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Abstract

The Bhatnagar–Gross–Krook kinetic model of the Boltzmann equation is solved for the steady
cylindrical Poiseuille 
ow fed by a constant gravity �eld. The solution is obtained as a perturba-
tion expansion in powers of the �eld (through fourth order) and for a general class of repulsive
potentials. The results, which are hardly sensitive to the interaction potential, suggest that the
expansion is only asymptotic. A critical comparison with the pro�les predicted by the Navier–
Stokes equations shows that the latter fail over distances comparable to the mean free path. In
particular, while the Navier–Stokes description predicts a monotonically decreasing temperature
as one moves apart from the cylinder axis, the kinetic theory description shows that the tem-
perature has a local minimum at the axis and reaches a maximum value at a distance of the
order of the mean free path. Within that distance, the radial heat 
ows from the colder to the
hotter points, in contrast to what is expected from the Fourier law. Furthermore, a longitudinal
component of the heat 
ux exists in the absence of gradients along the longitudinal direction.
Non-Newtonian e�ects, such as a non-uniform hydrostatic pressure and normal stress di�erences,
are also present. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The steady 
ow in a long channel or in a long tube of circular section under the
action of a di�erence between the pressures imposed at the two ends, usually known
as Poiseuille 
ow or Hagen–Poiseuille 
ow, is a typical textbook example in 
uid
dynamics [1–4]. In the last few years, a number of authors [5–15] have analyzed
this problem with the channel geometry when the pressure di�erence is replaced by a
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constant external �eld g. Kadano� et al. [5,6] have simulated this 
ow with the FHP
lattice gas automaton [16] to con�rm the validity of a hydrodynamic description for
lattice gas automata. For a dilute gas, Esposito et al. [8] have analyzed the solution
of the Boltzmann equation in the Navier–Stokes limit. A generalized Navier–Stokes
theory was seen to give a reasonable account of a 
uid composed of molecules that
possess spin when compared with molecular dynamics simulations [11]. Other studies
[7,9,10,12–15], on the other hand, have focused on the breakdown of the continuum
hydrodynamic predictions when the strength of the external �eld is not asymptotically
small. In Ref. [7], an exact solution of the Bhatnagar–Gross–Krook (BGK) model
kinetic equation was found for a particular value of the �eld strength. The general
solution under the form of an expansion in powers of g was considered in Ref. [9],
where explicit expressions were derived to �fth order in the �eld. More recently, the
general solution corresponding to the Boltzmann equation for Maxwell molecules has
been derived to second order [12] and approximate solutions for hard spheres have
been obtained from a Burnett description [14] and by means of moment methods
[13,15]. The theoretical predictions of Ref. [9] have been con�rmed at a qualitative
and semi-quantitative level by numerical simulations of the Boltzmann equation [10,14]
and by molecular dynamics simulations [13]. The most surprising of those theoretical
predictions is that the temperature pro�le exhibits a bimodal shape, namely a local
minimum at the middle of the channel surrounded by two symmetric maxima at a
distance of a few mean free paths. In contrast, the continuum hydrodynamic equations
predict a temperature pro�le with a (
at) maximum at the middle. As a consequence,
the Fourier law is dramatically violated since in the slab enclosed by the two maxima
the tranverse component of the heat 
ux is parallel (rather than anti-parallel) to the
thermal gradient. Furthermore, non-Newtonian properties, such as normal stress di�er-
ences and an e�ective shear viscosity depending on the hydrodynamic gradients, are
also present.
The goal of this paper is to carry out a kinetic theory description of the Poiseuille


ow driven by an external force when the gas is inside a pipe. The reason is two fold.
First, the pipe geometry is much more realistic, and thus more worth studying, than
the channel one. Second, it is important to test whether the failure of the continuum
description to account for some of the qualitative features of the Poiseuille 
ow in
a channel is not linked to that particular geometry and extends to the pipe case as
well. In this context, it is worthwhile noting that an exact solution of the Boltzmann
equation (with Maxwell molecules) for the planar Fourier 
ow, which is valid for
arbitrary values of the thermal gradient [17,18], does not extend to the cylindrical
geometry [17]. The results reported in this paper, on the other hand, con�rm that the
structure of the hydrodynamic and 
ux pro�les in the pipe problem is quite similar to
that of the channel problem. In particular, the temperature exhibits a non-monotonic
behavior as one moves apart from the pipe axis. Nevertheless, the deviations from the
continuum description are in general quantitatively smaller than in the channel case.
The paper is organized as follows. The continuum hydrodynamic description is

worked out in Section 2, both for the channel and cylindrical geometries. When the
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Navier–Stokes constitutive equations are inserted into the exact balance equations for
mass, momentum and energy, a closed set of coupled equations for the hydrodynamic
�elds (pressure, 
ow velocity and temperature) is obtained. The spatial dependence
of the transport coe�cients through the temperature is taken into account. Given the
nonlinear character of the set of equations, its solution is expressed in powers of
the external force. Section 3 is devoted to a summary of the results obtained from the
kinetic theory description in the case of the channel Poiseuille 
ow and a critical
comparison with the Navier–Stokes predictions is carried out. The original part of the
paper is presented in Section 4, where the BGK kinetic equation is solved for the
pipe Poiseuille problem by means of a perturbation expansion in powers of the force.
Explicit expressions for the successive contributions to the velocity distribution func-
tion through fourth order in the force are derived. By velocity integration, the pro�les
of the hydrodynamic �elds and their 
uxes are then obtained. Since the content of
Section 4 is rather technical, the discussion of the results is postponed to Section 5,
where only terms through third order are considered. As in the planar case, the kinetic
theory results strongly di�er from the continuum theory expectations, especially in the
case of the temperature pro�le. The breakdown of the Fourier law is characterized
by an apparent thermal conductivity coe�cient that only for large distances tends to
the Navier–Stokes coe�cient. Analogously, an apparent shear viscosity coe�cient is
introduced to monitor deviations from the Newton law. Finally, the main conclusions
of the paper are presented in Section 6.

2. Hydrodynamic description

2.1. Channel geometry

Let us �rst consider the Poiseuille 
ow in the channel geometry. A 
uid is enclosed
between two in�nite parallel plates normal to the y-axis and located at y=±H , which
are kept at rest. A constant external force per unit mass (e.g., gravity) g=gẑ is applied
along a direction ẑ parallel to the plates. We assume a laminar and incompressible
regime, so in the steady state the physical quantities depend on the coordinate y only.
The balance equations for momentum and energy become

@Pyy
@y

= 0 ; (1)

@Pyz
@y

= �g ; (2)

Pyz
@uz
@y

+
@qy
@y

= 0 ; (3)

where � is the mass density, u = uz ẑ is the 
ow velocity, P is the pressure tensor
and q is the heat 
ux. In the Newtonian description these 
uxes are related to the
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hydrodynamic gradients by the Navier–Stokes (NS) constitutive equations. In this prob-
lem they read

Pxx = Pyy = Pzz = p ; (4)

Pyz =−�@uz
@y

; (5)

qy =−�@T
@y
; (6)

qz = 0 ; (7)

where p = 1
3Tr P is the hydrostatic pressure, T is the temperature, and � and � are

the shear viscosity and the thermal conductivity, respectively. Combining Eqs. (1)–
(6), we get

@p
@y
= 0 ; (8)

@
@y
�
@uz
@y

=−�g ; (9)

@
@y
�
@T
@y
=−�

(
@uz
@y

)2
: (10)

Eq. (9) gives a parabolic-like velocity pro�le, that is characteristic of the Poiseuille

ow. The temperature pro�le has, according to Eq. (10), a quartic-like shape. Strictly
speaking, these NS pro�les are more complicated than just polynomials due to the
temperature dependence of the transport coe�cients. Since the hydrodynamic pro�les
must be symmetric with respect to the plane y = 0, their odd derivatives must vanish
at y = 0. Thus, from Eqs. (9) and (10) we have

@2uz
@y2

∣∣∣∣
y=0

=−�0g
�0

; (11)

@2T
@y2

∣∣∣∣
y=0

= 0 ; (12)

@4T
@y4

∣∣∣∣
y=0

=−2�
2
0g
2

�0�0
; (13)

where the subscript 0 denotes quantities evaluated at y = 0. According to Eqs. (11)–
(13), the NS equations predict that the 
ow velocity as well as the temperature have
a maximum at the middle layer y= 0. As we will see in the next Section, the kinetic
theory description shows that the temperature actually exhibits a local minimum at
y = 0, since @2T=@y2|y=0 is a positive quantity (of order g2).
In order to get the hydrodynamic pro�les from Eqs. (9) and (10), one needs to know

the density and temperature dependence of the transport coe�cients. To �x ideas, let
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us consider a dilute gas of Maxwell molecules, in which case p˙ �T; �˙ T; �˙ T
[19]. Consequently, from Eqs. (8)–(10) we get

p(y) = p0 ; (14)

uz(y) = u0 − �0g
2�0

ỹ 2 ; (15)

T (y) = T0 − �20g
2

12�0�0
ỹ 4 ; (16)

where ỹ is an auxiliary space variable de�ned by dỹ = [T0=T (y)] dy. From Eq. (16)
the relationship between the true space variable y and the scaled quantity ỹ can be
found as

y = ỹ
(
1− �20g

2

60�0�0T0
ỹ 4

)
: (17)

Eqs. (5) and (6) then imply that

Pyz(y) = �0gỹ ; (18)

qy(y) =
�20g

2

4�0
ỹ 3 : (19)

The solution of the �fth-degree equation (17), once inserted into Eqs. (15), (16),
(18) and (19), yields the velocity, temperature and 
ux pro�les predicted by the NS
equations in the case of Maxwell molecules. To fourth order in the gravity �eld, the
results are

uz(y) = u0 − �0g
2�0

y2
(
1 +

�20g
2

30�0�0T0
y4
)
+ O(g5) ; (20)

T (y) = T0 − �20g
2

12�0�0
y4

(
1 +

�20g
2

15�0�0T0
y4
)
+ O(g6) ; (21)

Pyz(y) = �0gy
(
1 +

�20g
2

60�0�0T0
y4
)
+ O(g5) ; (22)

qy(y) =
�20g

2

3�0
y3

(
1 +

�20g
2

20�0�0T0
y4
)
+ O(g6) : (23)

It is interesting to note that ỹ can be eliminated between Eqs. (15) and (16) to obtain
the following nonequilibrium “equation of state”:

T = T0 − �0
3�0

(u0 − uz)2 (24)

which is independent of g. By equation of state we mean in this context a relationship
holding locally among the hydrodynamic �elds (p; uz and T ) and that is independent
of gravity (at least up to a certain order). Since the pressure is uniform in the NS
description, it does not enter into Eq. (24). Interestingly enough, a quadratic dependence
of the temperature on the 
ow velocity also appears in the case of the steady planar
Couette 
ow [20].
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2.2. Cylindrical geometry

Now we assume that the 
uid is inside a straight tube of uniform circular section of
radius R. Let the z-axis be parallel to the pipe axis. As before, an external force per
unit mass g = gẑ is applied to produce a 
ow �eld. In the (laminar) steady state all
the physically relevant quantities depend only on the distance r ≡ (x2 + y2)1=2 from
the axis. In the case of this cylindrical geometry, the exact balance equations become

@
@r
(rPrr) = P�� ; (25)

r−1
@
@r
(rPrz) = �g ; (26)

Przr
@uz
@r
+
@
@r
(rqr) = 0 : (27)

These equations constitute the cylindrical counterpart of Eqs. (1)–(3). In general, the
relationships between the cylindrical and Cartesian components of a vector A and a
tensor B are

 Ar
A�
Az


=U ·


 Ax
Ay
Az


 ; (28)


 Brr Br� Brz
B�r B�� B�z
Bzr Bz� Bzz


=U ·


 Bxx Bxy Bxz
Byx Byy Byz
Bzx Bzy Bzz


 ·U† ; (29)

where

U=


 x=r y=r 0

−y=r x=r 0
0 0 1


 (30)

is a unitary matrix.
The NS constitutive equations yield

Prr = P�� = Pzz = p ; (31)

Prz =−�@uz
@r

; (32)

qr =−�@T
@r
; (33)

qz = 0 : (34)

The combination of Eqs. (25)–(27), (31)–(33) gives the following hydrodynamic
equations:

@p
@r
= 0 ; (35)
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r−1
@
@r

(
r�
@uz
@r

)
=−�g ; (36)

@
@r

(
r�
@T
@r

)
=−�r

(
@uz
@r

)2
: (37)

In contrast to what happens in the channel case, Eqs. (8)–(10), it is not possible to
obtain the explicit solution to the hydrodynamic equations (35)–(37), even with the
help of an auxiliary space variable. On the other hand, the solution can be recursively
found as a series expansion in powers of g. To fourth order the result is

p(r) = p0 ; (38)

uz(r) = u0 − �0g
4�0

r2
[
1 +

(4− 3�)�20g2
576�0�0T0

r4
]
+ O(g5) ; (39)

T (r) = T0 − �20g
2

64�0�0
r4

[
1 +

(11− 9�)�20g2
768�0�0T0

r4
]
+ O(g6) ; (40)

where we have taken into account that uz and T must be �nite at r=0. The subscript 0
now denotes quantities evaluated at r=0. Also, we have assumed that �˙ T 1−�; �˙
T 1−�, which corresponds to repulsive interaction potentials of the form [19] ’(r) ˙
r−� with � = 1

2 − 2=�. The cases � = 0 and � = 1
2 correspond to Maxwell molecules

(� = 4) and hard spheres (�→ ∞), respectively. The corresponding 
uxes are

Prz(r) =
�0g
2
r
(
1 +

�20g
2

192�0�0T0
r4
)
+ O(g5) ; (41)

qr(r) =
�20g

2

16�0
r3

[
1 +

(5− 3�)�20g2
384�0�0T0

r4
]
+ O(g6) : (42)

For arbitrary g the equation of state is not as simple as in the planar case, Eq. (24).
Elimination of r between Eqs. (39) and (40) yields

T = T0 − �0
4�0

(u0 − uz)2 − (1− 3�)�20
576�20T0

(u0 − uz)4 + O(g6) : (43)

3. Kinetic theory description of the channel Poiseuille 
ow. A summary

The Poiseuille 
ow induced by an external force in the channel geometry has been
analyzed in the framework of kinetic theory [7,9,12–15], as well as by numerical
simulations of the Boltzmann equation [10] and molecular dynamics simulations [13].
The emphasis in these papers, in contrast to that of other works [5,6,8], was put on
highlighting the limitations of the NS hydrodynamic description (see Section 2.1) when
the strength of the external �eld g is not small enough.
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In this section we brie
y summarize the main results derived in Ref. [9] from the
BGK model of the Boltzmann equation. The BGK kinetic equation reads [21]

@f
@t
+ v · ∇f + m−1 @

@v
· (Ff) =−�(f − fLE) ; (44)

where f(r; v; t) is the one-particle velocity distribution function, F is an external force,
�(r; t) is an e�ective collision frequency and

fLE(r; v; t) = n(r; t)
[

m
2�kBT (r; t)

]3=2
exp

{
−m [v − u(r; t)]

2

2kBT (r; t)

}
(45)

is the local equilibrium distribution function. Here, m is the mass of a particle, kB is
the Boltzmann constant, n(r; t) is the local number density, u(r; t) is the local 
ow
velocity and T (r; t) is the local temperature. These hydrodynamic �elds are de�ned as
velocity moments of f by

n=
∫
dvf ; (46)

nu =
∫
dv vf ; (47)

nkBT =
m
3

∫
dvV 2f ; (48)

where in the last equation we have introduced the peculiar velocity V = v − u. The

uxes of momentum and energy are characterized by the pressure tensor

Pij = m
∫
dvViVjf (49)

and the heat 
ux vector

q =
m
2

∫
dvV 2Vf : (50)

The trace of the pressure tensor is 3p, where p = nkBT is the (local) hydrostatic
pressure. The collision frequency � is proportional to the density and its dependence
on the temperature changes in accordance with the interaction potential considered. For
instance, �˙ nT 1=2 for hard spheres, while �˙ n for Maxwell molecules.
For the steady Poiseuille 
ow in a channel, the BGK equation (44) reduces to(

vy
@
@y
+ g

@
@vz

)
f =−�(f − fLE) ; (51)

which must be complemented with the appropriate boundary conditions at y=±H . On
the other hand, we assume that the separation between the plates is large enough to
allow for the existence of a bulk region −H +�¡y¡H −�, where � is the width of
the boundary layers and comprises a few mean free paths. Inside the bulk region the
solution to Eq. (51) is expected to be rather insensitive to the details of the boundary
conditions and depend on y through a functional dependence on the hydrodynamic
�elds. Such a solution was obtained in Ref. [9] (for Maxwell molecules) by means
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of a perturbation expansion in powers of g. Here we quote the hydrodynamic �elds
through third order

p(y) = p0

[
1 + �p

(
mg
kBT0

)2
y2
]
+ O(g4) ; (52)

uz(y) = u0 − �0g
2�0

y2
[
1 +

�20g
2

30�0�0T0
y4 + �u

(
mg
kBT0

)2
y2 + �′u

�0�20g
2

p30

]
+ O(g5) ;

(53)

T (y) = T0

[
1− �20g

2

12�0�0T0
y4 + �T

(
mg
kBT0

)2
y2
]
+ O(g4) ; (54)

where �p = 6
5 = 1:2, �u =

152
25 = 6:08, �

′
u =

5474
25 = 218:96, and �T =

19
25 = 0:76. The BGK

predictions (52)–(54) have been con�rmed by an exact solution of the Boltzmann
equation for Maxwell molecules [12] (�p= 6

5 , �T ' 1:0153), as well as by approximate
solutions of the Boltzmann equation for hard spheres by a 13-moment method [13,15]
(�p = 6

5 , �T =
14
25 = 0:56) and a 19-moment method [15] (�p ' 1:214, �T ' 0:99).

Comparison with the NS predictions, Eqs. (14), (20) and (21), shows that the latter
already fail to second order (�NSp = �NST = 0) and to third order (�NSu = �

′NS
u = 0) in g.

According to Eqs. (52)–(54), the pressure increases parabolically from the midpoint
(�p ¿ 0) rather than being uniform, the velocity pro�le has an enhanced quadratic
coe�cient (�′u ¿ 0) plus a new quartic term (�u ¿ 0), and the temperature has a positive
quadratic term (�T ¿ 0). The latter is responsible for the fact that @2T=@y2|y=0¿ 0, in
contrast to the NS prediction (12), so the temperature presents a local minimum at
y=0 rather than a maximum. This minimum is surrounded by two maxima located at
y=ymax=±√

6�T ‘0, where ‘0 ≡ (�0�0T0)1=2=p0 is a reference mean free path [15]. The
relative di�erence between the maxima and the minimum is (Tmax−T0)=T0=3�2T (‘0=h0)2,
where h0 ≡ (kBT0=m)=g is the so-called scale height [22,23], i.e., the characteristic
distance associated with the external (gravity) �eld. This surprising bimodal form of
the temperature pro�le is an e�ect going beyond the Burnett description [14] and has
been con�rmed by Monte Carlo simulations of the Boltzmann equation for hard spheres
[10,14]. The NS equation of state (24) is now augmented by an extra term

T = T0 − �0
3�0

(u0 − uz)2 + �T�p
T0
p0
(p− p0) + O(g4) : (55)

In addition to the hydrodynamic pro�les, the momentum and heat 
uxes are obtained
from the kinetic theory description. In the case of the BGK model, the results are [9]

Pxx(y) = p0

[
1− 22

25
�0�20g

2

p30
+
4
5

(
mg
kBT0

)2
y2
]
+ O(g4) ; (56)

Pyy(y) = p0

(
1− 306

25
�0�20g

2

p30

)
+ O(g4) ; (57)
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Pzz(y) = p0

[
1 +

328
25
�0�20g

2

p30
+
14
5

(
mg
kBT0

)2
y2
]
+ O(g4) ; (58)

Pyz(y) = �0gy

[
1 +

�20g
2

60�0�0T0
y4 +

11
75

(
mg
kBT0

)2
y2
]
+ O(g5) ; (59)

qy(y) =
�20g

2

3�0
y3 + O(g4) ; (60)

qz(y) =−2mg�0
5kB

[
1− 21162�0�20g

2

25p30
− 159

5

(
mg
kBT0

)2
y2

− 29�20g
2

12�0�0T0
y4
]
+ O(g5) : (61)

As expected, the 
uxes di�er from the NS results, Eqs. (4), (7), (22) and (23). The
main deviations of the hydrodynamic and 
ux pro�les from the NS predictions occur for
distances on the scale of the mean free path, i.e., in the regime where a hydrodynamic
description is not expected to hold. For instance, the extra terms appearing in Eq. (53)
are, relative to the g2-term of Eq. (20), of orders (y=‘0)−2 and (y=‘0)−4. In addition,
the ratio between the component of the heat 
ux parallel to the 
ow direction (qz) and
the component parallel to the thermal gradient (qy) is of order (y=‘0)−3(h0=‘0). Thus,
the NS description applies in the regime (y=‘0)/(h0=‘0)1=3/1. On the other hand, the
kinetic theory description, while limited here to weak �elds, i.e., (h0=‘0)/1, is still
valid for y ∼ ‘0.

4. Kinetic theory description of the pipe Poiseuille 
ow

Now we are going to analyze the solution of the BGK equation for the steady
Poiseuille 
ow problem in a cylindrical geometry. In that case, Eq. (44) becomes(

vr
@
@r
+
v�
r
@
@�

+ g
@
@vz

)
f =−�(f − fLE) : (62)

Note that the derivative @=@� is understood at constant (vx; vy), not at constant (vr; v�).
In fact, @vr=@�= v� and @v�=@�=−vr , and so

@f
@�

= v�
@f
@vr

− vr @f@v� : (63)

The exact conservation equations (25)–(27) can be reobtained from Eq. (62) by mul-
tiplying both sides by vr , vz and V 2, respectively, and integrating over the velocity.
As in Section 2, we denote by a subscript 0 those quantities evaluated at the axis

of the pipe (r=0). Thus, v0 ≡ (kBT0=m)1=2 is a thermal velocity, �0 ≡ v0=�0 is a mean
free path and h0 ≡ v20=g is a characteristic length associated with gravity (scale height).
Since in the BGK model � = p=� and � = 5kB�=2m, one has ‘0 =

√
5
2�0, where ‘0
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was introduced in the previous Section. Without loss of generality, we will assume
a reference frame stationary with the 
ow at r = 0, so u0 = 0. We next introduce
dimensionless quantities as

v∗ = v−10 v; r∗ = �−10 r; f∗ = n−10 v
3
0f ; (64)

p∗ = p−1
0 p; u∗ = v−10 u; T ∗ = T−1

0 T ; (65)

�∗ = �−10 �; g∗ = (v0�0)−1g= �0=h0 : (66)

In order to simplify the notation, the asterisks will be dropped henceforth, so all the
quantities will be understood to be expressed in reduced units, unless stated otherwise.
The objective now is to �nd the solution to Eq. (62) as an expansion in powers of g:

f = f(0) + f(1)g+ f(2)g2 + f(3)g3 + · · · ; (67)

where f(0) is the equilibrium distribution function normalized to p(0) = 1, T (0) = 1.
Similar expansions hold for the hydrodynamic �elds

p= 1 + p(2)g2 + p(4)g4 + · · · ; (68)

uz = u(1)g+ u(3)g3 + · · · ; (69)

T = 1 + T (2)g2 + T (4)g4 + · · · ; (70)

where we have taken into account that, because of the symmetry of the problem, p
and T are even functions of g, while uz is an odd function. Insertion of Eq. (67) into
Eq. (62) yields

(1 +A)f(n) = f(n)LE −Df(n−1) −
n−2∑
m=1

�(n−m)(f(m) − f(m)LE ) ; (71)

where the operators A and D are de�ned as

A ≡ vr @@r +
v�
r

(
v�
@
@vr

− vr @@v�

)
; (72)

D ≡ @
@vz

: (73)

The formal solution to Eq. (71) is

f(n) =
∞∑
k=0

(−A)k
[
f(n)LE −Df(n−1) −

n−2∑
m=1

�(n−m)(f(m) − f(m)LE )

]
: (74)

This solution is not complete because f(n) appears implicitly on the right side through
the dependence of f(n)LE on p

(n), u(n) and T (n). If the space dependence of these quanti-
ties were known, Eq. (74) would give us f(n), provided that the previous contributions
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{f(m); m6n − 1} are known. In order to get a closed set of equations for p(n), u(n)
and T (n), we must apply the consistency conditions∫

dv(f(n) − f(n)LE) = 0 ; (75)

∫
dv vz(f(n) − f(n)LE) = 0 ; (76)

∫
dv v2(f(n) − f(n)LE) = 0 : (77)

4.1. First-order results

In this case, f(1)LE =−u(1)Df(0), and so Eq. (74) yields

f(1) = f(1)LE −D

[
f(0) +

∞∑
k=1

(−A)ku(1)f(0)
]
; (78)

where we have taken into account that the operators A and D commute and that
Akf(0) = 0 for k¿1. The conditions (75) and (77) are automatically satis�ed. As for
condition (76), it implies that∫

dv
∞∑
k=1

(−A)ku(1)f(0) =−1 : (79)

The simplest solution to Eq. (79) is expected to be of the form

u(1)(r) = u12r2 : (80)

To con�rm this, let us express the operator A in Cartesian coordinates, i.e., A =
vx@=@x + vy@=@y. Consequently, only the terms with k62 contribute in Eqs. (78) and
(79). Insertion of Eq. (80) into Eq. (79) then gives

u12 =− 1
4 : (81)

The explicit expression for f(1) is simply

f(1) = vz

[
1− 1

2
(v2r + v

2
�) +

1
2
rvr − 1

4
r2
]
f(0) : (82)

The non-zero components of the pressure tensor and the heat 
ux are, to �rst order

P(1)rz =
∫
dv vrvzf(1) =

1
2
r ; (83)

q(1)z =
∫
dv

[
1
2
v2vzf(1) − u(1)

(
v2z +

1
2
v2
)
f(0)

]
=−1 : (84)
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4.2. Second-order results

The second-order contribution to the distribution function is

f(2) = f(2)LE −Df(1) +
∞∑
k=1

(−A)k(f(2)LE −Df(1)) ; (85)

where

f(2)LE =
[
1
2
u(1)

2
(v2z − 1) + p(2) +

1
2
T (2)(v2 − 5)

]
f(0) : (86)

Eq. (76) is identically satis�ed, since both f(2)LE and Df(1) are even functions of vz.
Conditions (75) and (77) become, respectively,∫

dv
∞∑
k=1

(−A)kf(2)LE = 0 ; (87)

∫
dv v2

∞∑
k=1

(−A)kf(2)LE =−2
∫
dv vz(1−A+A2)f(1)

= 4 +
1
2
r2 : (88)

Next, by looking for a solution with a spatial dependence similar to that of the planar
case, Eqs. (52)–(54), we write

p(2)(r) = p22r2 ; (89)

T (2)(r) = T22r2 + T24r4 : (90)

Consequently, only the terms with k64 contribute in Eqs. (87) and (88). More
explicitly,

∞∑
k=1

(−A)kf(2)LE =
{[
p22 +

T22
2
(v2 − 5)

]
[− 2rvr + 2(v2r + v2�)]

+
[
1
32
(v2z − 1) +

T24
2
(v2 − 5)

]
[− 4r3vr + 4r2(3v2r + v2�)

− 24rvr(v2r + v2�) + 24(v2r + v2�)2]
}
f(0) : (91)

Insertion into Eqs. (87) and (88) yields

p22 + 48T24 = 0 ; (92)

20p22 + 20T22 + 2688T24 + 12 + (80T24 + 1)r2 = 4 +
1
2
r2 (93)
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respectively. The solution is

p22 =
3
10
; (94)

T22 =
7
50
; T24 =− 1

160
: (95)

The explicit expression for f(2) is then

f(2) =
4∑
k=0

(−A)kf(2)LE −D

2∑
k=0

(−A)kf(1)

=
{
(v2z − 1)

[
1− 3

2
(v2r + v

2
�) + rvr −

1
4
r2
]

+
1
10

[
3 +

7
10
(v2 − 5)

]
[2(v2r + v

2
�)− 2rvr + r2]

+
1
32

[
v2z − 1−

1
10
(v2 − 5)

]
[24(v2r + v

2
�)
2 − 24rvr(v2r + v2�)

+4r2(3v2r + v
2
�)− 4r3vr + r4]

}
f(0) : (96)

The second-order contributions to the pressure tensor are

P(2)rr =
∫
dv v2rf

(2) =−92
25
+
1
20
r2 ; (97)

P(2)�� =
∫
dv v2�f

(2) =−92
25
+
3
20
r2 ; (98)

P(2)zz =
∫
dv v2zf

(2) − u(1)2 = 184
25

+
7
10
r2 : (99)

Analogously,

q(2)r =
1
2

∫
dv v2vrf(2) − u(1)P(1)rz =

1
16
r3 : (100)

4.3. Third- and fourth-order results

For n= 3, Eq. (74) reduces to

f(3) =
∞∑
k=0

(−A)k [f(3)LE −Df(2) − �(2)(f(1) − f(1)LE)] ; (101)

where

f(3)LE = vz

[
u(1)f(2)LE +

(
u(3) − u(1)T (2) − 1

3
u(1)

3
v2z

)
f(0)

]
: (102)
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Up to now, we have not needed to �x the temperature dependence of the collision
frequency. This implies that to second order in the �eld the results are universal, i.e.,
independent of the interaction potential. On the other hand, the results of higher order
are sensitive to the potential. For the sake of concreteness, we now consider repulsive
interaction potentials of the form ’(r)˙ r−�, for which the collision frequency is [21]
�˙ pT−(1−�) with �= 1

2 − 2=�. In particular, the case �= 0 corresponds to Maxwell
molecules (�=4), while the case �= 1

2 refers to hard spheres (�→ ∞). For this class
of potentials, �(2) = p(2) − (1− �)T (2).
Conditions (75) and (77) with n = 3 are identically satis�ed because of symmetry.

The structure of u(1), p(2) and T (2) suggests that u(3) has a spatial dependence of the
form

u(3)(r) = u32r2 + u34r4 + u36r6 (103)

so only the terms with k66 contribute in Eq. (101). Insertion into Eq. (76) yields

34560u36 + 192u34 + 4u32 +
2(1367− 206�)

25

+
(
1728u36 + 16u34 +

149− 36�
50

)
r2 +

(
36u36 +

4− 3�
160

)
r4 = 0 (104)

whose solution is

u32 =−4(100− �)
25

; u34 =−89 + 9�
800

; u36 =−4− 3�
5760

: (105)

Once u(3) is determined, Eq. (101) gives the explicit form of f(3). From it we can
easily get

P(3)rz =
∫
dv vrvzf(3) =

1
25
r3 +

1
960

r5 ; (106)

q(3)z =
1
2

∫
dv v2vzf(3) − 5

2
u(3) − u(1)

(
3
2
p(2) +

1
2
u(1)

2
+ P(2)zz

)

=
4(1358− 23�)

25
+
209− 3�
50

r2 +
15− �
160

r4 : (107)

Proceeding in a similar way, higher order terms can be evaluated, but the algebra
becomes progressively more cumbersome. Here we only quote the main results to
fourth order in g. Eq. (74) gives

f(4) =
∞∑
k=0

(−A)k [f(4)LE −Df(3) − �(2)(f(2) − f(2)LE)] : (108)

By assuming that

p(4)(r) = p42r2 + p44r4 + p46r6 ; (109)

T (4)(r) = T42r2 + T44r4 + T46r6 + T48r8 (110)
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it turns out that only the terms with k68 contribute in Eq. (108). By symmetry,
condition (76) is identically satis�ed. On the other hand, conditions (75) and (77)
give, respectively

4p42 + 192p44 + 34560p46 + 192T44 + 69120T46 + 46448640T48

+
8(243511− 103801�)

625
+
[
14(95− 56�)

25
+ 16p44 + 1728p46 + 1728T46

+ 1105920T48] r2 +
[
39(1− �)
200

+ 36p46 + 6912T48

]
r4 = 0 ; (111)

4(448099− 1773928�)
625

+ 20T42 + 1728T44 + 546048T46 + 403881984T48

−
[
134783− 59955�

250
+ 80T44 + 15552T46 + 8736768T48

]
r2

+
[
1345− 642�

400
+ 180T46 + 62208T48

]
r4

+
[
11− 9�
960

+ 320T48

]
r6 = 0 ; (112)

where in Eq. (112) we have eliminated p42–p46 in favor of T42− T48. The solution to
Eqs. (111) and (112) is

p42 =−218083− 11035�
1250

; p44 =−653− 176�
2000

; p46 =
7− �
4800

; (113)

T42 =−2501129− 38495�
6250

; T44 =−32057− 663�
20000

;

T46 =−454 + 87�
72000

; T48 =−11− 9�
307200

: (114)

From Eq. (108) we can now evaluate the fourth-order terms in the pressure tensor and
the heat 
ux. The results are

P(4)rr =
∫
dv v2rf

(4) =
4(5087846− 175355�)

3125

− 106029− 3653�
2500

r2 − 287− 18�
6000

r4 +
3− �
19200

r6 ; (115)

P(4)�� =
∫
dv v2�f

(4) =
4(5087846− 175355�)

3125

− 3(106029− 3653�)
2500

r2 − 287− 18�
1200

r4 +
7(3− �)
19200

r6 ; (116)
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P(4)zz =
∫
dv v2zf

(4) − 2u(1)u(3) − u(1)2 (p(2) − T (2))

=−8(5087846− 175355�)
3125

− 442191− 25799�
1250

r2

− 1385− 492�
2000

r4 +
15− �
4800

r6 ; (117)

q(4)r =
1
2

∫
dv v2vrf(4) − u(1)P(3)rz − u(3)P(1)rz

=
100− �
25

r3 +
97 + 9�
2400

r5 +
5− 3�
15360

r7 : (118)

It can be checked that the results for p(r), T (r), uz(r), Prr(r), P��(r), Pr�(r) and qr(r)
we have derived are indeed consistent with the balance equations (25)–(27). In fact,
Eq. (26) allows us to obtain P(5)rz (r) with the result

P(5)rz =
3(235119 + 2780�)

12500
r3 +

25079 + 1097�
120000

r5

+
71 + 9�
72000

r7 +
23− 9�
3072000

r9 : (119)

5. Discussion

When Eqs. (80), (81), (89), (90), (94), (95), (103), (105), (109), (110), (113) and
(114) are inserted into Eqs. (68)–(70), one gets the hydrodynamic pro�les predicted
by the BGK kinetic model through fourth order in the �eld. Comparison with the NS
predictions, Eqs. (38)–(40), indicates that the latter, while providing the correct values
of u12, u36, T24 and T48, do not capture the pressure variation (pNS22 = p

NS
42 = p

NS
44 =

pNS46 = 0) or the lower-degree terms of the velocity (u
NS
32 = u

NS
34 = 0) and temperature

(TNS22 = T
NS
42 = T

NS
44 = T

NS
46 = 0) pro�les.

The results derived in the previous Section strongly support the conjecture that the
expansion in powers of g is asymptotic rather than convergent [9]. For instance T =
1 + 0:14g2 − 4:0 × 102g4 + · · · and T = 1 − 0:41g2 − 1:1 × 104g4 + · · · at r = 1 and
r = 5, respectively. Thus, the expansion is only useful if g is small enough to keep
the �rst few terms only. As we did in the planar case, Section 3, we now give the
hydrodynamic pro�les through third order in real units:

p(r) = p0

[
1 + �p

(
mg
kBT0

)2
r2
]
+ O(g4) ; (120)

uz(r)= u0 − �0g
4�0

r2
[
1+

(4− 3�)�20g2
576�0�0T0

r4+�u

(
mg
kBT0

)2
r2+�′u

�0�20g
2

p30

]
+O(g5) ;

(121)
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T (r) = T0

[
1− �20g

2

64�0�0T0
r4 + �T

(
mg
kBT0

)2
r2
]
+ O(g4) ; (122)

where �p = 3
10 , �u = (89 + 9�)=200, �

′
u =

16
25 (100 − �) and �T = 7

50 . The structure of
these pro�les is similar to that of the planar case, Eqs. (52)–(54). In particular, the
temperature presents a local minimum at r=0 and a maximum at r=

√
32�T ‘0 ≡ rmax,

where ‘0 ≡ (�0�0T0)1=2=p0. The relative di�erence between the maximum and the
minimum is (Tmax−T0)=T0 = 16�2T (‘0=h0)2, where h0 ≡ (kBT0=m)=g. The distance from
the center of the points where the temperature reaches the value Tmax in the pipe 
ow
(rmax ' 2:12‘0) is very close to that of the channel 
ow (ymax ' ± 2:14‘0). On the
other hand, the e�ect is considerably smaller in the former case [(Tmax − T0)=T0 '
0:31(‘0=h0)2] than in the latter [(Tmax − T0)=T0 ' 1:7(‘0=h0)2]. The equation of state is
also similar to that of the planar case, Eq. (55),

T = T0 − �0
4�0

(u0 − uz)2 + �T�p
T0
p0
(p− p0) + O(g4) : (123)

As for the momentum and heat 
uxes, the results through third order are

Prr(r) = p0

[
1− 92

25
�0�20g

2

p30
+
1
20

(
mg
kBT0

)2
r2
]
+ O(g4) ; (124)

P��(r) = p0

[
1− 92

25
�0�20g

2

p30
+
3
20

(
mg
kBT0

)2
r2
]
+ O(g4) ; (125)

Pzz(r) = p0

[
1 +

184
25
�0�20g

2

p30
+
7
10

(
mg
kBT0

)2
r2
]
+ O(g4) ; (126)

Prz(r) =
�0g
2
r

[
1 +

�20g
2

192�0�0T0
r4 +

2
25

(
mg
kBT0

)2
r2
]
+ O(g5) ; (127)

qr(r) =
�20g

2

16�0
r3 + O(g4) ; (128)

qz(r) =−2mg�0
5kB

[
1− 4(1358− 23�)�0�20g2

25p30
− 209− 3�

50

(
mg
kBT0

)2
r2

− (15− �)�
2
0g
2

64�0�0T0
r4
]
+ O(g5) : (129)

As expected, they strongly di�er from the NS results, Eqs. (31), (34), (41) and (42),
with the exception of qr , in which case the error of the NS value is of order g4.
The non-monotonic behavior of T (r) is not only an interesting e�ect but also a

counterintuitive result, given that the radial component of the heat 
ux monotonically
increases with the distance from the pipe axis. Consider the inner cylinder r6rmax.
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Within that region the temperature increases radially and yet the heat 
ows outwards
from the colder to the hotter points! The solution to this paradox lies in the dramatic
breakdown of the Fourier law (33) within the region r6rmax. Following Hess and
Malek Mansour [15], a heuristic extension of the Fourier law can be written as

− �@T
@r
= qr − �2∇2qr ; (130)

where � is a characteristic distance of the order of the mean free path. According to
Eq. (130), the sign of the thermal gradient results from the competition between qr
and its Laplacian. The simple estimate ∇2qr = r−1@(r@qr=@r)=@r ∼ qr=r2 shows that
@T=@r¿ 0 for r ¡�. It is easy to check that Eq. (130), with � = 1

3 rmax ' 0:71‘0, is
indeed consistent with the pro�les (122) and (128). If one characterizes the devia-
tion from the Fourier law by means of an apparent thermal conductivity coe�cient
de�ned by

qr =−�app @T@r (131)

then one has

�app
�
=
[
1−

( rmax
r

)2]−1
+ O(g2) : (132)

The above ratio vanishes at r =0, is negative in the interval 0¡r¡rmax, diverges at
r = rmax, and �nally tends to unity from above for r/rmax.
The breakdown of the Newton law is characterized by an apparent shear viscosity

coe�cient de�ned by

Prz =−�app @uz@r : (133)

The ratio between this coe�cients and the NS shear viscosity is

�app
�
= 1− �′u

�20g
2

p30
− 19− �

20

(
mg
kBT0

)2
r2 + O(g4)

= 1− �′u
5�T

‘20
T0

@2T
@r2

− 2(2533− 31�)
175

‘20
v20

(
@uz
@r

)2
+ O(g4) : (134)

The last line of Eq. (134) clearly shows that �app incorporates super-Burnett terms.
Those terms can be written in equivalent alternative forms by taking into account that

@2T
@r2

=−3�0
4�0

(
@uz
@r

)2
+
�T
�p

T0
p0

@2p
@r2

+ O(g4) : (135)

As an illustration of the corrections over the NS description provided by kinetic
theory, we compare in Figs. 1–3 the hydrodynamic and 
ux pro�les for the case
g = 0:1�0(kBT0=m)1=2 [which corresponds to (h0=‘0)2 = 40], as predicted by both de-
scriptions when only terms through third order in g are retained. Although higher order
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Fig. 1. Hydrodynamic pro�les for the case g=0:1�0v0, as predicted by the Navier–Stokes description (dashed
lines) and by the kinetic theory description (solid lines).

terms are not necessarily negligible for that particular value of the �eld, the retained
terms can be expected to be enough, at least at a qualitative level. The curves for uz
and qz correspond to hard spheres (� = 1

2), but they are practically indistinguishable
from those of Maxwell molecules (�=0). Except for the shear stress Prz and the radial
heat 
ux qr , the kinetic theory predictions dramatically di�er from the NS ones. The
hydrostatic pressure grows quadratically rather than being uniform, the 
ow velocity
decreases more rapidly than expected from the NS description, and the temperature
exhibits a non-monotonic behavior. Normal stress di�erences appear, the 
ux of lon-
gitudinal momentum along the longitudinal direction being larger than the other two
normal stresses (Pzz ¿P��¿Prr). Finally, the longitudinal heat 
ux is not only dif-
ferent from zero (despite the absence of longitudinal gradients), but it can be even
larger than the radial heat 
ux. These features are qualitatively similar to those found
in the rectangular geometry (cf. Section 3), which have been con�rmed by computer
simulations [10,13,14].
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Fig. 2. Same as in Fig. 1 but for the elements of the pressure tensor.

Fig. 3. Same as in Fig. 1 but for the components of the heat 
ux.

6. Conclusions

In this paper we have solved the BGK kinetic equation for the (laminar) steady
cylindrical Poiseuille 
ow fed by a constant gravity �eld. The solution has been
obtained as a perturbation expansion in powers of the �eld through fourth order and
for a general class of repulsive potentials. The results exhibit a very weak sensitivity
to the interaction potential and strongly indicate that the expansion is only asymptotic.
A comparison with the pro�les obtained from the Navier–Stokes (NS) constitutive
equations shows that the latter widely fail over distances comparable to the mean free
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path. At a qualitative level, the most important limitation of the NS description is
that it predicts a monotonically decreasing temperature as one moves apart from the
cylinder axis. In contrast, the kinetic theory description shows that the temperature
has a local minimum (T = T0) at the axis (r = 0) and reaches a maximum value
(T = Tmax) at a distance from the center (r= rmax) of the order of the mean free path.
In the region r6rmax, the radial heat 
ows from the colder to the hotter points, what
dramatically illustrates the breakdown of the Fourier law. Furthermore, a longitudinal
component of the heat 
ux exists in the absence of gradients along the longitudinal di-
rection. Non-Newtonian e�ects are exempli�ed by the non-uniformity of the hydrostatic
pressure and by the presence of normal stress di�erences.
The above e�ects are similar to those previously found in the case of a rectan-

gular channel. This is a non-trivial result, since both geometries are quite di�erent,
as can be expected from the di�erent mathematical structure of the balance equations
[Eqs. (1)–(3) versus Eqs. (25)–(27)] and of the kinetic equations [Eq. (51) versus
Eq. (62)]. In the rectangular geometry the relevant space variable y takes both positive
and negative values, while the radial variable r is positive de�nite. Also, the normal
stress along the gradient direction is uniform in the rectangular case (Pyy = const) and
non-uniform in the cylindrical case (Prr 6= const). At a quantitative level, on the other
hand, the deviations of the NS pro�les from the kinetic theory ones are weaker in
the cylindrical geometry than in the rectangular geometry. For instance, the relative
di�erence (Tmax−T0)=T0 is about 5 times smaller in the former case than in the latter.
The analysis carried out in this work can be extended to the Boltzmann equation

for Maxwell molecules, as already done in the channel case [12]. The hydrodynamic
pro�les will still be given by Eqs. (120)–(122), but with di�erent numerical values
for the coe�cients �p, �u, �′u and �T . For hard spheres, the solution can be obtained
by approximate schemes, such as the moment method [15]. Finally, we hope that the
results reported in this paper may stimulate the undertaking of computer simulations
of the Poiseuille 
ow induced by gravity in a pipe.
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