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Abstract 

The construction of kinetic models for a practical description of hard sphere dynamics in 
fluid, amorphous solid, and crystal phases is outlined. The models are constructed to apply for 
both elastic and dissipative collisions. As an illustration, the Navier-Stokes hydrodynamics and 
transport coefficients are calculated for rapid flow granular media. 
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1. Introduction 

Perhaps the most fundamental and complete description of dynamical phenomena 
is that given by the Boltzmann kinetic equation. It is based on nonequilibrium sta- 
tistical mechanics and applications near equilibrium are in excellent agreement with 
experiments, for a wide range of simple atomic gases. Applications to states far from 
equilibrium have occurred primarily in the past 20 years with development of Monte 
Carlo simulation techniques [1] and analytic studies of closely related kinetic models 
[2]. The kinetic models are constructed by replacing the Boltzmann collision oper- 
ator by a mathematically simpler form, constrained to preserve the most important 
physical properties of the Boltzmann operator. In many cases exact solutions to the 
latter can be obtained and their comparison with Monte Carlo simulations of the 
Boltzmann equation show qualitative and even semi-quantitative agreement far from 
equilibrium [3]. 

The Boltzmann equation is restricted to low density, and therefore cannot be applied 
to many interesting phenomena that occur at higher densities: dense fluid transport far 
from equilibrium, short wavelength structural dynamics, kinetics of freezing, crystal 
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elasticity and transport, kinetics of metastable and amorphous states. However, the 

revised Enskog kinetic theory (RET) provides an appropriate and unique basis for 
such investigations at high densities [4]. This kinetic theory is restricted to a system of 
hard spheres, but otherwise has the following remarkable features: asymptotically exact 
at short times, no a priori limitations on density/space scales, quantitative description of 
fluid-phase dynamic structure S(k, ¢o), exact fluid and crystal stationary states with an 
H-theorem. Recently, the RET has been extended to the case of inelastic hard spheres 
as model for granular flow [5]. As with the Boltzmann equation its complexity has 
limited applications to states near equilibrium. Both Monte Carlo techniques [6,7] and 
kinetic models [5,8,9] have been developed for the RET during the past year, with the 
potential for applications to the wide range of nonequilibrium phenomena mentioned 
above. The objective here is to provide an overview of the kinetic model construction 
and to illustrate its use with an application to transport properties of granular flow. 
A variant of the kinetic model in Refs. [8,5] with greater quantitative accuracy is 

presented and used in this calculation. 
The RET kinetic equation for the one-particle distribution function, f ( r ,  v, t), is de- 

fined by [4,5] 

+ v , .  W'l f ( r l , v l , t )=JE[v l , v l l f ( t ) ] ,  (1) 

where JE is the Enskog collision operator, 

0 -2 / dl] 2 f J d(~ (~((~. g)((~...q){(x 2f(2)(r I J E [ r l ,  l) 1 I f ( t  )] 

-- f (2)(r l , r l  + tr, V l , V 2 , t ) }  . (2) 

Here, f(2)(rl, r2, vl, v2, t) = z[rl, r2 In(t)]f(rl, el, t)f(r2, v2, t), ~7 is the hard sphere diam- 
eter, ~ = a~, ~ being a unit vector, O is the Heaviside step function, and 9 = v~ - v2. 

t t The primes on the velocities denote the initial values {el,v2} that lead to {vl,v2} fol- 
lowing a binary collision, v~j = el - ½(1 + ~-1)(~.  9)~, v~ = v2 + ½(1 + ~-1)(8 .  O)d. 
The parameter e is the coefficient of restitution with 0 < ~ ~< 1, and having the value 
unity for elastic spheres. Finally, z[r,r + aln(t)] is the equilibrium pair correlation 
function at contact as a functional of the nonequilibrium density field n(r,t) defined 
by n(r, t )=  f dvf(r ,  v, t). In principle, x[n] is a functional of n that can be determined 
exactly in terms of the equilibrium free energy functional for an inhomogeneous state 
[10], for which practical approximations are currently available. As a consequence of 
this dependence of x[n] on n, Je[f]  is a highly non-linear functional of f .  This is an 
essential feature of the RET that is necessary to admit the broken symmetry crystal 
phase. Both fluid and crystal equilibrium stationary solutions for ~ = 1 are Maxwellian 
velocity distributions, with a local density determined from Eq. (1) which reduces to 

V 7 In ns(r)  = -- ~r 2 [ d ~ z [ r , r  + ~]ns]ns(r 4- ~). 
d 

(3) 
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This can be recognized as the exact first BBGKY hierarchy equation for a stationary 
state. 

The conservation equations for mass, momentum, and energy follow directly from 
Eq. (1). By multiplying with 1, my1, and my2~2 and integrating over vl, 

Dtn+ nV'.U = 0 ,  (4) 

DtUi + (mn) -1 ~3jPiij = 0, (5) 

+ 3n~B (PijOjU/+ U.q + (1 - ~ 2 ) w ) = 0 ,  (6) DtT 

where D t = ~  t -}-U. ~7, T(r,t) is the temperature, and U(r,t) is the flow velocity. 
The term (1 - ~2)w represents energy dissipation in the case of dissipative collisions; 
its explicit form can be found in [5]. The pressure tensor Pij(r,t) and the heat flux 
q(r,t) have both "kinetic" and "collisional transfer" contributions, i.e. P/j =P~. + ~ 
and q = qk + qC. The kinetic contributions are given by 

P,k(r, t)= ~6ij+ f dvDij(V)f (r ,v , t ) ,  qk(r, t)= f dvS (V) f ( r , v , t ) ,  (7) 

where ~==_(kBT) -~, Dij(V) =- m(V~Vj - ½V26ij), S(V)=_(½mV 2 - 5/2/~)V, and V-_- 
v - U. The divergences of the collisional transfer parts are related to moments of the 
collision operator, 

- / dv m ViJE[r, vlf(t)],  (8) t) 

/ °  ~7. qC(r,t)= - dv ~g2J~[r, vlf(t)] - P,~(r,t)~Udr, t) - (1 - ~2) w. (9) 

The explicit forms for qC(r, t) and Pi~(r,t) can be obtained directly from these defini- 
tions and (2) [5,8] but will not be given here. These equations provide the basis for 
discussion of transport both near and far from equilibrium, and will be imposed as 
essential constraints on the construction of any acceptable kinetic model for the RET. 

2. Kinetic models 

A kinetic model for the RET is obtained by replacing the collision operator, 
JE[rl,Vl If(t)], by a simpler, more tractable form while retaining the most important 
qualitative features of the RET. The primary constraints imposed on the kinetic model 
are (1) the exact stationary solutions for both fluid and crystal phases in the case of 

= 1, Eq. (3), and (2) the exact conservation laws (4)-(6), including the collisional 
transfer contributions to the fluxes. As indicated above, the conservation laws follow 
from moments of the kinetic equation using polynomials constructed from {1, v, v2}. 
To describe this feature of the kinetic equation a projection operator ~ is defined by 

~g(v) = Oz(v)~be(v)(Oz, ~ -  l g),  ( 1 O) 
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where n~be(v) is the local equilibrium distribution, 

( flm ~3/2 exp(-f lmV2 /2 ) . (11) f / (v )  = nq~r-(v) = n \ ~ - g j  

The scalar product is defined by (~,¢) = fdv(&(v)~*(v)¢(v) ,  and { ~}  is the set of 
orthonormal functions, 

0~= { 1 , ( r n j ~ ) l / 2 v , ( ~ ) ' / 2 ( - ~ V 2 - ~ ) }  . (12) 

The conservation laws now may be understood as the projection of the kinetic equa- 
tion into the subspace defined by ~ .  Accordingly, the RET collision operator is then 

decomposed into two parts, J e [ f ]  = ~ J E [ f ]  + (1 - ~ e [ f ] .  The conservation laws 
require that any kinetic model for de[ f ]  must retain the contribution a~Je[f]. The 
additional requirement of the exact stationary equilibrium solutions imposes only the 
condition that the second term vanishes at equilibrium. The simplest choice of a kinetic 
model then would appear to be 

J e [ f ]  ~ ~Ju[ f ]  - (1 - ga)vf  = ~ J e { f ]  - v ( f  - f / ) ,  (13) 

where v=v( r , t )  is an average local collision frequency, and use has been made of 
the property ~af  = f~ in the second equality. This is the kinetic model proposed in 
Ref. [8]. The term ~Je[ f ]  vanishes in the low-density limit and this kinetic model 
reduces for ~-- l to the familiar Bhatnagar-Gross-Krook (BGK) kinetic model for the 
Boltzmann equation [11]. 

While the kinetic model defined by (13) satisfies the constraints of exact conser- 
vation laws and stationary solutions, the transport coefficients calculated from it are 
only semi-quantitative. A more quantitative model can be obtained by improving the 
approximation to (1 - ~ ) J ~ [ f ] .  Following a suggestion by Lutsko [9], it is noted 
that (1 - ~ ) J E [ f ]  does not vanish for f = f ~  as in the approximation above (except 
for homogeneous temperature and velocity, as required for the stationary solutions). 
Therefore, this contribution is isolated and the above approximation is applied only 

to the remainder: (1 - ~a)JE[f] ---+ (1 - ~a)JE[f/] - v ( f  - f / ) .  This provides an im- 
proved representation of the collision operator, but at the price of complicating its 
velocity dependence considerably. Further analysis shows that only the projections of 
(1 - ~ ) J E [ f f ]  onto the two functions Dij(V) and S (V )  contribute to the transport 
coefficients. Thus, a simple velocity dependence is restored by keeping only this part 
of (1 - .~')JE[f/], an approximation that is exact to first order in the hydrodynamic 
gradients at ~ = 1. The resulting kinetic model is given by 

~ + v. V f =  - v ( f  - f / )  + ~Je[ f ]  + flf/[DijA~i + S .  B]. (14) 

with 

Aij= ~ f dvD~(V)&[f~], 2rnfl 2 f 
B / dvS( V)JE[fr] (lS) 

5n j 
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The second term on the right-hand side of (14) can be expressed in terms of the exact 
collisional transfer contributions to the fluxes, 

~ J E [ f ]  = - ~ f ~ ( ~ - V 2 - l ) [ ~ 7 " q C + p , ~ o j U i + ( 1 - ~ 2 ) w ]  

~ f,+ P~jPi~. (161 

The difference between this model and the low-density BGK model are terms on the 
right-hand side of (14) that are polynomials in the velocity of degree 3, with coefficients 
that are known functionals of f .  This implies that the velocity dependence of the 
distribution function can be determined whenever the low-density BGK model can be 
solved. In addition to the exact conservation laws and stationary states, this model also 
predicts the same density dependence for the transport coefficients (shear viscosity, 
bulk viscosity, and thermal conductivity) as that obtained from the RET in the case of 

= 1. The case a < 1 is considered in the next section. 
It is instructive to rewrite this equation using the conservation laws and the substi- 

tution, f = f r + A f ,  to obtain 

• +(1 - ~ ) v .  ~'+v ~f=-Bf~Dij(V)(oigj -AiS) 

- f i f e S ( V ) .  (I71n T - B ) .  (17) 

Interestingly, Eq. (17) shows no explicit dependence on the dissipation parameter c~. 
However, this equation only determines A f  as a functional of the hydrodynamic fields. 
This functional then can be used to calculate the fluxes as functionals of the fields. 
Finally, the resulting expressions for the fluxes together with the conservation laws 
provide hydrodynamic equations for the fields. This decoupling of the problem into the 
solution to a simple equation for the velocity dependence, and equations for the fields 
is a primary simplifying feature of the kinetic models. 

3. Application to granular flow 

In this section the kinetic model is applied to obtain expressions for the pressure 
tensor and heat flux to first order in the spatial gradients of the hydrodynamic fields. 
In addition, the associated transport coefficients are determined as explicit functions 
of  the dissipation parameter ~ and the density. To do so, the distribution function is 
assumed to have an expansion in the spatial gradients, 

f = f ( o ) + e f O ) + . . .  , (18) 

where e is a formal "uniformity" parameter (set equal to unity at the end). Use of 
this expansion in the definitions for the fluxes and the dissipation function w gives a 
corresponding expansion for these quantities. Finally, use of these in the hydrodynamic 
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equations leads to an identification of the time derivatives of the fields as an expansion 

in the gradients, c~t=Ol°)+ c~11) + . . - .  This is the usual Chapman-Enskog method 

for solving kinetic equations and is discussed in detail in Refs. [12,13]. The problem 

is more complex here than for the case ~ = 1 since the reference state about which 
gradients are considered is not stationary, and the terms from ~t °) are not zero. To see 

this, assume that Aij and B are of  first order in the gradients (as is verified below). 
Then to zeroth order in the gradients the kinetic model, Eqs. (14) and (16), becomes 

(19) 

where w (°) = w[f(°)]. The conservation equations to this order become 

010)n=0, c310)U=0, 010)T_ 2 ( l_~2)w(0)  ' (20) 
3nk8 

It is straightforward to verify now that the solution to (19) is f ~ 0 ) = f t .  This is the 

same result as for a fluid with elastic collisions. It is somewhat surprising since the 
time derivative of  the temperature is no longer zero as in the elastic collisions case. 

As a consequence, the corresponding solution to the RET to zeroth order in the gra- 

dients is complex and has not been determined to date. The simplified form of the 

kinetic model leads to the local equilibrium distribution as a non-trivial exact result. 

Monte Carlo simulations of  the RET for the homogeneous cooling state confirm that 
this is a very good approximation [14]. 

Since the zeroth-order solution is the local equilibrium distribution, the first-order 
solution can be obtained directly from (17). The term (1 - ~ ) v .  V f  I1) is of second 

order and does not contribute. Also, direct evaluation of (15) to first order in the 
gradients gives 

A i j = A ( ~ i U j 4 - ~ U i -  ~6ijV'2 U)  , B i = B r c 3 i l n T  + Bnc3ilnn, (21) 

with the coefficients 

A = - ( 1  + ~ ) ~ n * g e [ 1  - ~ (1 - a) ] ,  

Br -- - ( 1  + ~)l~n*ge[1 - }(1 + 2~)(1 - a)] ,  

Bn = ~(1 - o~2)lrcn*ge(1 + ½nC~n lnge) ,  

(22) 

(23) 

(24) 

where ge is the pair correlation function at contact for a homogeneous fluid and 
n* = n o  "3. The equation for fO)  becomes 

(91 °) + v ) f  (1)= -[3fr~Dij( V)(1 - 2A)OiUj 

-[3 f p S (  V)  . [(1 - By) Vln  T - Bn V lnn] . (25) 
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It follows from fluid symmetry that the pressure tensor and heat flux have the forms 

Pij = P 6 i j  - ? ] ( O i f  j _~_ OjUi _ . ~ i j ~  . U )  - N,~ij~7 • U , (26) 

q = - 2~7T - ~ 7 n ,  (27) 

where p is the hydrostatic pressure, q is the shear viscosity, ~c is the bulk viscosity, 
2 is the thermal conductivity, and /~ is a transport coefficient that is non-vanishing 
only for ~ < 1. Each of these terms has contributions from the kinetic and collisional 
transfer parts of the fluxes defined by Eqs. (7)- (9) .  Equations for the kinetic parts 
of the pressure tensor and heat flux are obtained directly by integrating (25) after 
multiplication with Dij(V) and S(V).  The collisional transfer contributions to the fluxes 
are calculated using the Chapman-Enskog solution for f¢l) in their defining functionals. 
Since the latter are the same as for the RET, the calculation follows exactly that of 
Appendix D in Ref. [12] for the Enskog equation, vis-a-vis changes in the Chapman- 
Enskog form for fCJ). The analysis is straightforward, leading to the explicit results 

I (1 + ~)nn*oe] (28) p=nf l - l [1  + ~ 

q=qk[ t  + (1  + ~ )  2 * 3 (29) Tg rcn 9e] + gK, 

2 = i f [ 1  + (1  + ~ )  J * grcn 9e] + (3kB/2m)x, (30) 

p=pk[1  + (1 + ~) ½ztn*ge], (31) 

t¢ = (1 + ~) 2n2rr4ge(Ytm/fl)l/2. (32) 

The superscript k denotes the contributions from the kinetic parts of the fluxes, 

2 
qk _ _ 2A) , (33, /~v(2 - b) n(1 

2k = 5k~ 
2m~v ( 1 - 2b) n (1 - B r ) ,  (34) 

]~k mfl 2v (25 _ 3b) [ - B n + b ( l - B r ) ( 1 - 2 b ) - l n O n l n W ~ ° n ) ]  " (35, 

Use has been made of the properties w~°)~ T 3/2 and vcx T 1/2, as follows from dimen- 
sional analysis for hard spheres. The coefficients b=2/~(1 -o~2)w~°)/3nv, A, Br, and 
Bn are independent of T. These results differ from those obtained in Ref. [5] using 
the simple model (13) only by the density and ~ dependence of the kinetic parts of 
the transport coefficients arising from A, Br, and Bn. As an illustration, Fig. 1 shows 
the density dependence of the transport coefficients obtained at ~ = 0.7 relative to their 
values at :~ = 1 (# has been normalized to T2/n since it vanishes at ~ = 1). The trans- 
port coefficients are positive over the entire range of densities for 0 < ~ ~< 1, except for 

which can become negative at the unphysical values of c~ ~ 0 and for densities near 
crystallization. In these calculations we have chosen v = ~ x/~na29e(flm) -1/2 which as- 
sures the correct Enskog viscosity for a =  1. This leads to the value b =  ~(1 -~2 ) .  
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Fig. 1. Density dependence of  the reduced transport coefficients )~(n,a)/2(n, 1) ( - - ) ,  q(n, ~)/t/(n, I ) ( -  - ), 
and nl~(n,7)/T2(n, 1) ( . - . ) ,  at ~.=0.7. 

Also, the pair correlation function at contact has been approximated by the Carnahan- 
Starling form ge ~ (1 - ~ 2 n n * ) / ( 1  - 1 _ . , , 3  gJ~n ) .  

4. Discussion 

The RET kinetic equation for hard spheres has the potential to describe a wide 
range of dynamical phenomena over the full range of fluid and crystal densities, for 
phenomena at all wavelengths near and far from equilibrium. This generality is com- 
promised by the practical difficulties confronted in solving the equation for a particular 
application. Newly developed Monte Carlo simulation methods [5,6] provide a means 
to explore the content of this kinetic theory in qualitatively different directions than 
have been considered before. Here, we have described a method of kinetic modeling 
with the same potential for new applications and exploration. The form of the kinetic 
models is such that explicit solution for the velocity dependence of the distribution 
function is often possible as a functional of the five hydrodynamic fields. The latter 
obey self-consistent non-linear integral equations obtained from the kinetic model, still 
difficult to solve in general, but considerably more accessible to analytic and numerical 
approximation. 

The example provided here for a system of hard spheres with inelastic collisions 
is non-trivial since even the reference homogeneous cooling state is not known for 
the RET. This makes even the determination of properties near equilibrium difficult, 
such as evaluation of transport coefficients. The kinetic model described here gives 
the same transport properties as the RET (in the usual first Sonine approximation) for 
elastic spheres and allows their determination for inelastic spheres with no additional 
difficulty. These results yield a "Navier-Stokes" level formulation of a hydrodynamic 
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description of idealized granular flow suitable for comparison with both Monte Carlo 
and molecular dynamics simulations. For example, the critical wave vectors for long 
wavelength instabilities can be described over the entire density-co parameter space. 
Also, the conditions for the existence and dominance of a hydrodynamic description 
can be determined from an analysis of the spectrum of microscopic excitations as 
well. A more complete description of the kinetic model, applications to shear flow and 
granular flow, and comparisons with Monte Carlo simulations will be given elsewhere. 
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