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Abstract 

A recently proposed Monte Carlo simulation method for the Enskog equation is applied to 
uniform shear flow. This state is characterized by uniform density n and temperature T and 
a linear velocity profile: u(r) = a.r, a~l~ = af=fBy. In each unit time step At, the peculiar velocities 
{ V,} of N particles are updated in two stages. In the free streaming stage, the velocity E is 
changed into V,--. E -  a- E At; in the collision stage, Fi--~ E -  (~.  g~j)ai with probability equal 
to 4na20(~ • gi/)(a/• gij)z(n)n At, where ~ is a random unit vector, a is the diameter of the 
spheres, gij -z Vi - V/-  aa • ~., ~ being the velocity of a random partner j, and z(n) is the 
equilibrium pair correlation function at contact. The kinetic and collisional transfer contributions 
to the pressure tensor are calculated as functions of density. The Navier-Stokes shear viscosity is 
seen to agree with the theoretical value. Furthermore, the nonlinear Bumett coefficients associated 
with normal stresses are obtained. 
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1. Introduction 

The simplest system to analyze non-equilibrium properties is a low-density gas of  

particles interacting via a short-range potential. In that case, the relevant local average 

quantities (such as the densities of  conserved quantities and their fluxes) can be ex- 

pressed as velocity integrals o f  the one-particle distribution function f ( r ,  v, t), whose 

time evolution is governed by the Boltzmann equation (BE) [ 1-3] .  The assumptions 
implicit in the BE, in particular the hypothesis of  molecular chaos or stosszahlansatz, 

are physically justified in the low-density limit [3]. On the other hand, as the den- 

sity increases, structural effects become important, potential contributions to the fluxes 
dominate, and the BE is no longer adequate. 
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With great physical insight, Enskog proposed in 1922 [4] a semi-phenomenological 
equation based on the BE for hard spheres of diameter tr. Two important changes in the 
Boltzmann collision integral were introduced: (a) the centers of two colliding particles 
are separated by a distance equal to a; (b) the collision frequency is multiplied by 
a factor Z that takes into account the spatial correlations between a pair of colliding 
particles. In the standard Enskog theory (SET) [l,2], Z is evaluated from the density at 
the midpoint, while in the revised Enskog theory (RET) [5], Z is given as a functional 
of the density field. The RET follows exactly from the BBGKY hierarchy in the limit 
of short-times starting from an uncorrelated initial state. This short-time limit does not 
entail any limitations on the density or space scale, so that the RET can be applied 
at high densities and at short wavelengths. Moreover, it admits both fluid and crystal 
equilibrium states as stationary solutions [6]. 

In spite of the potential of the RET for describing fluid, crystal, and metastable 
states near and far from equilibrium, its mathematical intricacy has hindered practical 
applications. Two alternatives have been recently proposed to cope with this prob- 
lem. First, a simulation Monte Carlo method has been introduced to solve numeri- 
cally the RET [7]; second, a simple kinetic model has been constructed that retains 
the main features of the RET [8]. In this paper we will be concerned with the first 
approach. 

The simulation method proposed in Ref. [7] is a natural adaptation to the Enskog 
equation of the direct simulation Monte Carlo (DSMC) method to solve the BE [9,10]. 
A previous algorithm (CBA) [11] is consistent with the equilibrium equation of state 
for hard spheres but provides transport coefficients different from those of the Enskog 
equation. In Ref. [7] the simulation was applied to the uniform shear flow (USF) state 
at a rather large density na 3--- 0.8 and was shown to be consistent with the Enskog 
equation for the pressure tensor at local equilibrium, the viscous heating equation, and 
the Navier-Stokes shear viscosity r/. The objective here is to extend that analysis by 
comparing the density dependence of t/, as obtained from the simulations, with the theo- 
retical function obtained from the Enskog equation. As an illustration of non-Newtonian 
effects obtained from the simulations, we show the density dependence of viscometric 
coefficients associated with normal stresses to Burnett order. The simulation values of 
these coefficients present a good agreement with the theoretical expressions recently 
derived from the Enskog equation [12]. In addition, the super-Burnett coefficient of the 
non-Newtonian shear viscosity is considered. 

The paper is organized as follows. The Enskog equation and the USF state are 
briefly summarized in Section 2. The simulation Monte Carlo method, especialized to 
the USF, is described in Section 3. Finally, the results are presented and discussed in 
Section 4. 

2. The Enskog equation for a fluid under uniform shear flow 

The Enskog equation reads [ 1-3] 
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(a +v. a)f(r,v,t)=0.2fav, faao(a.g)(a.g) 
x [z(r, r - a ) f ( r ,  v', t ) f ( r  - a, v' 1 , t) 

- z(r, r + a ) f ( r ,  v, t ) f ( r  + 0., vl, t)] .  (1) 

Here O(x) is the Heaviside function, 9 -= v -  vl, a = a~, v ' =  v -  (~. 9)~, and v' 1 = vl + 
(~ .  9)~. In the RET, X is the (local) equilibrium pair correlation function at contact 

in a non-uniform state. That means that Z is a functional of the number density field 

n(r,t) =/dvf(r,v,t). (2) 

In a similar way, the momentum density, mn(r, t)u(r, t), and the internal energy density, 

3n(r, t)k~T(r, t) ,  can be obtained as velocity moments of f .  Here, m is the mass of 

a particle, u(r,t)  is the local flow velocity, k8 is the Boltzmann constant, and T(r , t )  is 

the local temperature. The Enskog equation, Eq. ( 1 ), leads to conservation equations for 

the densities of  mass, momentum, and energy, from which one can identify the fluxes of 
momentum (pressure tensor) and internal energy (heat flux). Both have kinetic as weld 

as collisional transfer contributions. For instance, the kinetic part, pk, of the pressure 

tensor P is 

P~=m j'dv V V f  , (3) 

where V =  v - u  is the "peculiar" velocity, i.e. the velocity in the (local) Lagrangian 
frame. The expression for the collisional transfer contribution, pc, will be given be- 

low. Henceforth, the superscripts k and c will denote kinetic and collisional parts, 

respectively. 
The Navier-Stokes constitutive equations are obtained from the standard Chapman- 

Enskog method [1,2]. In particular, the shear viscosity is 

r /=  L (1 q- 4 ~no.3z)2r/o q.. 4 r12r74Z( l rmkBT) l /2  ' (4) 
Z 

where q0 is the shear viscosity for hard spheres given by the BE. Its value is [1] 

o 5 b ( m ~ T )  1/2 
- -  0 . - 2  ( 5 )  

with b-~ 1.0160. One can also identify a kinetic contribution to the shear viscosity. Its 

expression is 

qk 1 (1 + 4 ~na3z) qo. (6) 

Now we consider the USF state. It is characterized by a constant density (n = const), 
a uniform temperature ( V T = 0 ) ,  and a linear velocity field: u ( r ) = a . r ,  where a 
is a tensor with elements a,~ =aJx~6y~, a being the constant shear rate. This state 
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can be maintained at the expense of a monotonic increase of  temperature (viscous 
heating) [13]: 

3 d T  
-~ nkB dt - aP~y . (7) 

In molecular dynamics simulations it is usual to add a thermostat force to compensate 
for this heating effect and achieve a steady state [14]. Here, however, we do not intro- 

duce any thermostat. As a consequence, the mean free time z monotonically decreases 
and so does the reduced shear rate a* = az. Thus, the state of  the system becomes in 

time closer and closer to that of  local equilibrium. Here we choose to define the mean 

free time as z = ~l°/znksT. The relationship between z and the conventional Boltzmann 
time ta is z=-~Z-ItB. 

At a microscopic level, the USF is characterized by a distribution function that 

becomes uniform when the velocities are expressed in the Lagrangian frame, i.e. 
f ( r ,  v, t) = f (  V, t) with V=  v - a . r .  In that case, the Enskog equation, Eq. (1), can be 
written as 

- a-T a. f (v , t )  = , ? z  dV~ d~ O(~. 0)(~" O) 

× [ / (  V', t ) f (  V(, t) - f ( V ,  t)f(V~, t)], (8) 

where now 9 = V -  V1 - a . a ,  V' -- V- ( ' d .9 ) ' d ,  and V l' = V1 + 2 a . ~ r + ( ~ - 9 ) ~ .  Since in 
the USF the number density is a constant, there is no distinction between the SET and 

the RET. In both cases Z is uniform and its dependence on n arises from the equation 

of  state of  the fluid, i.e. 

Po =nk~T(1 + 2 ten*z) ' (9) 

where P0 is the equilibrium hydrostatic pressure of  a hard-sphere fluid and n* = na 3. 
Here we will use the Carnahan-Starling (CS) equation of state [15]: 

z ( n . ) _  - 1 - (rc/12)n* 
(1 - (Tr/6)n*) 3 " (10) 

In the particular case of  USF, the general expression for the collisional transfer pressure 

tensor [7,8] becomes 

Eq. (8) admits solutions for arbitrary values of the shear rate and arbitrary initial 
conditions. From a physical point of  view, it is expected that for sufficiently long 
times the distribution function adopts a form that is independent of the details of  the 
initial conditions ("normal solution"). More explicitly, f (  V, t) ~ f * (  V*, a*),  where 
V* = ( 2 k s T / m ) - l / Z V  and f *  =n- l (2kBT/m)3 /2 f .  Consequently, the reduced pressure 
tensor P/nkBT associated with the normal solution is, at a given value of n ' z ,  a function 
of the reduced shear rate a*. 
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In this paper we will be mainly interested in the transport properties for small 
(reduced) shear rates. In particular, the Navier-Stokes shear viscosity can be identified 

in the USF state as 

~] --Pxy 
- -  = lim - -  (12) 

Zr/° a*~O nksTa* " 

Effects associated with normal stresses are characterized by the viscometric coefficients 

7Jl = lim P y y  - -  Pxx 
a*+O nkgTa  . 2 '  (13) 

Pzz - P y y  
7/2= lim (14) 

a*--,o n k s T a  .2 " 

These are non-linear Burnett coefficients (which are functions of  the density parameter 
n ' z ) .  Following the notation in Chapman and Cowling's monograph [1], they are given 

1 by q'l = - ~72, 7J2 = rv2 - ~to6 in the case of  the Boltzmann equation; for hard spheres 
the corresponding numerical values are kUl ~_--2.028, ~U2 _~ 0.172. There is another non- 

linear Burnett coefficient related to normal effects, but that vanishes in the low-density 

limit. It measures the increase of  the non-equilibrium "hydrostatic pressure" p = l t r P  

with respect to its equilibrium value p0, a phenomenon usually referred to as "shear 
dilatancy" [16]. To characterize this effect we define the coefficient 

7 =  lim P - P 0  (15) 
a* ~o  nkB T a .2 " 

These coefficients, along with their kinetic and collisional counterparts, have been re- 
cently derived as functions of  density by Lutsko [12] from a perturbative solution of 
the Enskog equation to second order in the shear rate and to fourth order in velocity 

moments. It is found that ~ k ( n * z )  and ? ( n * z ) / ( n * z )  2 are linear functions of n ' z ,  

7Jl(n*x) = ~llk2(n*z)/~ll(O), ~ ( n * 7 . )  is a quadratic function, and t/J2(n*z) is a cu- 

bic function. Since a certain truncation is involved, the numerical coefficients in those 

functions are not exact, although they are good estimates. For instance, the coefficient 
b in the Boltzmann shear viscosity, Eq. (5), is b = 205 ~ 1.0149, and ~1 ( 0 ) =  85 058 

20~ - -  42 025 - -  
-2 .024 ,  k¢2(0)= 3449 -----0.167. 

20 705 

Non-Newtonian effects in the shear viscosity appear to super-Burnett order. To char- 
acterize them, we introduce the coefficient 

r/2 = lim - P x y -  qa (16) 
a*--+o n k s T a  .3 

To the best of our knowledge, this coefficient has not been determined before from 
the Enskog equation, even at zero density. According to a kinetic model of the RET 
[8], r/z(n*g) is a quartic function that takes negative values for small densities and 
becomes positive for large densities. 
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3. Enskog simulation Monte Carlo method 

Recently, we have proposed a numerical algorithm, the Enskog simulation Monte 
Carlo (ESMC) method, to solve the Enskog equation, Eq. (1). The method is an exten- 

sion of the celebrated DSMC method [9] to solve the Boltzmann equation. In fact, it re- 
duces to Nanbu's version [10] in the low-density limit, i.e. when a ( 2 k a T / m ) - l / 2 z  -1 ~ O, 

X ~ 1. For a detailed description of the ESMC method we refer the reader to Ref. [7]. 
Here we briefly describe its adaptation to deal with Eq. (8). 

Let N be the number of particles. Since there is no space dependence in Eq. (8), only 
the velocities { Vi, i = 1 . . . .  ,N} are stored at times t = At,  2 A t , 3 A t  . . . .  , where A t  ,~ z. At 

each time step, the velocities are updated in two stages: V/(t) ~ ~(t) ~ Vi '(t)= Vi(t+ 
A t ) .  The first stage represents free streaming and is related to the second term on the 
left-hand side of Eq. (8). Such a term can be viewed as a non-conservative external 
force of the form F =  - m a .  V. Thus, in the free streaming stage 

Vii = Vi - a . Vi A t . (17) 

In the collision stage, the following steps are carried out for every particle i = 1 . . . . .  N. 
A random direction ~i and a random partner particle j # i are chosen with equiproba- 

bility. The important quantity is the dot product ('di • g i j ) ,  where gi) =- Vii- Vj - a a .  "ai. 

The collision with particle j is accepted with a probability equal to the collision rate 
times the time-step, namely 4 r c t r 2 z n O ( ~ d i . g i j ) ( ' ~ i . g i j ) A t .  If the collision is rejected, 

then Vi'= ~. Otherwise, 

Vi I = Vi - (~ i  " g i j  )~i  • (18)  

After the collision stage has finished for all the particles, the kinetic and collisional 
transfer contributions of the pressure tensor are evaluated as 

e k  = m n  
-N- Z Vi'vi' ' (19) 

i 

p c  m n a  Z ( ~ i  i _ Vi t)~i  " (20) 
2 A t N  

i 

To improve the statistics, the results are averaged over a number ~/~ of  independent 
replicas. The results presented in this paper have been obtained with ~"  = 10, N = 105, 
and A t  = 10-2~. Notice that A t  is not a constant but decreases in time. 

4. Results and discussion 

By applying the method outlined in the preceding section, we have followed the 
time evolution of the pressure tensor for values of n* X in the range 0.05 ~< n*g ~<4.5. 
According to the CS equation of state, Eq. (10), this corresponds to densities in the 
range 0.047 ~< n* ~< 0.891. Although the RET is not expected to be accurate for densities 
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Fig. 1. Plot of Z~//q ° (circles and solid line) and of Zqk/V ° (triangles and dashed line) as functions of n*Z. 
The symbols are the simulation results and the lines are the theoretical predictions. The top scale corresponds 
to the reduced density n*, according to the Carnahan-Starling equation of state, Eq. (10). 

larger than n* ~ 0.6 [3], we have considered those densities to check that the ESMC 
method reproduces the RET even in the high-density domain. As a consistency test 
[7], we have checked that Eq. (7) is verified by the simulations at all densities. As 
time evolves, the reduced shear rate a* decreases, so that the limit in Eqs. (12)-(16)  
is equivalent to the limit of  infinitely long times. In practice, however, one needs to 
consider finite values of a* to keep the signal-to-noise ratio within tolerable bounds. 
Thus, we have evaluated !/'l, for instance, by averaging the simulation values of (Pt,~,- 

p~x)/nkBTa .2 over typically the interval 0.04 < a* < 0.06. 
Fig. I shows the simulation values of ~7/~/° (circles) and X~/k/~/° (triangles) as func- 

tions of the density parameter n*x. The error bars are smaller than the size of the sym- 
bols and are not drawn. The exact Enskog results, Eqs. (4)- (6) ,  are also plotted. We 
observe an excellent agreement. Nonlinear effects beyond the Navier-Stokes order are 
characterized by the viscometric coefficients hg~ and 7J2, along with their kinetic parts, 
and by the excess pressure coefficient 7. They are plotted in Figs. 2-4. The theoretical 
curves represent now the results recently derived from the RET [12], which were un- 
known to us at the time when the simulation data were obtained. We can observe a very 
good agreement in all the cases. In particular, the simulation results are consistent with 
the theoretical predictions ~g~ ( n ' z )  = ~k2(n*x)/gJl (0), 7(n*Z)/(n*z) 2 = linear function, 
and with a change of  sign of 5u2 and ~u2k at n*~(-~0.36 (n*-~0.25) and n * ) ~ 0 . 6 0  
(n* -- 0.36), respectively. 

Finally, we have also estimated the value of the super-Burnett coefficient r/2 de- 
fined in Eq. (16) for some characteristic densities. To the best of our knowledge, this 



236 J.M. Montanero, A. SantosIPhysica A 240 (1997) 229-238 

n *  

500 0.86 0.92 

40 

30 

20 

10 

0 
0 5 

0,46 0.67 0.78 
' I • I • I • I • 

. . . .  = , =  _ .¢ , , . . . .~=. .  : : i lF - " a t -  

, I , I i I , I , 

1 2 3 4 

Fig. 2. The same as in Fig. 1, but for -~1 and -~k .  
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Fig. 3. The same as in Fig. 1, but for -'P2 and -~2 k. 

coefficient has not been obtained from the RET before. As said in Section 2, a kinetic 
model recently proposed [8] predicts a change from negative values at low and interme- 
diate densities to positive values at high densities. This means that the non-Newtonian 
shear viscosity changes from a decreasing function o f  the shear rate (shear thinning) to 

an increasing function (shear thickening)• Our simulation data confirm this unexpected 
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Fig. 4. The same as in Fig. 1, but for 7. 

prediction. For instance, we have estimated r/2 ~ -1  at n ' z = 0 . 0 5  and q2 ~ +103 at 
n* Z =4.5, with a change of sign at n* Z ~ 2. 

In summary, we have shown that the ESMC algorithm succeeds in capturing the 
density dependence predicted by the RET for the Navier-Stokes shear viscosity and 
non-Newtonian transport coefficients. In the particular case of the USF, the computer 
efficiency of the algorithm is independent of the density and is then the same as that 
of the DSMC method for the BE. As extra bonuses, our simulation results validate 
Lutsko's perturbative solution by a moment method [12], as well as the qualitative 
correctness of the kinetic model proposed in Ref. [8]. The algorithm described in 
Section 3 is easily extended to include a thermostat force. We plan to undertake sim- 
ulations with a thermostat far from equilibrium to obtain the shear-rate dependence of 
the transport coefficients and to analyze the stability of the USF. 
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