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Abstract 

The nonequilibrium entropy of a dilute gas under uniform shear flow is analyzed in terms of an 
expansion in powers of the shear rate. To this end, the Boltzmann equation for Maxwell molecules 
is exactly solved to super-Burnett order, the next two orders being also partially obtained. This 
allows us to get the entropy through sixth order in the shear rate. Comparison with results obtained 
from the Bhatnagar-Gross-Krook kinetic model indicates that the latter gives a smaller entropy 
than the Boltzmann equation. 

I. Introduct ion 

Needless to say, the entropy is a fundamental concept in equilibrium thermodynamics. 

Near equilibrium, Prigogine's principle of  minimum entropy production [ 1 ] shows that 

the linear constitutive equations in steady states can be obtained from a local equilibrium 

entropy function. In extended irreversible thermodynamics [2] ,  the entropy is further 

extended to allow for a functional dependence on the fluxes. Nevertheless, no general 

consensus about how to define nonequilibrium entropy exists. This is a crucial point in 

the distinction between a thermodynamic and a kinetic temperature far from equilibrium 

[3 -5 ] .  

In the case of  a low-density gas, there is no question as to what the proper definition 

of  nonequilibrium entropy is. It is given by [6] :  

S = -kB S dr f dv f log f + const., (1 . l )  

where kB is the Boltzmann constant and f ( r ,  v; t) is the one-particle velocity distribution 

function. The latter is the solution to the Boltzmann equation: 

• v : - - f . v , f . . . . ( . , c o s o > t : l : ,  (,.2, N f + v  - . 
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We note that, even for a low-density gas, the evaluation of the entropy is quite a 
difficult task. First, one has to solve Eq. (1.2) with the appropriate initial and boundary 
conditions; next, one must perform the space and velocity integrations in Eq. (1.1). In 
order to get explicit results, we focus in this paper on a given state and a given interaction 
and follow a perturbation approach. Among all possible nonequilibrium states, we select 
here the so-called uniform shear flow, which is perhaps one of the most extensively 
studied from a theoretical point of view as well as in simulations [7]. For this state, 

Eq. (1.2) lends itself to an exact analysis by the moment method if one specializes to 
Maxwell molecules, i.e., particles interacting via a repulsive r -4 potential. Equivalently, 
the velocity-dependent coefficients of the expansion of the distribution function in powers 
of the shear rate can be exactly obtained. In this paper, we follow that method to get 
the entropy through sixth order in the shear rate. 

The uniform shear flow state is described in Section 2. By expanding in powers of 
the shear rate, the Boltzmann equation decouples into a hierarchy of equations, one 
for each order, that can be solved in a recursive way. Such a hierarchy is explicitly 
solved in Section 3 to get the velocity distribution function through super-Burnett order, 
the projection of the fourth-order term onto the subspace spanned by polynomials of 
degree 2 and 4, and the projection of the fifth-order term onto the subspace spanned by 
polynomials of degree 2. All these terms are needed in the evaluation of the entropy 
through sixth order in the shear rate, the results being discussed in Section 4. It is 
shown there that, at least for small shear rates, the solution of the Boltzmann equation 
has a smaller entropy than that of the Bhatnagar-Gross-Krook (BGK) equation. Pad6 
approximants suggest that this trend could also extend to large shear rates. 

2. Entropy of the uniform shear flow 

The uniform shear flow state is characterized by a constant density n, a spatially 
uniIbrm temperature T and a linear flow velocity field u ( r )  -- aye,  a being the constant 
shear rate. At a kinetic level, the uniform shear flow is described by a solution to Eq. 

(1.2) of the form f ( r ,  v; t) = f (V ;  t), V -- v - u ( r ) .  In that case, Eq. (1.2) becomes 
[8,9] 

0 a 
--~ f - a~ . -~xx f  = J[  f , f ] . (2.1) 

The temperature T ( t )  increases in time due to viscous heating effects. This can be 
accounted for by the introduction of a (Gaussian) thermostat force F = -mo~V [7]. 
In the special case of Maxwell molecules, the collision rate gtr(g,  cos 0) = o'0(cos 0) 
is independent of the relative velocity g and an exact relationship holds between the 
solution to Eq. (2.1) with and without a thermostat [8,9]. More specifically, if we 
define 

= ( m / 2 k o T ) , / 2  V, (2.2) 
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~b(g) = ( l / n )  ( m / 2 k B T ) - 3 / Z f ( v ) ,  (2.3) 

Eq. (2.1) reduces to 

9̀ ,9 ,9 
~(b  - a~y ~ d p  - a(  a) - ~  . gqb = nJ[ (b, ~b], (2.4) 

where the thermostat parameter a for long times is 

, 
a (a )  = ~ ~' ) .  (2.5) 

In Eq. (2.5), p - A0zn is an effective collision frequency, ~-02 being an eigenvalue of the 
linearized collision operator (see below). Henceforth, we will take u -1 = 1 as the unit 
of time. The exact equivalence between Eqs. (2.1) and (2.4) for Maxwell molecules 
allows us to map the long-time solution of Eq. (2.1) into the stationary solution of Eq. 
(2.4). We focus now on such a solution and discard the term ,9~b/,gt in Eq. (2.4). In 
addition, Eq. (2.4) is invariant under the following transformations: 

~b((x, (y, (z; a) = ~b( - ( x ,  -~y, (z ; a) (2.6a) 

= ~b(sXx, ~y, -scz; a) (2.6b) 

= ~b( -~:x, soy, scz; - a ) .  (2.6c) 

Despite the specialization to Maxwell molecules, the explicit solution of Eq. (2.4) 
for arbitrary shear rate a is not known. On the other hand, the second degree [ 10] and 
fourth degree [9] moments of ~b are exactly known. It must be noticed that, even if 
@(g; a) were known, an explicit expression of the nonequilibrium entropy, Eq. (1.1), 
as a function of the shear rate would not possibly be feasible. For instance, the solution 
of Eq. (2.4) in the BGK approximation, i.e., 

J[~b, ~b] ~ -A02 [q~ - 7 - / - - 3 / 2  exp(--~ :2) ], (2.7) 

is known [ i I ] but still the entropy has to be obtained by expanding in powers of the 
shear rate [ 3 ]. 

As said in Section 1, the aim of this paper is to evaluate the entropy through sixth 
order in the shear rate. Let us define the reduced excess entropy per particle 

=-- (S  - Seq)/Nkn = - f d e ~b(~:; a) log 
~b(g; a) 

S ( a )  4,0 (g----S-' (2.8) 

where ~0(g) = ~b(g; 0) = 7r -3/2 exp(_~c2) is the local equilibrium distribution function. 
A useful representation of ~b is obtained by considering the following set of basis 
functions: 

q t k ( ~ : ) - - ~ m ( ~ : ) = ( 2 z r 3 / 2 F ( r + g r ' + 3 / 2 ) )  '/2s¢~ ~+'/2 2 Y r ' ( ~ ) ' L r  (so) (2.9) 
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where in the spherical harmonics the polar angle is taken with respect to the z direction 
and the azimuthal angle with respect to the x direction. The functions {gtk(~:)} constitute 
an orthonormal set with the inner product 

<X, IX2) = f a~ 4,o(~) x~(~) x2(e). (2.10) 

Now we represent the velocity distribution function 4,(~:; a) in terms of the set {~k(~:)}: 

4,(~:; a) = 4,0(~:) Z Mk(a)~k(~:) ,  (2.11) 
k 

Mk(a) = (g"k14,/4,0). (2.12) 

According to the invariance properties (2.6a) and (2.6b), Mk(a) = 0 if g and/or m 
are odd. Insertion of Eq. (2.11) into Eq. (2.4) yields a hierarchy of algebraic moment 
equations that, in principle, can be recursively solved to get the moments Mk(a). Very 
recently, it has been shown [9,12,13] that the moments of degree k - 2r + g _> 4 
diverge for shear rates larger than a critical value ac (k) that decreases as k increases. For 
instance, a~. 4) = 6.846, a~, 6) = 2.346. 

Since an explicit closed expression for 4, does not seem feasible, we look for a 
perturbation solution. By expanding the moments in powers of a, Eq. (2.11) can be 
recast into the form 

4,(~:;a) =4,0(~) I + Z ~ ( " ) ( ~  :) a" . (2.13) 
n = l  

This is nothing else but the Chapman-Enskog expansion [6] particularized to the uniform 

shear flow. Since the expansion of Mk cannot converge for a > ac (k) and a (k) k--,~ 0 
[ 1 3 ], the expansion (2. i 3) is expected to be only asymptotic. Substitution of Eq. (2.1 3) 
into Eq. (2.4) gives 

q~("-' )(y 0-~x log 4,o + ~y O-~x q~('-') 

( 0 ) 
+ Z a ( " ' ) ~ ( " - " ) g ,  log4,o + ~--~ . g~(n- ' ' )  

n'=2 

n-I 

= Ao211~(') + Ao21 Z K[@("')' ~(n-.') ], (2.14) 
n t = l  

where K is the bilinear operator 

K Ix, ,  x2] - - ( 1 / 4 , o ) J t 4 , o x , ,  4,ox21 
I s 

x~ (~: )x2(# ,  ) ], 

(2.15) 
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1 is the linear operator 

I X = K[  X,  11 + K [ 1 , X ] ,  (2.16) 

and a (") are the coefficients of the expansion of a,  Eq. (2.5) in powers of a: a (°) = 
ce ( l ~ = a  ( 3 ) = a  ( 5 ) = . . . = 0 , a  ( 2 ) = ½ , a  (4)= . . . .  ~, . It must be noticed that the basis 
functions {~k(g)  } are eigenfunctions of the operator I [ 14,15]: 

lgq.~,,,(~:) = Are.~'re,m(~), (2.17) 

a,, = f do 0(cos0) 

x [1 + r~ror~to - cos2r+t (½0) Pt (cos(½0)) - sinZr+e,(½0) Pe,(sin(½0) )].  

(2.18) 

It is easy to check by induction that q~(")(~:) is a polynomial in ~¢ of degree 2n. 
Consequently, 4 ~¢") (g)  can be expressed as a linear combination of a f inite number of 
eigenfunctions: 

qD(")(b¢)= ~ m(n)q/k(~:). (2.19) 
k 

2<k<2n 

This exact property is peculiar of the Maxwell interaction. From Eqs. (2.12), (2.13), 
and (2.19) one gets 

o o  

Mk(a)  = Z M(n)an" (2.20) 
n=k/2 

It,f (n) n (n)  On account of the invariance property (2.6c) . . . .  re.,, = ( -  1 ) Mre_ m. As a consequence, 

(¢(n, ]@(n')) = Z M(f)*Mk"')' (2.21) 
k 

2<k<min(2n,2n ~) 

which vanishes if n + n ~ = odd. 
Thus, in order to know &(~:;a) through order n in a we need to determine the 

coefficients {M~k"'),k < 2n ' , n '  < n}. However, the knowledge of a much smaller 
number of coefficients suffices to know S ( a )  through order n: 

S ( a ) = - ( ¢ / ¢ o l l o g ( ¢ / ¢ o ) ) =  ~ s ( n ) o  n. (2.22) 
n=2,4,6 .... 

The expressions for S c2), S (4), and S c6) are 

S(2) = _ ½ (¢,(1)1¢(1)), (2.23) 

S(4)= _~(¢(I)1q:,(1)3 ) + ½(4~(2)145(I)z _ ~(2)) _ (¢(3)14)(t)), (2.24) 

S ( 6 )  ----. - -  .~'0 \ 1 / ( p (  I ) [¢/)(I) 5) ..~ 1~1 (qb(2) 13qb(I)4 _ 6qb(I )2qb(2) nt - 2qb(2) 2) 
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- -1(¢(3) [2¢( I )3  -- 6¢(1)¢  (2) 4- 3¢  (3)) 

I (¢(4)[¢(1) 2 _ _  2¢(2)) _ (¢(5)1¢(I)) .  (2.25) +~ 
?/t 

In general, $(") is a linear combination of terms of the form (¢ ( ) [P2(n-n ' ) ) ,  where 
P2(.- . , ) (~:)  is a polynomial in ~ of degree 2(n - n') and 1 < n' < n - 1. From Fx t. 
(2.20) then follows that only the coefficients ~ ( " )  with 2 < k < min(2n' ,2n - 2n') ~r,  k 

contribute to ,.q(n). This is illustrated in Fig. 1. In particular, to calculate S ( 2 ) ,  S ( 4 ) ,  and 
S (6), we need ¢(I) ,  ¢(2),  ¢(3),  the projection of  ¢(4) onto the subspace spanned by 

{q'k(~:), k = 2, 4}  and the projection of  ¢(5) onto the subspace spanned by {~k(~:) ,  k = 

2}. These functions are derived in the next section. 

3. Perturbation expansion of  the distribution function 

The solution of  Eq. (2.14)  is 

+ ~ ' ~ ( " ' )  _2~2¢~.-. '~ + • ~ . - . ' )  _ a ~  1 

n ~ = 2  

n - - I  ] ]  

E K[¢(n') ,  @ ( n - n ' )  . 

n~=l 

(3.1) 
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Fig. I. Each dot in this diagram represents all the coefficients Mrl m of the same degree k ~ 2r + ~ and order 

a ~. Only the coefficients lying below the line n = const, are required to evaluate the entropy through order n. 
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The expression enclosed between braces is a polynomial of degree 2n. Once it is 
expressed as a linear combination of {~Pk, k _< 2n}, the action of the operator 1 - l ,  
on account of Eq. (2.17), is straightforward and one gets 4 ~(n). The process can be 
continued recursively. The first step is obtained by making n = 1 in Eq. (3.1): 

q O(l) (b ~) = -2~:x(>, = - ~ o ~  ) (~) ,  (3.2) 

where we have called 

(+) exp[ (irr/4) ( - 1  + 1)] 
= v'~ [g'r~,,(~) "4- gSe-.,(~:) I. (3.3) 

Substitution of Eq. (3.2) into Eq. (3.1) with n = 2  yields 

q5(2> -I  2 2 ~(2 I) (:p(1)] = ,~02I {4(xSCy- 2(~ + 1 - - - a~'gE,t ,  < }. (3.4) 

A tedious but straightforward calculation gives 

5 2 K[@(,), (/9<,) ] = _ l~aO 2 [~:4 _ 5(2(~x 2 + (~) -F- 30sC2sC,~ + $(~:x + SC~) - 45-1 
2 2 "4- 3-'~/~04 [~ 4 -- 5~:2(~ 2 -~- (~)  + 35~,~>,1 

__ _ 2  a02[ ~ * / - f o 4 0 ( e )  - 15@1,/*(q4 ) (~ )  

+ - 

_q_ 2 a04[ ~ I / 1 0 4 0 ( e )  -- ~ P ' ~ ) ( e ) ] "  (3 .5)  

Alter insertion of Eq. (3.5) into Eq. (3.4) one gets 

qo'2>(~:) = *P'o(~2)(~:)- 4q 'o2o (~ : )+  @ ( 4 / ) t o 4 -  l)Voao(e) 

v'~(4/a04 _ 1)~0(~4)(~:) _ lOv'~,,, e,~, - r i f -*~2o ts )  + 79-~q'20o(~ :) 2 

= ( 8/35 2~o 4 + 2_~3) ( 4 .  _ (8 /7  2[o4 _ N'-34 ].~2(.~2..x ..{._ ~ )  

( -- ) e x ( y - - 2 1 "  +ffe .~-- ' f f 'by- '~-~,  (3.6) -}- 8/)[04 2 2 2 29;2 4 2 10¢2 5 

where in the first step we have called are _-- Are/a02 and have taken into account that 
7 2 a12 = g, a2o = g. The numerical values of are can be obtained from Table 1 of Ref. 

[ 15]. In particular, Ro4 _~ 1.87313. 
Eqs. (3.2) and (3.6) give the velocity distribution function through Burnett order 

for Maxwell molecules under uniform shear flow. The process can be continued to get 
higher order contributions. The term (b (3) is obtained by inserting Eqs. (3.2) and (3.6) 
into Eq. (3.1) and performing lengthy calculations. The final result is 

(/5(3) 4 if.t(-) . -o22 ( ¢ )  + 2 = (20/7~to4 + 132/49Ao4 - 1)!Po(4~)(~) 
2 

-- vrS(4/:~04 + 2/:~0,1 1 ) ~0(44) (~)  

8Via + ~  (3402/~o4 - 193)!/t~22)(~:) 
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3(4--~04)(4- -4R04+ ~06)(_~12 (062)(~) _ V~O(6~)(~)) 
+ 4 ;~04 ~t06 

_F. 10____~4~ 33~t2 -- 97;~04 - 140 gr~)(~ ) 

539 ~o4(69 ~o4 - 49) 
2 

x/~  48722Co4 - 20761 ~o4 - 26208 

+ 490 Ro4(24Ro4 + 49) 
(3.7) 

where ~06 - 2.45323. Eqs. (3.2), (3.6), and (3.7) give the velocity distribution 
function for Maxwell molecules under uniform shear flow through super-Burnett order. 
They have been used in Ref. [16] to refute an extremum property of the Gaussian 
thermostat. 

The term q)(4) is a polynomial of degree 8. Nevertheless, as discussed in Section 2, 
we only need "~4t~ (4) to get S (6) , where we have called 

k¢ 

k' <_k 

(3.8) 

to be the projection operator onto the subspace spanned by the eigenfunctions of degree 
equal to or less than k. Thus, when computing 794q ~(4) from Eq. (3.1) we just discard 
the terms of degrees 6 and 8. The result is 

~4t/)(4) ( ~ )  ----- ~ - I f f ' 0 2 0 ( ~ )  0 ' ' ( + ) ( ~ )  -F" ~ / ' 8 1  648/}[04 -- z.,x 022 77 175 x -- 

+ lx/T-~( 60 
343 X04 

7 + - - -  

372 + ~ 
+V/3 ~k49 A~4 

23 756 30 756 - - +  
2 420 175 :~o4 180 075 :~ 04 

230 ) 
49;~4 1 ~(o4~)(~ :) 

47507)~20o(s ¢) 

,) 
2To  o4o( ) 

24544 30756 ! 1 ~ ~(o4~) (~) 
5145;~4 + 12005;~o4 6 / 

4x /~  {66 150 212058 
1 764735 --TT-- + - -  143977,] ~n20(s ¢) 

~k ~04 a04 

4X/~ ( 1_~ 4149 45 191~ 
49 + 245 ;~""'~ 51"4-'5 ,] ~'~+) (~)" 

(3.9) 

Finally, although q0 (5) is a polynomial of degree 10, only P2~/'(5) is needed. The result 
is 

792@(5)(~) = 28g~(-)(~:) (3.10) 
- T 022 • 
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4. Discussion 

Once the explicit expressions of ~/,(J), q~(2), q~(3),-p4~(4), and 7~2q~ (5) are known, Eqs. 
(2.23)-(2.25) provide 8 (2), S (4), and S (6) by just performing Gaussian integrals. The 
result is 

N (2) = - I / 2 ,  (4.1) 

8(4) _ 216 216 1632 
3 5 ~  4 + 35;~0-----: 171-----5 ~ 0.58417, (4.2) 

8 ( 6 ) -  "~ - I .36502.  (4.3) 

Since the expression of S(6) in terms of ;~04 and ;~06 is rather involved, we have given 
above only its numerical value for ;~04 ~ 1.87313 and ~06 ~ 2.45323. It is striking 

that S (6) differs from --48 (4)2 in less than 2 × 10 -6, (a value that, however, cannot be 

accounted for by the error bars of the eigenvalues tabulated in Ref. [ 15] ). While this 
could be just a coincidence [ 17], it would be interesting to analyze this point in the 
future in more detail. 

In order to put the results (4.1)-(4.3)  in a proper context, let us consider two different 
approximations. First, in the BGK approximation, cf. Eq. (2.7), the computation of the 
coefficients of 8(a) is much easier than in the Boltzmann equation. In the former 
case, Eq. (3.1) still applies, except that the operators become 1 --~ A02, K --, 0. After 
performing the corresponding calculations, one gets 

1 2 1 4 % 6 +  153 8 192101 l0 78664283 12 
8BGK = - ~ a  + ~a - 54 --ff-a + 2----~-~-a + 2916 a 

2336070287al  4 7627231329077 16 2347536574990979 J8 + - a - a 
10 206 34 992 39 366 

+ O(a2°). (4.4) 

The coefficients .¢(2) 1 and .¢(4) i '-'B~K = '-'BCK = ~ were already obtained in Ref. [3], while 
the remaining coefficients appearing in Eq. (4.4) had not been evaluated before. The 
equality '-'BCK-¢(2) = 8 ( 2 )  is a consequence of the fact that the BGK equation coincides with 
the Boltzmann equation to Navier-Stokes order, Eq. (3.2), for uniform shear flow. The 

.¢(4) This means that, at least for small shear rates, the surprising result is that S (4) > '-'B6K" 

nonequilibrium entropy obtained from the Boltzmann equation is larger than the one 
obtained from the BGK model. In other words, the velocity distribution function given 
by the Boltzmann equation exhibits a less "ordered" structure (in the entropy sense) 
than the one given by the BGK equation, at least for states not very far from equilibrium. 
This seems to be rather counter-intuitive if one considers that the BGK model can be 
viewed as a coarse-grained version of the Boltzmann equation and contains much less 
information than the latter. We will come back to this point later on. 

As a second approach, we now use information theory (IT). According to this method 
[ 18], if one only knows a finite number of velocity moments, the distribution function 
can be approximated by the one that maximizes the entropy, Eq. (2.8), subject to the 
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constraints imposed by those moments. The corresponding entropy function SIT(a) is 
then an upper bound of the actual function S(a) .  If the explicit knowledge of the second 
degree moments is taken into account, SiT(a) is easily obtained as [3] 

1 I + 3o l (a )  
SIT(a) = ~ log [ 1 + 2ce(a) ]3' (4.5) 

where a(a)  is given by Eq. (2.5). The behavior for small shear rates is SIT(a) = 
3 4 95-6 -½a  2 + ~a ~ ,  + O(a8). Since the second degree moments obtained from the 

BGK and Boltzmann equations coincide for any shear rate, it follows that SiT(a) is 
S (4) an upper estimate of both $(a)  and SBGK(a ). Note that S[ 4) > S (4) > BGK but 

S(6) S(6) < S(6) < BGK" 

It is interesting to carry out a broader comparison between the Boltzmann and the 
BGK entropies by considering Pad6 approximants of the corresponding power series 
[ 19]. Since several approximants are possible, a criterion based on the behavior for 
large shear rates seems to be adequate for choosing the most reasonable one. The 
information-theory entropy behaves for large shear rates as SlT ~ --2 log a. Since SIT (a) 
is an upper bound of S(a) ,  the simplest behavior compatible with a Pad6 approximant 
is S(a )  ,.~ - a  2. We will call the function S ( a )  = -½a2Pn(a2)/Q,(a2), where P, and 

Q,, are polynomials of degree n, a Pad6 approximant (n, n) of the actual function S(a) .  
In the case of the entropy derived from the Boltzmann equation, the results of this paper 

allow us to construct the Pad6 (1,1): 

_ l a 2 1  + 2S(4)a 2 
S ( a )  1 + 4S(4)a 4' (4.6) 

where we have already taken into account that ,5 '(6) _~ - 4 S  (4)2. In the case of the 

entropy obtained from the BGK model, Eq. (4.4), one can get the Pad6s (1,1), (2,2), 
(3,3), and (4,4). Fig. 2 shows the function - 2 S ( a ) / a  2 in the range 0 < a 2 < 1 as 
given by (a) information-theory [Eq. (4.5)],  (b) the Pad6 (1,1) obtained from the 
Boltzmann equation [Eq. (4.6)] ,  and (c) the Padrs (2,2), (3,3), and (4,4) obtained 

from the BGK equation. The results clearly suggest that S(a)  is larger than SBGK(a), 
not only for small shear rates, but also for quite large values. As commented above, 
this effect seems to be paradoxical. A possible explanation for it lies in the fact that the 
entropy function (2.8) is especially sensitive to the details of the distribution function for 
thermal velocities, i.e. I~:[ ~' i. As we have recently observed from a numerical solution 
of the Boltzmann equation [20], the latter exhibits a smaller distortion for thermal 
velocities than the analytical solution of the BGK model [ 11 ]. On the other hand, the 
Boltzmann distribution function for large velocities is much more distorted from local 
equilibrium than the BGK distribution function. In fact, the former seems to develop a 
high-velocity tail [ 13] that is responsible for the divergence of high-degree moments 
[9,12]. It is then possible that the entropy does not capture the rather rich structure of 
the Boltzmann distribution function for high velocities and remains dominated by the 
population of thermal velocities, which is less "ordered" than in the case of the BGK 
distribution. 
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Fig. 2. Plot o f - 2 $ ( a ) / a  2 versus a 2 according to (a) information theory, (b) the Pad6 (1,1) obtained from 
lhe Boltzmann equation, and (c) the Pad6s (2,2) and (3,3) (lower curve) and the Pad6 (4,4) (upper curve) 
obtained from the BGK equation. The dashed line corresponds to the truncated power series obtained from 
the Boltzmann equation. 
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