibrium steady states [9]. The third reason is to investigate whether a normal 
solution to the Boltzmann equation under uniform shear flow exists arbitrarily far from 
equilibrium. The fact that moments up to third degree are consistent with a normal state 
does not imply that the distribution function itself reaches a normal form. In fact, recent 

results [ 10] show that the fourth-degree moments do not adopt a normal form beyond 
a certain critical shear rate. 

The aim of this paper is to analyze the time evolution and the shear-rate dependence 

of the fourth-degree moments. In Section 2 we define the uniform shear flow state from 

the point of view of the Boltzmann equation. The relevant rheological properties are 
presented. The third-degree moments are studied in Section 3. It is shown that, when 

conveniently scaled with the temperature, all of them vanish in the long-time limit. 
Section 4 contains the original part of the paper. It addresses the derivation of the 
fourth-degree moments. Finally, the results are discussed in Section 5. 

2. Uniform shear flow 

In a dilute gas, the time evolution of the velocity distribution function f ( r ,  v, t) is 
governed by the nonlinear Boltzmann equation. In absence of external forces, it reads 
[11]: 

O f  + v" O---f =Or f dr1 f ds2lv- viler(Iv- v,I, O)(f'fl- f f l )  

= - J [ f , f ]  . (1) 

This equation must be supplemented with the appropriate initial and boundary conditions. 
Let us introduce the velocity field 

Ui(r) = a i j r j  , a i j  = a~3ixrjy , (2) 

where a is a constant shear rate. We define the uniform shear flow (USF) stale as 
the one that is spatially homogeneous when the velocities of particles are referred Io a 
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Lagrangian frame moving with the velocity field U( r ) .  Consequently, the distribution 
function has the form 

f ( r ,  v, t) = f ( V ,  t) , (3) 

where V _-- v - U( r ) ,  and Eq. (1) becomes 

0 0 
- ~ f  - ~ i a i j V j f  = J [ f ,  f ]  . t4) 

Upon writing Eq. (4),  we have assumed that the boundary conditions are consistent 

with the USE i.e. initial conditions of the form f ( V ,  0) map into solutions f ( V ,  t) of 
Eq. (1).  The usual boundary conditions used to generate the USF are the Lees-Edwards 
periodic boundary conditions [ 12,13]. It is interesting to notice that Eq. (4) can also 
represent a homogeneous state under the action of the nonconservative external force 

Fi = -mai jV j .  In addition, Eq. (4) is invariant under the transformations Vz --+ - ~ ,  

(Vx, Vv) ~ ( - V x , - V y ) ,  and (Vx,a)  ~ ( - V x , - a ) .  
In the particular case of Maxwell molecules, i.e. particles interacting via a potential 

¢p = Kr -4, the collision rate vo-(v, O) is independent of v. From a mathematical point 
of view, this makes the Boltzmann collision operator more tractable than for other 

interaction models. As a matter of fact, Eq. (4) for Maxwell molecules exhibits an 
interesting scaling property [ 13]. Let us introduce the scaled quantities 

V = e - ~ / V  , (5) 

f ( V ,  t) = e 3at f ( V ,  t) , (6) 

where a is an arbitrary constant. Then, Eq. (4) reduces to 

0 -  ~ -- 
- ~ f  - ( a o V j + a V i ) f  = J [ f ,  f ]  . (7) 

This equation can be interpreted as the one corresponding to USF in presence of a 

nonconservative external force - m a Y .  In our description, we will choose a as a function 
of the shear rate a by the condition that the (scaled) temperature reaches a constant 
value in the long-time limit, so that the above force plays the role of a thermostat 
force. This kind of thermostat forces is usually employed in nonequilibrium molecul~ 

dynamics simulations [ 11. Henceforth, we will adopt the point of view behind Eq. (7) 
and drop the bars. 

It is expected that in the limit of long times, the solution to Eq. (4) or, equivalently, 

to Eq. (7),  reaches a "normal" form [ 11]. This implies that all the time dependence 
of f appears through the temperature T( t ) .  Consequently, with the thermostat choice 
for a,  the solution to Eq. (7) is expected to reach a stationary form. As said in the 
Introduction, one of the motivations to study fourth-degree moments is to check the 
above expectation. 

Although the explicit solution to Eq. (7) is not known, it can be exactly solved by 
the moment method. This is due to the fact that, in the case of Maxwell molecules, a 
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collisional moment  of  degree k is a bilinear combination of moments of  f of  degrees k ~ 
and k ' ,  such that k ~ + k" = k [5].  This allows one, in principle, to solve recursively the 

hierarchy of moment  equations. We will call asymmetr ic  moments to those that vanish 
for solutions exhibiting the same invariance properties than Eq. (4) .  The rest of  the 
moments  will be referred to as symmetric .  To clarify this point, let us introduce the 

moments  

1 / dVV~,Vyk2Vz~3 f Mkl'k2'k3 = n 

Then, Mkl,k2,k3 is a symmetric moment  if k] + k2 and k3 are even numbers. The degree 

of  the moment  Mk,,k2,k3 is k = kl + k2 + k3. There are ½ ( k +  1 ) ( k +  2) independent 

moments of  degree k. 
Let us start with the first-degree moments 

= / d V V f ,  (9)  nu 

where n is the number density. The vector u measures the deviation of  the local velocity 

from the linear velocity field U. From Eq. (7)  one easily gets 

ui ( t )  = [ui(0)  - ai ju j (O) t ]  e - s t  . (10) 

This implies that, after a transient period of the order of  o~ -1,  the flow velocity is given 

by the linear field (2) .  
The second-degree moments are related to the pressure tensor: 

= m / dVV/Vjf .  (11) eij 

The temperature T is defined from the trace of  this tensor as nkBT = p = ½TrP. Eq. (7) 

yields [5] 

~ P i j  + (aikPjk + ajkPik) q- 2olPij = - P ( P i j  - pBij)  • (12)  

Here, v is an effective collision frequency defined as 

v = 3nA2 , (13)  

where 

f 0 0 An = dg2sin n ~ c o s  n -~vo-(v,O) . (14) 

The numerical value of  A2 is A2 --~ 1.3703V/~--/m [5].  It is interesting to remark that 
Eq. (12) coincides with the one derived from the B G K  model [7].  It is convenient to 
choose v -1 as the time unit. This means that we use dimensionless quantifies t* = ~,t, 



assumed and we will omit  the asterisks. 

The two asymmetric moments  Pxz and Pyz are simply given by 

Pyz ( t )  = Pyz (0)  e -(l+2a)t  , (15) 

Pxz ( t) = [ Pxz (0)  - atPyz (0) ] e -(1+2~/t . (16) 

The following combination of  symmetric moments has a similar time behavior: 

P r y ( t )  - -  e z z ( t )  = [ P y y ( 0 )  - ezz (O)]  e - ( l + 2 a ) t  . ( 1 7 )  

From Eq. (12)  one can get the following closed differential equation for p: 

(O__ + 2 a ) ( a -  +2o r  + 1)2p = } a 2 p .  (18) 
0t a t  

So far, a is arbitrary. The three roots of  the characteristic equation of Eq. (18) are 
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= a / v ,  and or* = cr/v. In the following, these dimensionless quantities will be 

( 1 9 )  

(2O) 

(21) 

(22) 

As said before, we choose a under the condition that the pressure reaches a stationary 
value in the long-time limit. Consequently, a = A/2. The time evolution of  p,  Pyy, and 
Pxy is then 

p ( t )  = A + e-{l+3~)t(B cos wt + C sin oJt) , 

1 { A -  i e - O + 3 ~ } t [  Pyy( t )  - 1 +2oe 2 ( B + w - - C )  a ' 

3 
Pxy( t )  = - ~aa {2Ace - e - ( l + 3 a ) t  

x [ ( ( 1 + oe)B - w C )  cos rot + ( ( 1 + a ) C  + w B )  sin o~t] } , (25) 

where A, B, and C are constants given by the initial conditions. The relaxation time of  
P, Pry, and Pxy is (1 + 3or)-1, while the remaining elements of  the pressure tensor have 
a longer relaxation time, namely ( 1 + 2o0 -1. 

From a rheological point of  view, the most relevant transport properties of  the problem 
are the reduced nonlinear shear viscosity ~/and viscometric functions !/q and !/'2. They 
are defined as 

r / =  - lira 1 Pxy( t )  
t~oo a p ( t )  ' (26) 

(23) 

(24) 

a l  = A - 2 a  , 

A2,3 = - - ( ½ a +  1 + 2 a )  -+-i~o, 

where 

A = 4 sinh2[~ c o s h - l ( 1  + 9a2)]  , 

oJ= [A(43-A ÷ 1)] 1/2 . 
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~t I = lim 1 P y y ( t ) -  P x x ( t )  
t--oo a 2 p (  t ) ' 

1 Pzz(t) -- Pyy(t) 
~2 = lim t ~  a 2 p(t) 

From Eqs. (17) and (23) - (25)  one gets 

r /=  ( 1 + 2ce) -2 , 

~ l  = - 2 (  1 + 2 a ) - 3  , 

~0"2 = 0 , 

where we have taken into account that 

a 2 = 3a(1 +2ce) 2 . 

(27) 

(28) 

(29) 

,(30) 

(31) 

(32) 

3. Third-degree  m o m e n t s  

Now we are going to analyze the time behavior of third-degree moments, i.e. moments 
of the form (8) with kl + k2 + k3 = 3. There are 10 independent moments. Since all 

of them are asymmetric, one expects that they go to zero in the long-time limit. For 
computational purposes, it is convenient to work with the following moments: 

1 / dVY21i(V)f(V, t) (33) M 2 l i ( t )  n 

1 / dVYolijk(V)f(V, t) (34) Molijk(t) = n 

where 

Y21/(V) = V 2 ~  , ( 3 5 )  

Yoli jk(V) = ViVjVk -- 1V2(Vi~jk  q- Vj~ik -k- Vk~ij) • ( 3 6 )  

The corresponding collisional moments are [5] 

1 
f dVY21i(V)J[f,f] -~z'M21i, 11117) 

n 

1 / dVYolok(V)J[f,f] = 3 (38) - - ~ P M o [ i j  k . 
n 

As the set of  10 independent third-degree moments, we take 

{ M21x, M2ly,  M21z , Molxxy, Molxxz, Molxyy, Molyyz , Molxzz , Molyzz, Mo[xyz } • 

Taking moments in Eq. (7),  one gets the following set of equations: 

( o + 3 + 3 ~ )  ~ (~Mo[xxz + M01yyz) = 0 ,  39) 
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( D  4. ~ 4. 3t~) (IMo[xxy 4" Molyzz) = O, 

0 D + 3 4" 3o~ --~a • Molyy z 

l a a D + 3 + 3o~ Molxyz 

=0, 

(40) 

(41) 

~a g + 3a 0 2a M2ly 

8 a 0 D + 3 4. 3o~ 8a Molxxy 

8 23 0 ~ a  - ~ 6 a  D + ~ + 3a Molxyy 

l = a( ~Molxxy 4- Molyzz) (42) 

2 (43) (D  + 3 + 3ce)Molxzz = a( 2M21y + gMolxxy -  Molyzz) • 

In these equations, D -- d / d t  and we have again chosen ~,-1 as the time unit. The 
characteristic relaxation times are ggt ,  where g,~ are the roots of  the characteristic 

equations• More specifically, gl = g2 = g3 = 3 + 3a,  g4-6 are the roots of  the cubic 

equation 

( 3 + 3 a _ g ) 2 ( ~ + 3 a _ g )  = ½ a  2 ,  (44) 

and g7-10 are the roots of  the quartic equation 

( 3 + 3or - g)2( 32_ + 3 a  - g)2 = 2a2(, 3136 + 3a  - g) . (45) 

Fig. 1 shows the shear rate dependence of  the real parts of  the eigenvalues g~. Except t?7, 
all the eigenvalues increase monotonically with the shear rate. For shear rates smaller 
than a ~ 31, g7 remains smaller than its equilibrium value (~) .  This means that, if 
a < 31, the characteristic relaxation time for some of  the third degree moments is 
longer than that of  equilibrium• 

For shear rates larger than a = ~/~-8-/31, g7 is smaller than 3a.  This implies that, in 

absence of  thermostat, some of  the moments increase in time. Truesdell and Muncaster 
[5] refer to this behavior as an instability in the heat flux solution. However, this is 
simply a consequence of  viscous heating. After scaling the moments with the thermal 

velocity, all of  them decay to zero. 

4. Fourth-degree moments 

In this Section, we are going to analyze the time evolution of the fourth-degree 
moments and the shear-rate dependence of  their stationary values. To the best of  our 
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Fig. 1. Shear-rate dependence of the real parts of the eigenvalues corresponding to the evolution of the 
third-degree moments. The solid (dashed) lines refer to the real (complex) eigenvalues. 

knowledge,  such an analysis has not been made before, although some results have been 

used to discuss the existence of  a critical shear rate, beyond which a steady state does 

not exist [ 10]. 

We consider the fol lowing set of  polynomials  [5] : 

Y41o(V) = V 4 , (46)  

Y21ij(V ) = V 2 ( V / / V j  - 1V2Sij) , t47)  

Yolijkl(V ) = givjgkVl - lg2(gigj~kl  q- gigk~jl ..~ vigl~kj q- gjgk6il 

-4-Vj Vl~ik Jr- gk glC~ij ) "q- ~s g4 ( ~ij~kl + ~ik~jl "q'- ~il~jk ) • (48) 

We denote by M2nlij... the moments of  f corresponding to the polynomials  Y2nlO... (V) .  

Our choice for the 15 independent fourth-degree moments is 

{M410, M21xx, M21yy, M21xy, M21xz , Mzlyz , Molxxxx, Molyyyy, Molzzzz, 

Molxxxy, Molxxxz, Molxyyy, Molxzzz, Molyyyz, Molyzzz } • 

The moments  of  the Boltzmann collision operator for Maxwell  molecules are [ 5 ] : 

l_n d V Y 4 1 o ( V ) J [ f , f ]  = -~v[M41o  + n--ff-~mz(P~jPij - 18p2)] , (49)  
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if - -dv[  M21ij + 7n---~m2 ( 4P,.kPkj -- 15pPij n d V Y 2 1 q ( V ) j [ f , f ] =  7 

4 -gPklPktr$ij + 15p26q) ] , 

417 

(5O) 

1 / d V Y o l x x x x ( V ) J [ f , f ]  
n 

= --vIMOixxxx 

1 2 2 
+ 3 ( 2 / '  -- P )n--~m2 [8Pxx q- 3(e;,y -1- P?z) 

+2Pyyezz - 8Pxx( Pyy + Pzz ) 

-16(p2xy+P2xz)+4p2yz] , (5l) 

if 3 ( 2 V _ v , )  1 [2PyzPxz n dVYolxxxy (V)J[ f ,  f l  = -vtMolxxxy - 7 n--t~m 2 

+Pxy( 3Pyy q- Pzz - 4Pxx) ] • (52) 

In Eqs. (51) and (52), v' is given by 

t,t = 7 ( 4 -  5A4)p , (53) 
/t 2 

where the coefficients An are defined in Eq. (14). From Ref. [ 14], one gets v' -~ 1.873v. 
In the case of the isotropic scattering model, v' 7 = ~v. It is clear that from Eqs. (51) 

and (52), one can obtain similar equations for the remaining moments of the set by 

adequately changing indices. 
Taking velocity moments in Eq. (7),  one gets a closed set of equations. For sim- 

plicity, we will assume that the second-degree moments Pij take their stationary values. 
Because of the symmetries of Eq. (7), the symmetric and asymmetric moments are 
uncoupled. Although the relevant moments are the symmetric ones, we first analyze the 
time evolution of the asymmetric moments, for the sake of completeness. There are 6 
asymmetric moments, which verify the following set of equations: 

( D + 4a  + v ' ) (  Molyyy z - Molyzzz) = 0 , 

O +4o~+  7 9a 0 
2 7 ~a D 4- 4or + ~ - 2 a  

12 t 0 - ~ a  D + 4o~ + v 

- H a  0 !~a 

= la(Molyyyz -- Molyzzz) 

( D + 4t~ + v ' )  ( Molxxxz - Molxzzz) 

= 7a(Molyyyz + Molyzzz) - J ga(Molyyy z - Molyzzz ) • 

2)( 
0 
11 
iX a 

D + 4a + v t 

(54) 

M21xz ) 
M2lyz 

Molxxxz + Molxzzz 
MoJyyyz + MoJyzzz 

(55) 

(56) 
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The eigenvalues are 4a  + v' (double) and the roots of a quartic equation, all of them 
having a positive real part. Consequently, all the asymmetric moments decay to zero in 
the long-time limit. 

The set of equations for the 9 symmetric moments are given by 

(D + 4a + v t) (3Molxxxx - 4Molyyyy - 4Molzzzz) = 0 ,  (57) 

(D~3~, +£~, ) .A4~,  =Co., or= 1 . . . . .  8 .  (58) 

Here, 

A4 = 

M4lo 

M2[xx 

M21yy 
MOIyyyy 
Mol zzzz 
M2lxy 

Molxxxy 
MOlxyyy 

(59) 

= 

r4~r+ 3 2- 

0 

0 

0 

0 

,Sa 
0 

0 

0 

4 a +  7 

0 

0 

0 
2 7a 

_ 6 a  

0 0 0 4a 0 0 "~ 

0 0 0 32 ~ a  2a 0 

10 0 2 a  4a  + 7 0 0 -~Ta 

96 ~ a  0 4 a  + v' 0 ~-5 a 0 - - -  

0 0 4 a + v '  ~45a ~ a  ~ a  

9 0 _7 0 1 v' - g a  4a + 0 0 

- 6  a - ~ a  - S  a 0 4a + v' 0 

~5 2a 1 ~ a  7a 0 0 4a + v ~ j 
60) 

C = a M 9  

/ o 

0 

0 

0 

0 
1 

5__ 
14 

1 

+ 
(2kBT/m) 2 
(1 + 2 a )  2 

( ½ (5 + 18a + 12a2) 

a ( 1  + a )  

-¼043 + 2~) 

- 9 a ( 4  - 9a)  (2 - v') 

9 a ( l  + 9 a ) ( 2 -  v')  

1 7 + 6 a  
- N a l  + 2 a  

_~Sa a___~____(2 _ # )  
7 l + 2 a "  

27 _ O' ," ,", pt)  

(61 

Andrés
Comentario en el texto
7/6
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8 9 t  . . . . . . . . . .  - . . . . . . . . . . . . . .  ~ '  > . . . . . . . . . .  - " - ~  

5 i 

o F ." -/" -" __--'J q 

~-_¢/J .i 

O- ~ t 
l l ;  i ;  t l ~ l l l  , i l l  , l l l L ~ l l l  I l k l l l ~ ; I  I I  

0 ~ 4 6 8 

Fig. 2. Shear-rate dependence of the real parts of the eigenvalues corresponding to the evolution of the 
symmetric fourth-degree moments. The solid (dashed) lines refer to the real (complex) eigenvalues. 

Eq. (57) shows that the combination .M9 - 3Molxxxx-4(Molyyyy+Mojzzzz ) = 6(Vy2 Vz 2) - 
(V 4) - (V 4) decays to zero with a characteristic time (4a  + v ' )  -1. This exact behavior 

is similar to that of (Vv 2) - (Vz2). More in general, it can be easily shown that those 

eigenfunctions of  the linearized Boltzmann collision operator that do not depend on Vx 
give rise to moments decaying to zero. The analysis shows that the only symmetric 

moment of  degree k belonging to the above class is 

k/2 ( k ) (v2qvk_2q) . ½((Vy+iVz)k + ( V v - i v z ) k ) = E ( - 1 ) q  2q 
q=O 

(62) 

The solution of Eq. (58) can be written as 

M ( t )  = e - c t . [ M ( O )  - M ss] + M ss , (63) 

where 

M ~  = ( £ - 1 ) ~ , 6 ~ , .  (64) 

Upon writing Eq. (63), we have assumed that -/~9 = 0, SO that C~ is constant. The 
time evolution of A/t,~ is governed by the eigenvalues e,~ of the matrix £ ~ , .  Fig. 2 
shows the shear-rate dependence of the real parts of the eigenvalues e,~, o- = 1 . . . . .  8 
obtained by numerically solving the corresponding eighth-degree characteristic equation 
with # = 1.873, and of ~9 = 4a  + # .  The most remarkable feature of the figure is that 
the eigenvalue t?] monotonically decreases with the shear rate and eventually vanishes 

at a critical shear rate ac ~- 6.845. 
This implies that for shear rates larger than ac, the fourth-degree moments do not 

reach stationary values in the long-time limit. As a consequence, the USF velocity 
distribution function does not adopt the form of a normal solution to the Boltzmann 
equation. The implications of this singular behavior have been discussed in Ref. [ 10]. 
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150 r ~  i i ~ - -  

t 2 0  

~?  9 0 -  
:> 

% 6 0 ~  / 
[ -- 

0 0 1 0  210 3'0 

q 
i 

i 

I 
J 

~ u  

4 0  5 0  

Fig. 3. Time evolution of (V 4) relative to its equilibrium value (V4)0 = -~ (2knT/m) 2 for two values of the 
shear rate: a '~ 6.45 (solid line) and a "~ 7.33 (dashed line). In both cases the initial condition is a Gaussian 
distribution corresponding to the stationary second-degree moments. 

Although Eq. (63) gives the full time behavior of  m,~ (see Appendix A) ,  for times 
much larger than max{(Reg,~)-1,  o- = 2 . . . .  9} < 6/7,  the asymptotic behavior is 

0 -£~t .M,~( t )  ,~ 3 4 j  + . M ~ e  , (65) 

where A4 ° is a constant depending on the initial conditions. As an illustration, we have 
plotted in Fig. 3 the time evolution of  (V 4) relative to its equilibrium value for two 

values o f  the shear rate: a "~ 6.45 ( a  = ¼) and a ~ 7.33 ( a  = 4).  While in the first 

case (a  < ac) (V 4) reaches a stationary value for times larger than g~-i ~ 46.5, it grows 

exponentially with a characteristic time _g~-I ~ 37.1 in the second case (a  > ac ). 

For shear rates smaller than ac, the steady-state values of  the moments are given by 

Eq. (58).  Their explicit forms as functions of  the shear rate are listed in Appendix B. 

As said in the Introduction, the derivation of  these expressions was one of  the main 

motivations of  this paper. 

5. Conclusions 

In this paper we have revisited the Ikenberry-Truesdell solution of  the Boltzmann 
equation for Maxwell molecules under uniform shear flow. This solution is given in 

terms of  the velocity moments of  the distribution function. In particular, Ikenberry and 

Truesdell [ 4,5 ] obtained the explicit nonlinear dependence of  the rheological properties 

(shear viscosity and viscometric functions) on the shear rate. Here we have extended 
this solution to include the fourth-degree moments. The motivation to consider lhese 
moments is not only academic. 

Recently, a variational principle for characterizing thermostatted nonequilibrium steady 

states has been proposed [9] .  The knowledge of  an exact solution of  the Boltzrnann 
equation allows one to test the above variational principle for dilute gases. In order to 
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do that, second-degree moments are not sufficient and the fourth-degree moments are 
required [ 8 ]. 

A more fundamental question refers to the existence of a normal solution to the 
Boltzmann equation under uniform shear flow far from equilibrium. If  such a normal 

solution exists, then any fourth-degree moment, conveniently scaled with the temperature, 

should reach in the long-time limit a function of the reduced shear rate independently of 
the initial conditions. Here, we have shown that the above assertion fails if the reduced 
shear rate is larger than a certain critical value. The possible implications of this fact 
have been discussed in Ref. [10]. 

In principle, by following a recursive scheme, one could obtain higher-degree mo- 
ments. However, a closed expression for the velocity distribution function does not 
seem attainable. As an alternative, one can start from a simplified kinetic model of the 
Boltzmann equation and get the corresponding distribution function. In particular, the 
distribution function obtained from the Bhatnagar-Gross-Krook (BGK) kinetic model is 
known [7]. The BGK model is interesting because it leads to the same second-degree 

moments as the Ikenberry-Truesdell solution of the Boltzmann equation. The comparison 

of the fourth-degree moments obtained from the BGK equation with those derived here 

can be used to assess the reliability of  the BGK model. This comparison is the subject 
of the subsequent paper [ 15]. 
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Appendix A. Time evolution of the fourth-degree moments 

In order to get the explicit time-dependence of the fourth-degree moments from 
Eq. (63), it is convenient to diagonalize the matrix /2. Let us denote by {x,~, ~r = 
1 . . . . .  8} the eigenvectors of  £.  Since the matrix/2 is not Hermitian, their eigenvectors 
do not form an orthogonal set. The matrix of change of basis is /4,  where/g,~,,~ is the 
o-t-component of  x,~. Consequently, 

e - £ t  = / a  ¢- D( t )  • U -~ , (A.1) 

where D(t) is a diagonal matrix whose o--element is e -t°e. 
As an application, we consider the cases a = ¼ and a = 4, which according to 

Eq. (32) correspond to shear rates a "~ 6.45 and a -~ 7.33, respectively. After calculating 
the corresponding eigenvalues and eigenvectors, one gets the following expressions for 
( V 4 ) .  • 
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(2kBT/m)-2(V4) = 182.7 - 178.2 e -°'°215t 

+ e-582t[0.46 cos(2.83t)  + 3.03 sin(2.83t) ] 

- 0 . 0 1 4  e -4'4°t - e-V48t [0.012 cos(1.75t)  + 0.011 sin(1.75t) ] 

+ e-952t  [ 0 .64 COS(4.65t) - 0.42 sin(4.65t)  ] , ( A.2 ) 

(2kBT/m) - 2 ( V 4 )  = - 1 6 0 . 4  + 164.8 e 0'0270t 

+e-6"31t [0 .51  cos(3.21t)  + 3.24sin(3.21t)  ] 

- 0 . 0 1 3  e -4"76t -- e-8 l°t[0.010 cos(1.91t)  + 0.011 sin( 1.91 t) ] 

+ e- l°38t[0.73 cos(5.05t)  - 0.46 sin(5.05t)  ] . (A.3 

Here, Eq. (A . I )  refers to a = ¼ and Eq. (A.3) to a = 4. In both cases, we have taken 
the Gaussian distribution consistent with the stationary pressure tensor as the initial 
condition [ 15]. 

Appendix B. Steady-state values of the fourth-degree moments 

In this Appendix we give the explicit shear-rate dependence of  the stationary fourth- 
degree moments. Let us start by considering the expansion in powers of  the shear rate 
for arbitrary v' .  Up to super-Burnett hydrodynamic order (a3),  the result is 

where 

j~(O) = 

.A/t (1) = 

0 
0 

0 

0 
0 
0 

\ O j  

0 
0 
0 
0 
0 

0 
0 

(.M (°) + 3//(~)a + .A/[(2)a 2 + .A.,t(3)a 3 + . . . )  , (ILl) 

( B.2 ) 

(B.3) 

Andrés
Tachado

Andrés
Texto insertado
A.2
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5_ 
2 

7 

13 
14 

124 - u I ~ --;,- 
3 4 - v  I 

35 v '  
0 

0 

0 

423 

(13.4) 

.A/I(3) _= 

4259v'  - 4536 

1715~" 
_ 3 7 5 6  + 409v '  - 196v '2 

686v t2 
3616 + 277v'  - 147u '2 

686v '2 

(B.5) 

( _ ~ ) 2  15 1 N l ( a )  
M41°= \ ._ / 4 (1-I-2o/) 2 A(a )  ' 

(13.6) 

1"2knT'~ 2 54 ce N2 (c~) 
M21xx = ~- - -~ - - )  7 (1 + 2ce) 2 A(ce) ' 

(13.7) 

{2kRT'~ 2 39 a N3 (ol) 
M21YY = -  ~,--m---) 14 (1 +2o / )  2 A(ce) ' 

(B.8) 

['2kRT"~ 2 te N4(ce) 
M°lYYYY = - ~ m ) - -  (1 + 2 0 0  2 A(c~) ' 

(B.9) 

/ ' 2 k s T , 2  1 o: N5 (ol) 
Mofzzzz = ~ ~ ) - -  4 ( 1 + 2 c ~ )  2 A(a)  ' (B.10) 

The full nonlinear dependence on the shear rate for arbitrary v I can also be obtained, 

but it is too complicated and not very illuminating. Here we list the full shear-rate 

dependence for the value v '  = 1.873 obtained by numerical integration in Ref. [141. 

They are given by 
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( _ ~ _ )  2 7 a N6 (ce) 

M21xy = -  4 (1 +2or)  3 A(ce) ' 

( 2 ~ T )  2 ace N7 (ce) 
M°lxxx) . . . .  (1 +2or)  3 A(ce) ' 

( _ ~ T _ )  2 ace N8 (ce) 
M°IxyYy = (1 + 2ce) 3 A(ce) 

w h ~ e  

A ( a )  = 1 + 18.37ce + 142.8a 2 + 608.7ce 3 + 1524a'* + 2167a 5 + 1310ce 6 

--625. lce 7 -- 1433ce 8 -- 644.3ce 9 , 

(B.11) 

(I3.12) 

(B.13) 

(B.14) 

N1 (ce) = 1 + 24.37ce + 271.202 + 1796ce 3 + 7777ce 4 + 22968ce 5 + 47063ce 6 

+67138ce 7 + 66381 a 8 + 44959ce 9 + 19949cr 1° + 4639ce 11 , ( B. 15 ) 

N2(ce) = 1 + 22.61ce + 2 2 2 . 8 0 2  + 1258ce 3 + 4496cr 4 + 10636ce 5 + 16933ce 6 

+ 1 8 1 8 1 a  7 + 13078ce 8 + 609709 + 1503ce j° , (B.16) 

N3 (or) = 1 + 24.1 Ice + 249.602 + 146603 + 5423ce 4 + 13213ce 5 + 21581ce 6 

+23687ce 7 + 17374ce 8 + 8258ce 9 + 208101° , lB. 17) 

N4(a )  = 1.168 + 19.22ce + 127.3ce 2 + 404.703 + 419.2cr 4 - 1255ce 5 - 5274d '  

-8776ce 7 - 8248ce 8 - 4755ce 9 - 1491ce 1° , (B. 18) 

N5 (ce) = 1.168 + 35.20ce + 426.4ce 2 + 282503 + 11503ce 4 + 30298ce 5 + 526740 '6 

+60630ce 7 + 4601208 + 22550ce 9 + 5964ce 1° , (B. 19) 

N6 (or) = 1 + 22.54ce + 223.502 + 127803 + 464804 + 1119405 + 18116ce 6 

+19691ce 7 + 14255ce 8 + 666409 + 1657ce 1° , (B.20) 

NT(ce) = 3.120 + 59.310 + 488.002 + 2274ce 3 + 6592ce 4 + 1232905 + 1501906 

+11905ce 7 + 6041ce 8 + 1657ce 9 , (B.21) 

Ns(ce) = 2.315 + 44.06ce + 362.9ce 2 + 1692ce 3 + 4910ce 4 + 9188ce 5 + 112000" 6 

+88840:7 -F- 45150" 8 + 1242ce 9 , (B.22) 
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