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Abstract

Due to the mathematical complexity of the Boltzmann equation for inelastic hard spheres,
a kinetic model has recently been proposed whereby the collision rate (which is proportional
to the relative velocity for hard spheres) is replaced by an average velocity-independent value.
The resulting inelastic Maxwell model has received a large amount of recent interest, especially
in connection with the high energy tail of homogeneous states. In this paper, the transport
coe�cients of inelastic Maxwell models in d dimensions are derived by means of the Chapman–
Enskog method for unforced systems as well as for systems driven by a Gaussian thermostat
and by a white noise thermostat. Comparison with known transport coe�cients of inelastic hard
spheres shows that their dependence on inelasticity is captured by the inelastic Maxwell models
only in a mild qualitative way. Paradoxically, a much simpler BGK-like model kinetic equation
is closer to the results for inelastic hard spheres than the inelastic Maxwell model.
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1. Introduction

As is known, the Boltzmann equation for elastic hard spheres is in general very
complicated to deal with, so that explicit results are usually restricted to small devia-
tions from equilibrium [1]. In order to explore a wider range of situations, the direct
simulation Monte-Carlo (DSMC) method [2,3] can be used as an e�cient tool to
solve numerically the Boltzmann equation. From a theoretically oriented point of view,
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another fruitful route consists of replacing the detailed Boltzmann collision operator
by a simpler collision model, e.g., the BGK model [4], that otherwise retains the most
relevant physical features of the true collision operator [5]. Several exact solutions of
the nonlinear BGK model kinetic equation [6] have proven to agree rather well with
DSMC results for the Fourier Bow [7], the uniform shear Bow [8], the Couette Bow
[9,10] and the Poiseuille Bow [11]. In a third approach, the mathematical structure of
the Boltzmann collision operator is retained, but the particles are assumed to interact
via the repulsive Maxwell potential (inversely proportional to the fourth power of the
distance) [12]. For this interaction model, the collision rate is independent of the rel-
ative velocity of the colliding pair and this allows for a number of nice mathematical
properties of the collision operator [13–15]. Since many interesting transport properties
(both linear and nonlinear), once properly nondimensionalized, are only weakly depen-
dent on the interaction potential, exact results derived from the Boltzmann equation
for elastic Maxwell molecules [16] are often useful for elastic hard spheres [8] and
even Lennard-Jones particles [17,18]. Quoting Ernst and Brito [19,20], one can say that
“Maxwell molecules are for kinetic theory what harmonic oscillators are for quantum
mechanics and dumb-bells for polymer physics”.

The prototype model for the description of granular media in the regime of rapid
Bow consists of an assembly of (smooth) inelastic hard spheres (IHS) with a constant
coe�cient of normal restitution � [21]. In the low density limit spatial correlations
can be neglected. If, in addition, the pre-collision velocities of two particles at contact
are assumed to be uncorrelated (molecular chaos assumption), the velocity distribution
function obeys the Boltzmann equation, modiJed to account for the inelasticity of
collisions [22,23].

Needless to say, all the intricacies of the Boltzmann equation for elastic hard spheres
are inherited and increased further by the Boltzmann equation for IHS, the latter intro-
ducing the coe�cient of normal restitution 06 �¡ 1 in the collision rule. Therefore,
it is not surprising that the three alternative approaches mentioned above for elas-
tic collisions, namely the DSMC method, the model kinetic equation and the Maxwell
model, have been extended to the case of inelastic collisions as well. As for the DSMC
method, its extension from the original formulation for elastic collisions (� = 1) [2,3]
to �¡ 1 is straightforward [24]. The generalization of the familiar BGK model kinetic
equation is less evident, but a physically meaningful proposal has recently been made
[25]. This model has proven to yield results in good agreement with DSMC data for
the simple shear Bow problem [26,27] and for the nonlinear Couette Bow [28]. Fol-
lowing the third route, the collision rate of a colliding pair of inelastic spheres, which
is proportional to the magnitude of the relative velocity, is replaced by an average
constant collision rate [29]. The resulting collision operator shares some of the math-
ematical properties of that of elastic Maxwell molecules and so this model is referred
to as pseudo-Maxwellian model [29] or, as will be done here, inelastic Maxwell model
(IMM) [19]. The Boltzmann equation for IMM has received a large amount of interest
in the last few months [19,20,29–40].

The IMM is worth studying by itself as a toy model to exemplify the nontrivial
inBuence of the inelastic character of collisions on the physical properties of the system.
On the other hand, its practical usefulness is strongly tied to its capability of mimicking
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the relevant behavior of IHS. A common property of the Boltzmann equation for
IHS and IMM is that both have homogeneous solutions exhibiting high energy tails
overpopulated with respect to the Maxwell–Boltzmann distribution. But this general
qualitative agreement fails at a deeper level. More speciJcally, in the homogeneous
cooling state the (reduced) velocity distribution function f̃(c), where c is the velocity
relative to the thermal velocity, decays asymptotically as ln f̃ ∼ −c in the case of
IHS [41,42] and as ln f̃ ∼ −ln c in the case of IMM [19,20,33,35]. Analogously, in
the steady homogeneous state driven by a white noise forcing, the asymptotic behavior
is ln f̃ ∼ −c3=2 in the case of IHS [42], while ln f̃ ∼ −c for IMM [37]. Of course,
these discrepancies in the limit of large velocities do not preclude that the IMM may
characterize well the “bulk” of the velocity distribution of IHS, as measured by low
degree moments. In a nonequilibrium gas, the physically most relevant moments (apart
from the local number density n, Bow velocity u and granular temperature T ) are those
associated with the Buxes of momentum and energy. If the gradients of n, u and T
are weak enough, the Buxes are linear combinations of the gradients, thus deJning
the transport coe�cients (e.g., the shear viscosity and the thermal conductivity) as
nonlinear functions of the coe�cient of restitution. These transport coe�cients have
been obtained by an extension of the Chapman–Enskog method [1] from the Boltzmann
equation for IHS [43–46]. To the best of my knowledge, they have not been derived
for IMM. The major aim of this paper is to carry out such a derivation and perform
a detailed comparison between the transport coe�cients for IMM and IHS.

The plan of the paper is as follows. In Section 2 the Boltzmann equation for IMM in
d dimensions is introduced. The model includes an average collision frequency ! that
can be freely Jtted to optimize the agreement with IHS. In the absence of any external
forcing the energy balance equation contains a sink term due to the collisional energy
dissipation. This term is represented by the cooling rate �, that is proportional to the
collision frequency ! and to the inelasticity parameter 1 − �2. The sink term can be
compensated for by an opposite source term representing some sort of external driving.
For concreteness, two types of driving are considered: a deterministic force proportional
to the (peculiar) velocity (Gaussian thermostat) and a stochastic “kicking” force (white
noise thermostat). The corresponding homogeneous solutions are analyzed in Section 3,
where the fourth cumulant (or kurtosis) of the velocity distribution is exactly obtained,
being insensitive to the choice of !. Comparison with the fourth cumulant of IHS shows
signiJcant deviations, especially in the case of the homogeneous cooling state (which
is equivalent to the homogeneous steady state driven by the Gaussian thermostat). The
Chapman–Enskog method is applied in Section 4 to get the transport coe�cients of
IMM in the undriven case, as well as in the presence of the Gaussian thermostat and the
white noise thermostat. For undriven systems with d6 3, it is found that the thermal
conductivity diverges at � = (4 − d)=3d and becomes negative for �¡ (4 − d)=3d,
irrespective of the choice of !. A critical comparison with the transport coe�cients
of IHS is carried out in Section 5. The free parameter ! is Jxed by the criterion
that the cooling rate of IMM be the same as that of IHS (in the local equilibrium
approximation). The comparison shows that the IMM retains only the basic qualitative
features of the �-dependence of the IHS transport coe�cients. The best agreement takes
place in the case of the white noise thermostat, where the inBuence of the inelasticity on
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the values of the transport coe�cients is rather weak. Quite surprisingly, the transport
coe�cients predicted by the much simpler BGK-like model [25] are in general much
closer to the IHS ones than those obtained from the IMM. The paper ends in Section 6
with some concluding remarks.

2. Inelastic Maxwell models

The Boltzmann equation for IMM [20,29,31] can be obtained from the Boltzmann
equation for IHS by replacing the term |g · �̂| in the collision rate (where g = v1 − v2

is the relative velocity of the colliding pair and �̂ is the unit vector directed along the
centers of the two colliding spheres) by an average value proportional to the thermal
velocity v0 =

√
2T=m (where T is the granular temperature and m is the mass of a

particle). The resulting Boltzmann equation is [20]

(9t + v1 · ∇ + F)f(r; v1; t) =
!(r; t; �)
n(r; t)�d

∫
d�̂

∫
dv2(�−1b̂−1 − 1)

×f(r; v1; t)f(r; v2; t)

≡ J [r; v1; t|f] ; (1)

where n is the number density, !(�) ˙ nT 1=2 is an eQective collision frequency,
�d = 2�d=2=�(d=2) is the total solid angle in d dimensions, �¡ 1 is the coe�cient
of normal restitution, and b̂ is the operator transforming pre-collision velocities into
post-collision ones:

b̂v1;2 = v1;2 ∓ 1 + �
2

(g · �̂)�̂ : (2)

Eqs. (1) and (2) represent the simplest version of the model, since the collision rate
is assumed to be independent of the relative orientation between the unit vectors ĝ
and �̂ [20]. In a more realistic version, the collision rate has the same dependence on
the scalar product ĝ · �̂ as in the case of hard spheres. The corresponding Boltzmann
equation can be proved to be equivalent to Eq. (1), except that the operator b̂ must be
replaced by [29,31]

b̂v1;2 =
1
2

(v1 + v2) ± 1 − �
4

g± 1 + �
4

g�̂ : (3)

Both versions of the model yield similar results in issues as delicate as the high energy
tails [20,37]. For the sake of simplicity, henceforth, I will restrict myself to the version
of the model corresponding to the conventional collision rule (2).

The collision frequency !(�) is a free parameter of the model. Its detailed
�-dependence can be determined by optimizing the agreement between the results de-
rived from Eq. (1) and those derived from the original Boltzmann equation for IHS. Of
course, the choice of !(�) is not unique and may depend on the property of interest.
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In Eq. (1), F is an operator representing the action of a possible external driving.
This operator is assumed to preserve the local number and momentum densities, i.e.,∫

dvFf(r; v; t) =
∫

dv vFf(r; v; t) = 0 : (4)

On the other hand, in general, the external driving gives rise to an energy source term

�(r; t) = − m
dn(r; t)T (r; t)

∫
dv V 2Ff(r; v; t) ; (5)

where

T (r; t) =
m

dn(r; t)

∫
dv V 2f(r; v; t) (6)

deJnes the granular temperature and V = v − u is the peculiar velocity,

u(r; t) =
1

n(r; t)

∫
dv vf(r; v; t) (7)

being the Bow velocity. A possible external driving corresponds to a deterministic
nonconservative force of the form 1

2m�V [37,47]. It has been widely used to generate
nonequilibrium steady states in the context of molecular Buids and can be justiJed by
Gauss’s principle of least constraints [48,49]. The operator F describing this force is

Ff(r; v; t) =
1
2
�(r; t)

9
9v · [Vf(r; v; t)] : (8)

The most commonly used type of driving for inelastic particles consists of a stochastic
force in the form of Gaussian white noise [30,31,33,42,50–55]. Its associated operator
is

Ff(r; v; t) = −�(r; t)T (r; t)
2m

(
9
9v

)2

f(r; v; t) : (9)

The macroscopic balance equations for the local densities of mass, momentum and
energy follow directly from Eq. (1) by taking velocity moments:

Dtn + n∇ · u = 0 ; (10)

Dtu +
1
mn

∇ · P = 0 ; (11)

DtT +
2
dn

(∇ · q + P : ∇u) = −(�− �)T : (12)

In these equations, Dt ≡ 9t + u · ∇ is the material time derivative,

P(r; t) = m
∫

dv VVf(r; v; t) (13)



A. Santos / Physica A 321 (2003) 442–466 447

is the pressure tensor,

q(r; t) =
m
2

∫
dv V 2Vf(r; v; t) (14)

is the heat Bux, and

�(r; t) = − m
dn(r; t)T (r; t)

∫
dv V 2J [r; v; t|f] (15)

is the cooling rate. The energy balance equation (12) shows that the existence of a
driving with the choice �= � compensates for the cooling eQect due to the inelasticity
of collisions. In that case, the driving plays the role of a thermostat that makes the
macroscopic balance equations (10)–(12) look like those of a conventional Buid of
elastic particles. On the other hand, the transport coe�cients entering in the constitutive
equations are in general diQerent from those of a gas of elastic particles and also depend
on the type of thermostat used. In what follows, I will assume that either �=0 (undriven
system, F = 0) or � = � in Eq. (8) (Gaussian thermostat) and Eq. (9) (white noise
thermostat).

The balance equations (10)–(12) are generally valid, regardless of the details of the
model for inelastic collisions. However, the inBuence of the collision model appears
through the �-dependence of the cooling rate. In the case of IMM, one can easily prove
(cf. Appendix A) the following relationship between the collision frequency ! and the
cooling rate �:

�(�) =
1 − �2

2d
!(�) : (16)

3. Homogeneous states

Before solving the inhomogeneous equation (1) by the Chapman–Enskog method,
it is necessary to analyze the homogeneous solutions, especially their deviations with
respect to the Maxwell–Boltzmann distribution as characterized by the fourth cumulant

a2 ≡ d
d + 2

〈v4〉
〈v2〉2 − 1 ; (17)

where

〈vk〉 =
1
n

∫
dv vkf(v) : (18)

3.1. Homogeneous cooling state. Gaussian thermostat

In the absence of any external driving (F = 0, � = 0), Eq. (12) for homogeneous
states reduces to 9tT =−�T . It is convenient to scale the velocities with respect to the
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thermal velocity v0(t) =
√

2T (t)=m and deJne the scaled quantities

f̃(c; �) = n−1vd0(t)f(v; t); c = v=v0(t); d� = ! dt : (19)

Thus, Eq. (1) reduces to(
9� +

1 − �2

4d
9
9c1

· c1

)
f̃(c1) =

1
�d

∫
d�̂

∫
dc2(�−1b̂−1 − 1)f̃(c1)f̃(c2)

≡ J̃ [c1|f̃] ; (20)

where use has been made of Eq. (16). It is interesting to remark that Eq. (20) coin-
cides with the Boltzmann equation corresponding to a homogeneous steady state driven
by operator (8) with � = � (Gaussian thermostat). In other words, the application of
the Gaussian thermostat to a homogeneous system is equivalent to a rescaling of the
velocities in the freely cooling case.

The so-called homogeneous cooling state (HCS) is characterized by a similarity
solution in which all the time dependence of f occurs through the scaled velocity c,
so that it corresponds to a stationary solution of Eq. (20). Such a solution exhibits
an overpopulated high energy tail of the form f̃(c) ∼ c−d−a [19,20,33,35], where, in
general, the exponent a depends on the coe�cient of restitution. On the other hand, the
“bulk” properties of the velocity distribution function are associated with low degree
moments. Of course, by normalization 〈c2〉= d=2. Thus, the Jrst nontrivial moment is
〈c4〉. Let us multiply both sides of Eq. (20) by cs1 and integrate over c1 to get

9�〈cs〉 − (1 − �2)
s

4d
〈cs〉 = −�s ≡

∫
dc1 cs1J̃ [c1|f̃] : (21)

This hierarchy of moment equations can be solved sequentially and has been analyzed
in detail by Ernst and Brito [20]. For s= 2 we get the identity �2 = (1− �2)=4, which
is not but Eq. (16) in dimensionless form. The collisional moment �4 is evaluated in
Appendix A with the result

�4 =
1 + �

32d(d + 2)
{4〈c4〉[3�2(1 − �) − �(17 + 4d) + 3(3 + 4d)]

− (1 + �)d(d + 2)(4d− 1 − 6� + 3�2)} : (22)

Inserting this into Eq. (21) with s = 4 we get the evolution equation

9�〈c4〉=−(1 + �)2 4d− 7 + 3�(2 − �)
8d(d + 2)

×
[
〈c4〉 − d(d + 2)

4
4d− 1 − 3�(2 − �)
4d− 7 + 3�(2 − �)

]
: (23)

In the one-dimensional case (d = 1), the fourth moment diverges as 〈c4〉 ∼ exp[�(1 −
�2)2=8)]. This is consistent with the fact that in this case the exact stationary solution to
Eq. (20) is f̃(c)= (23=2=�)(1+2c2)−2 [19,20,33,35]. On the other hand, for d¿ 2 the
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Fig. 1. Plot of the fourth cumulant a2 in the HCS for d = 3 (solid lines) and 2 (dashed lines).

moment 〈c4〉 relaxes to a well-deJned stationary value (HCS value) whose associated
cumulant is

a2 =
4

d(d + 2)
〈c4〉 − 1 =

6(1 − �)2

4d− 7 + 3�(2 − �)
: (24)

This expression is exact for the IMM given by Eq. (1). In contrast, the cumulant a2

for IHS in the HCS is not known exactly. Nevertheless, an excellent estimate is [42]

aIHS
2 =

16(1 − �)(1 − 2�2)
9 + 24d− �(41 − 8d) + 30�2(1 − �)

: (25)

Fig. 1 compares result (24) for IMM with estimate (25) for IHS. It can be observed
that the HCS of IMM deviates from the Maxwell–Boltzmann distribution (which cor-
responds to a2 = 0) much more than the HCS of IHS [56]. This is consistent with the
fact that the former models have a stronger overpopulated high energy tail [19,20,33],
f̃(c) ∼ c−d−a, than the latter [42], f̃(c) ∼ e−ac.

3.2. White noise thermostat

Now we assume that the system is heated with the white noise thermostat represented
by operator (9) with � = �. Using again the scaled quantities (19), Eq. (1) becomes[

9� − 1 − �2

8d

(
9
9c1

)2
]
f̃(c1) = J̃ [c1|f̃] : (26)

Taking moments we get

9�〈cs〉 − 1 − �2

8d
s(s + d− 2)〈cs−2〉 = −�s : (27)
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Fig. 2. Plot of the fourth cumulant a2 in the case of a system heated by a white noise thermostat for d = 3
(solid lines) and 2 (dashed lines).

In particular, setting s = 4,

9�〈c4〉=−(1 + �)
9 + 12d− �(17 + 4d) + 3�2(1 − �)

8d(d + 2)

×
[
〈c4〉 − d(d + 2)

4
(3 − �) (4d + 5 − 3�(2 + �))

9 + 12d− �(17 + 4d) + 3�2(1 − �)

]
: (28)

In the case of this thermostat, the moment 〈c4〉 relaxes to a steady-state value for any
dimensionality d. The corresponding exact expression for the fourth cumulant is

a2 =
6(1 − �)2(1 + �)

9 + 12d− �(17 + 4d) + 3�2(1 − �)
: (29)

The cumulant a2 for IHS in the nonequilibrium steady state driven by a white noise
thermostat can be estimated to be [42]

aIHS
2 =

16(1 − �)(1 − 2�2)
73 + 56d− 3�(35 + 8d) + 30�2(1 − �)

: (30)

Fig. 2 shows that the diQerences between the values of a2 for IMM and IHS are less
dramatic than in the HCS. The behavior observed in Fig. 2 is in agreement with the
high energy tails f̃(c) ∼ e−ac for IMM [37] and f̃(c) ∼ e−ac3=2

for IHS [42].
It is interesting to remark that, according to Eqs. (24) and (29), a2 ˙ (1 − �)2 for

IMM in the small inelasticity limit [29,31], while a2 ˙ (1 − �) for IHS in the same
limit [42].

4. Transport coe!cients

The standard Chapman–Enskog method [1] can be generalized to inelastic collisions
to obtain the dependence of the Navier–Stokes transport coe�cients on the coe�cient
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of restitution from the Boltzmann equation [43,45,46] and from the Enskog equation
[44]. Here the method will be applied to the Boltzmann equation (1) for IMM.

In the Chapman–Enskog method a factor � is assigned to every gradient operator and
the distribution function is represented as a series in this formal “uniformity” parameter,

f = f(0) + �f(1) + �2f(2) + · · · : (31)

Use of this expansion in the deJnitions of Buxes (13) and (14) and the cooling rate
(15) gives the corresponding expansion for these quantities. Finally, use of these in the
hydrodynamic equations (10)–(12) leads to an identiJcation of the time derivatives of
the Jelds as an expansion in the gradients,

9t = 9(0)
t + �9(1)

t + �29(2)
t + · · · : (32)

In particular, the macroscopic balance equations to zeroth order become

9(0)
t n = 0; 9(0)

t u = 0; 9(0)
t T = −(�− �)T : (33)

Here we have taken into account that in the Boltzmann equation (1) the eQective
collision frequency ! ˙ nT 1=2 is assumed to be a functional of f only through the
density n and granular temperature T . Consequently, !(0) = !, !(1) = !(2) = · · · = 0
and, using Eq. (16), �(0) = �, �(1) = �(2) = · · · = 0. It must be noticed that, in the case
of IHS, �(1) = 0 and �(2) is small [43].

To zeroth order in the gradients the kinetic equation (1) reads(
�− �

2
9
9V · V + F

)
f(0)(V) = J [V|f(0)] ; (34)

where use has been made of the properties

9(0)
t f(0)(V) = −(�− �)T

9
9T f(0)(V) =

�− �
2

9
9V · Vf(0)(V) ; (35)

the last equality following from the fact that the dependence of f(0) on the temperature
is of the form f(0)(V) = nv−d

0 f̃(0)(V=v0). In the undriven case (F= 0, �= 0), as well
as in the case of the Gaussian thermostat (8) with � = �, Eq. (34) is equivalent to the
homogeneous equation analyzed in Section 3.1. Therefore, f(0)(V) is given by the sta-
tionary solution to Eq. (20), except that n → n(r; t) and T → T (r; t) are local quantities
and v → V = v − u(r; t). Analogously, in the case of the white noise thermostat (9)
with �=� Eq. (34) is equivalent to the homogeneous equation analyzed in Section 3.2.

Since f(0) is isotropic, it follows that

P(0) = pI; q(0) = 0 ; (36)

where p= nT is the hydrostatic pressure and I is the d× d unit tensor. Therefore, the
macroscopic balance equations give

D(1)
t n = −n∇ · u; D(1)

t u = −∇p
mn

; D(1)
t T = −2T

d
∇ · u ; (37)
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where D(1)
t ≡ 9(1)

t + u ·∇. To Jrst order in the gradients Eq. (1) leads to the following
equation for f(1):

(9(0)
t + L + F)f(1)(V) = −(D(1)

t + V · ∇)f(0)(V) ; (38)

where L is the linearized collision operator

Lf(1)(V1) =− !
nTd

∫
d�̂

∫
dV2

(
�−1b̂−1 − 1

)

×[f(0)(V1)f(1)(V2) + f(0)(V2)f(1)(V1)] : (39)

The collisional integrals of VV and V 2V are evaluated in Appendix A. From the
linearization of Eqs. (A.7) and (A.9) we have

m
∫

dVVVLf(1)(V) =  P(1) ; (40)

m
2

∫
dVV 2VLf(1)(V) =

(
d− 1
d

 +
d + 2
2d

�
)
q(1) ; (41)

where the collision frequency  is

 ≡ !
(1 + �)(d + 1 − �)

d(d + 2)
: (42)

Using (37), the right-hand side of Eq. (38) can be written as

− (D(1)
t + V · ∇)f(0)(V) = A(V) · ∇ ln T + B(V) · ∇ ln n + C(V) : ∇u ; (43)

where

A ≡ V
2
9
9V · (Vf(0)) − T

m
9
9V f(0) ; (44)

B ≡ −Vf(0) − T
m
9
9V f(0) ; (45)

Cij ≡ 9
9Vi

(Vjf(0)) − 1
d
$ij

9
9V · (Vf(0)) : (46)

Now we multiply both sides of Eq. (38) by mViVj and integrate over V. The result is

(9(0)
t +  )P(1)

ij + &(1)
ij = −p'ijkl∇kul ; (47)

where

&(1)
ij ≡ m

∫
dVViVjFf(1)(V) (48)

and

'ijkl ≡ $ik$jl + $il$jk − 2
d
$ij$kl : (49)
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Of course, &(1)
ij = 0 in the undriven case. For driven systems,

&(1)
ij =

{−�P(1)
ij (Gaussian thermostat) ;

0 (white noise thermostat) :
(50)

The solution to Eq. (47) has the form

P(1)
ij = −*'ijkl∇kul ; (51)

where * is the shear viscosity. By dimensional analysis, *˙ T 1=2. Therefore,

9(0)
t P(1) = −�− �

2
P(1) : (52)

Consequently, Eq. (47) yields

* = p




( − 1
2 �)−1 (undriven system) ;

( − �)−1 (Gaussian thermostat) ;

 −1 (white noise thermostat) :

(53)

Except for a possible �-dependence of  [cf. Eq. (68) below], the result *=p= in the
case of the white noise thermostat is the same as for elastic particles. This allows us
to interpret  −1 as the eQective mean free time associated with momentum transport.
This formal equivalence between the shear viscosity of a Buid of elastic particles and
that of a granular Buid driven by a white noise forcing is due to the fact that the latter
forcing, while compensating for the inelastic cooling, does not contribute to the rate
of change of the stress tensor. The Gaussian thermostat, on the other hand, yields a
term �P(1) and therefore tends to produce a temporal increase in the magnitude of the
stress tensor, thus partially cancelling the dissipative term − P(1). As a consequence,
the steady-state shear viscosity is enhanced, * = p=( − �). Finally, in the absence of
any external driving, the state is unsteady and so the inelastic cooling is responsible
for a smaller enhancement of the shear viscosity, * = p=( − �=2). It is worth noting
that a structure similar to that of Eq. (53) is also present in the cases of the Boltzmann
equation for IHS [cf. Eq. (B.1)] and the BGK-like kinetic model [cf. Eq. (C.3)].

Let us consider next the heat Bux. Multiplying both sides of Eq. (38) by 1
2mV 2V

and integrating over V we get

(9(0)
t +  ′)q(1) + Q(1) = −d + 2

2d
(1 + 2a2)

p
m

∇T − d + 2
2

a2
T 2

m
∇n ; (54)

where

 ′ ≡ d− 1
d

 +
d + 2
2d

� =
4(d− 1) + (8 + d)(1 − �)

4d + 4(1 − �)
 (55)

is an eQective collision frequency associated with the thermal conductivity and

Q(1) ≡ m
2

∫
dVV 2VFf(1)(V) : (56)

Andrés Santos
Highlight
Remove "d"



454 A. Santos / Physica A 321 (2003) 442–466

In the undriven case, Q(1) = 0. For the types of driving we are considering,

Q(1) =

{− 3
2 �q(1) (Gaussian thermostat) ;

0 (white noise thermostat) :
(57)

The heat Bux has the structure

q(1) = −+∇T − �∇n ; (58)

where + is the thermal conductivity and � is a transport coe�cient with no counterpart
for elastic particles [43]. Dimensional analysis shows that + ˙ T 1=2 and � ˙ T 3=2.
Consequently,

9(0)
t q(1) =

1
2

(�− �)+∇T +
3
2

(�− �)�∇n + +∇(�− �)T

= (�− �)
[
2+∇T +

(
3
2
� + +

T
n

)
∇n

]
; (59)

where in the last step we have taken into account that �; � ˙ nT 1=2. Inserting this
equation into Eq. (54), we can identify the transport coe�cients as

+ =
p
m

(d + 2)
2

(1 + 2�2)




( ′ − 2�)−1 (undriven system) ;

( ′ − 3
2 �)−1 (Gaussian thermostat) ;

 ′−1 (white noise thermostat) ;

(60)

� =
T
n

+
1 + 2a2




(� + a2 ′)( ′ − 3
2�)

−1 (undriven system) ;

a2 (Gaussian thermostat) ;

a2 (white noise thermostat) :

(61)

In Eqs. (60) and (61), the cumulant a2 is given by Eqs. (24) (undriven system and
Gaussian thermostat) and (29) (white noise thermostat).

Using Eqs. (16) and (42), it can be seen that the thermal conductivity in the undriven
case is +˙ (�− �0)−1, where �0 = (4−d)=3d. This implies that the coe�cients + and
� exhibit an unphysical behavior for d= 2 and d= 3 since they diverge at � = �0 and
become negative for 06 �¡�0. This singular behavior is absent in the shear viscosity
* or in + and � for thermostatted states because  ¿� for all � and d.

In order to have the full �-dependence of the transport coe�cients we need to Jx the
free parameter !(�). This point will be addressed in Section 5. On the other hand, the
ratios between transport coe�cients are independent of the criterion to choose !(�).
Let us deJne a generalized Prandtl number (for d �= 1)

R*(�) =
*(�)=*0

+(�)=+0
; (62)
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where *0 and +0 are the shear viscosity and thermal conductivity, respectively, in the
elastic limit (� = 1). From Eqs. (53) and (60) we have

R*(�) =
1

1 + 2a2




d(d−4+3d�)
(d−1)[3d+2+(d−2)�] (undriven system) ;

1 (Gaussian thermostat) ;
d[5d+4−(d+8)�]
4(d−1)(d+1−�) (white noise thermostat) :

(63)

Analogously, we can deJne the ratio

R�(�) =
n�(�)
T+(�)

: (64)

Thus,

R�(�) =
1

1 + 2a2




d+2
d−1

1−�
1+� + 5d+4−(d+8)�

2(d−1)(1+�) a2 (undriven system) ;

a2 (Gaussian thermostat) ;

a2 (white noise thermostat) :

(65)

5. Comparison with the transport coe!cients of inelastic hard spheres

The transport coe�cients of IHS described by the Boltzmann equation have been
derived both for undriven [43–45] and thermostatted [46] systems in the Jrst Sonine
approximation. For the sake of completeness, the expressions of the transport coe�-
cients of IHS are listed in Appendix B.

Figs. 3 and 4 compare the ratios R*(�), Eq. (62), and R�(�), Eq. (64), for IMM
and IHS in the three-dimensional case. It is observed that, in general, the results
for IMM describe qualitatively the �-dependence of R* and R� for IHS. Thus, as
the inelasticity increases, the generalized Prandtl number R* decreases in the
absence of external forcing and increases in the case of the white noise thermostat.
With the Gaussian thermostat, however, the discrepancies are important: R* increases
with the inelasticity for IHS and decreases for IMM. As for the ratio R�, which mea-
sures the new transport coe�cient � relative to the thermal conductivity, it rapidly
increases in the unforced case, while it is very small in the driven cases. At a quanti-
tative level, the IMM results exhibit important deviations from the IHS ones, especially
in the undriven case, where R* for IMM becomes negative when �¡�0 = 1

9 and R�

grows too rapidly. The situation in which the IMM ratios are the closest to the IHS
ones corresponds to the system heated by a white noise thermostat.

Of course, the most interesting comparison refers to the three transport coe�cients
themselves, rather than to their ratios. In order to have explicit expressions for the
transport coe�cients of IMM, we now need a criterion to Jx the free parameter !(�).
The most natural choice to optimize the agreement with the IHS results is to guarantee
that the cooling rate for IMM, Eq. (16), be the same as that for IHS. Strictly speaking,
the cooling rate for IHS depends in general on the details of the nonequilibrium velocity
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Fig. 3. Plot of the generalized Prandtl number R*(�) from the Boltzmann equation for three-dimensional
IMM (solid lines) and IHS (dashed lines) for (a) undriven systems, (b) Gaussian thermostat and (c) white
noise thermostat. The curves corresponding to IMM in case (b) and to IHS in case (a) are very close to
each other by accident.
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Fig. 4. Plot of the ratio R�(�) from the Boltzmann equation for three-dimensional IMM (solid lines) and
IHS (dashed lines) for (a) undriven systems, (b) Gaussian thermostat and (c) white noise thermostat.

distribution function, while the eQective collision frequency !(�) in Eq. (1) is assumed
to depend on f only through the density and the granular temperature. Otherwise, the
complete knowledge of ! would require to solve Jrst the Boltzmann equation for IHS
and then evaluate the cooling rate associated with such a solution, what is impractical.
Therefore, here I take for � the cooling rate of IHS at local equilibrium, namely,

� =  0
d + 2
4d

(1 − �2) ; (66)

where  0 is given by Eq. (B.4). Making use of Eqs. (16) and (42), this is equivalent
to

! =  0
d + 2

2
; (67)
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Fig. 5. Plot of the reduced shear viscosity *=*0 from the Boltzmann equation for three-dimensional IMM
(solid lines) and IHS (dashed lines), as well as from the BGK-like model of IHS (dotted lines), for
(a) undriven systems, (b) Gaussian thermostat and (c) white noise thermostat. The dashed and dotted lines
are practically indistinguishable in case (c).

 =  0
(1 + �)(d + 1 − �)

2d
: (68)

With this choice, Eqs. (53), (60) and (61) become, respectively,

* = *0
2d

1 + �




4[3d + 2 + (d− 2)�]−1 (undriven system) ;

2
d (1 + �)−1 (Gaussian thermostat) ;

(d + 1 − �)−1 (white noise thermostat) ;

(69)

+ = +0
8(d− 1)

1 + �
(1 + 2a2)

×




(d− 4 + 3d�)−1 (undriven system) ;

1
2(d−1) (1 + �)−1 (Gaussian thermostat) ;

[5d + 4 − (d + 8)�]−1 (white noise thermostat) ;

(70)

� =
T
n

+0
4

(1 + �)2




2(d+2)(1−�)
d−4+3d� + 5d+4−(d+8)�

d−4+3d� a2 (undriven system) ;

a2 (Gaussian thermostat) ;
2(d−1)(1+�)
5d+4−(d+8)� a2 (white noise thermostat) ;

(71)

Figs. 5–7 compare the three transport coe�cients of IMM with those of IHS.
For completeness, also the coe�cients derived from a simple BGK-like model
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Fig. 6. Plot of the reduced thermal conductivity +=+0 from the Boltzmann equation for three-dimensional
IMM (solid lines) and IHS (dashed lines), as well as from the BGK-like model of IHS (dotted lines),
for (a) undriven systems, (b) Gaussian thermostat and (c) white noise thermostat. Note that the curves
corresponding to IMM and the BGK-like model in the case (c) are hardly distinguishable.
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Fig. 7. Plot of the reduced transport coe�cient �=(T+0=n) from the Boltzmann equation for three-dimensional
IMM (solid line) and IHS (dashed lines), as well as from the BGK-like model of IHS (dotted line), for
(a) undriven systems, (b) Gaussian thermostat and (c) white noise thermostat. Note that the BGK-like model
predicts � = 0 in cases (b) and (c).

(see Appendix C) are included. Again, the qualitative behavior of IHS is generally cap-
tured by the IMM. We observe that the shear viscosity increases with the inelasticity,
the increase being more (less) important when the system is heated with a Gaussian
(white noise) thermostat. The thermal conductivity increases with the inelasticity in
a signiJcant way in the undriven case, increases more moderately in the case of the
Gaussian thermostat, and is almost constant in the case of the white noise thermostat.
As for the transport coe�cient �, it remains small in the thermostatted states, while it
rapidly increases in the undriven state. All these trends are, however, strongly exag-
gerated by the IMM in the undriven case (where + and � diverge at � = �0 = 1

9) and,
to a lesser extent, in the Gaussian thermostat case, especially for the coe�cient �. On
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the other hand, the simple BGK-like model [25] summarized in Appendix C describes
fairly well the �-dependence of the three transport coe�cients, being closer to the IHS
results than the IMM predictions.

6. Concluding remarks

In the Boltzmann equation for IMM, the collision rate of the underlying system of
IHS is replaced by an eQective collision rate independent of the relative velocity of the
colliding particles. Based on the experience in the case of elastic particles, one might
reasonably think that this model, while making the collision operator mathematically
more tractable, is able to capture the most important properties of IHS, at least those
relatively insensitive to the domain of velocities much larger than the thermal velocity.
In particular, one might expect the three transport coe�cients (shear viscosity, thermal
conductivity and the coe�cient associated with the contribution of a density gradient to
the heat Bux) of IMM to possess a dependence on the coe�cient of restitution similar
to that of the transport coe�cients of IHS. The results derived in this paper show,
however, that this expectation does not hold true, except at a mild qualitative level,
even if the IMM is made to reproduce the cooling rate of IHS. On the other hand,
a model kinetic equation based on the well-known BGK model for elastic collisions
presents a surprisingly good agreement with IHS, once the limitation of the BGK model
to reproduce the correct Prandtl number of elastic particles is conveniently accounted
for. A partial explanation of this paradox may lie in the fact that in the IMM a rough
approximation (collision rate independent of the relative velocity) coexists with the
remaining complexity of the detailed collision process. As a result, only a free pa-
rameter (essentially the cooling rate) is available to make contact with IHS. In the
BGK-like model, however, the cooling rate and its dominant eQect on the velocity
distribution function is explicitly taken out; what remains of the Boltzmann collision
operator is modelled by a conventional relaxation-time term reBecting the eQects of col-
lisions not directly associated with the energy dissipation. As a consequence, in addition
to the cooling rate, the BGK-like model incorporates an eQective (velocity-independent)
collision frequency that increases the Bexibility of the model in spite of its simplicity.

In conclusion, the IMM is interesting as a mathematical toy model to explore how
a small degree of collisional inelasticity may have a strong inBuence on the physical
properties of the system. For instance, the velocity moments in homogeneous states
can be evaluated only approximately in IHS [42], while they can be exactly obtained
in IMM [29]; the high energy tail is another example where rather detailed information
can be obtained from the Boltzmann equation for IMM [19,20,33,35,37]. On the other
hand, if one is looking for a “shortcut” to know some of the properties of IHS, the
use of the IMM requires a great deal of caution. First, the solution of the Boltzmann
equation for IMM may still be a formidable task, except in some special cases. Second,
the results derived from the IMM may not be su�ciently representative of the behavior
of IHS, as exempliJed here in the case of the transport coe�cients. From that point of
view, it seems preferable to make use of the BGK-like model proposed in Ref. [25].
For instance, this model has an exact solution for the nonlinear planar Couette Bow



460 A. Santos / Physica A 321 (2003) 442–466

(with combined momentum and energy transport) that compares quite well with DSMC
data for IHS [28]; for this Bow, however, the Boltzmann equation for IMM cannot be
solved in a closed form, even in the elastic limit [16].
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Appendix A. Collisional moments

Let us consider the general collisional integral of the form

I [F] ≡
∫

dv F(v)J [v|f] : (A.1)

By following standard steps, I [F] can be written as

I [F] =
!

2n�d

∫
dv1

∫
dv2

∫
d�̂f(v1)f(v2)(b̂− 1)[F(v1) + F(v2)] : (A.2)

Now we particularize to F(v) = VV. From the collision rule (2) it follows that

(b̂− 1)(V1V1 + V2V2) =
1 + �

2
(g · �̂)[(1 + �)(g · �̂)�̂�̂ − g�̂ − �̂g] : (A.3)

To perform the angular integrations we need the results∫
d�̂ (g · �̂)2�̂�̂ = B2gg +

B1 − B2

d− 1
(g2I − gg) ; (A.4)

∫
d�̂ (g · �̂)�̂ = B1g ; (A.5)

where [20]

Bn ≡
∫

d�̂ (ĝ · �̂)2n = �d�−1=2 �(d=2)�(n + 1=2)
�(n + d=2)

(A.6)

and I is the d× d unit tensor. Therefore,

I [VV] =−!
1 + �
4nd

∫
dv1

∫
dv2 f(v1)f(v2)

[
1 − �
d

g2I

+ 2
d + 1 − �
d + 2

(
gg− 1

d
g2I

)]

=−!
1 + �
2md

[
(1 − �)pI + 2

d + 1 − �
d + 2

(P − pI)
]

: (A.7)
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The cooling rate is � = −(m=dnT )I [V 2], so taking the trace of Eq. (A.7) we get
Eq. (16).

Next we particularize to F(v) = V 2V. The collision rule gives

(b̂− 1)(V 2
1 V1 + V 2

2 V2) =
(

1 + �
2

)2

(g · �̂)2(V1 + V2) · (I + 2�̂�̂)

− 1 + �
2

(g · �̂)(V 2
1 I + 2V1V1

−V 2
2 I − 2V2V2) · �̂ : (A.8)

After performing the angular integrations one has

I [V 2V] =
!(1 + �)

4nd

∫
dv1

∫
dv2 f(v1)f(v2)

×
{

1 + �
2(d + 2)

(V1 + V2) · [(d + 4)g2I + 4gg]

− g · (V 2
1 I + 2V1V1 − V 2

2 I − 2V2V2)
}

=−2!(1 + �)(d− 1)
md(d + 2)

(
1 +

d + 8
d− 1

1 − �
4

)
q : (A.9)

Finally, let us evaluate the collisional moment �4, where �s is deJned by the last
identity in Eq. (21), i.e.,

�4 = − 1
2Td

∫
d�̂

∫
dc1

∫
dc2 f̃(c1)f̃(c2)(b̂− 1)(c4

1 + c4
2) : (A.10)

From the collision rule one gets [42]

(b̂− 1)(c4
1 + c4

2) = 2(1 + �)2(g · �̂)2(G · �̂)2 +
1
8

(1 − �2)2(g · �̂)4

− (1 − �2)(g · �̂)2
(
G2 +

1
4
g2
)

− 4(1 + �)(g · �̂)(G · �̂)(g ·G) ; (A.11)

where G ≡ 1
2 (c1 + c2). Eqs. (A.4) and (A.5) give∫

d�̂ (g · �̂)2(G · �̂)2 =
�d

d(d + 2)
[2(g ·G)2 + g2G2] ; (A.12)

∫
d�̂ (g · �̂)(G · �̂) =

�d

d
(g ·G) : (A.13)
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Therefore,

�4 =− 1 + �
2d

∫
dc1

∫
dc2 f̃(c1)f̃(c2)

{
2(1 + �)
d + 2

[2(g ·G)2 + g2G2]

+
3(1 − �)2(1 + �)

8(d + 2)
g4 − (1 − �)g2

(
G2 +

1
4
g2
)
− 4(g ·G)2

}
: (A.14)

Finally, by taking into account that

(g ·G)2 =
1
4

(c4
1 + c4

2 − 2c2
1c

2
2) ; (A.15)

g2G2 =
1
4

[c4
1 + c4

2 + 2c2
1c

2
2 − 4(c1 · c2)2] ; (A.16)

g4 = c4
1 + c4

2 + 2c2
1c

2
2 + 4(c1 · c2)2 − 4(c2

1 + c2
2)(c1 · c2) ; (A.17)

we get Eq. (22).

Appendix B. Transport coe!cients of inelastic hard spheres

The derivation of the Navier–Stokes transport coe�cients for IHS can be found in
Refs. [43–46]. In the Jrst Sonine approximation, the results are

* =
p
 0




( ∗* − 1
2 �∗)−1 (undriven system) ;

( ∗* − �∗)−1 (Gaussian thermostat) ;

 ∗−1
* (white noise thermostat) ;

(B.1)

+ =
p

m 0

d + 2
2

(1 + 2aIHS
2 )




( ∗+ − 2�∗)−1 (undriven system) ;

( ∗+ − 3
2�

∗)−1 (Gaussian thermostat) ;

 ∗−1
+ (white noise thermostat) ;

(B.2)

� =
T
n

+
1 + 2aIHS

2




(�∗ + aIHS
2  ∗+)( 

∗
+ − 3

2�
∗)−1 (undriven system) ;

aIHS
2 (Gaussian thermostat) ;

aIHS
2 (white noise thermostat) :

(B.3)

In these equations [45],

 0 = n2d−1(T=m)1=2 4�d

�1=2(d + 2)
; (B.4)
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�∗ =
d + 2
4d

(1 − �2)
(

1 +
3
16

aIHS
2

)
; (B.5)

 ∗* =
3
4d

(
1 − � +

2
3
d
)

(1 + �)
(

1 − 1
32

aIHS
2

)
; (B.6)

 ∗+ =
1 + �
d

[
d− 1

2
+

3
16

(d + 8)(1 − �) +
4 + 5d− 3(4 − d)�

512
aIHS

2

]
: (B.7)

The expressions for aIHS
2 are given by Eq. (25) for the undriven case and for the

Gaussian thermostat and by Eq. (30) for the white noise thermostat.

Appendix C. BGK-like model

In its simplest version, the BGK-like model proposed in Ref. [25] reads

(9t + v · ∇ + F)f(r; v; t) =−( BGK − �)[f(r; v; t) − f0(r; v; t)]

+
1
2
�
9
9v · Vf(r; v; t) ; (C.1)

where  BGK ˙ nT 1=2 is an eQective collision frequency and f0 is the local equilibrium
distribution function. The BGK-like model (C.1) can be interpreted as indicating that a
system of inelastic hard spheres behaves essentially as a system of elastic hard spheres
with a modiJed �-dependent rate of collisions and subjected to the action of a “friction”
force − 1

2m�V, which accounts for the energy dissipation in an eQective way. Applying
the Chapman–Enskog method to Eq. (C.1) one obtains Eq. (38) with f(0) = f0 and
the replacement

Lf(1) →
(
 BGK − �− 1

2
�
9
9V · V

)
f(1) : (C.2)

It is then straightforward to get the transport coe�cients as

* = p




( BGK − 1
2�)

−1 (undriven system) ;

( BGK − �)−1 (Gaussian thermostat) ;

 −1
BGK (white noise thermostat) ;

(C.3)

+ =
p
m

d + 2
2




( BGK − 3
2 �)−1 (undriven system) ;

( BGK − �)−1 (Gaussian thermostat) ;

( BGK + 1
2�)

−1 (white noise thermostat) ;

(C.4)
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� =
T
n

+




�( BGK − �)−1 (undriven system) ;

0 (Gaussian thermostat) ;

0 (white noise thermostat) :

(C.5)

Strictly speaking, the cooling rate � is a functional of the velocity distribution function
through Eq. (15). In the spirit of the kinetic model (C.1), the exact cooling rate � is
approximated by its local equilibrium expression

�(�) →  0
d + 2
4d

(1 − �2) ; (C.6)

where  0 ˙ nT 1=2 is a collision frequency (independent of �) deJned by Eq. (B.4). It
remains to Jx the �-dependence of  BGK. Comparison between Eqs. (B.1) and (C.3)
suggests the identiJcation  BGK →  0 ∗* as the simplest choice. Thus,

 BGK =  0
3
4d

(
1 − � +

2
3
d
)

(1 + �) ; (C.7)

where we have set aIHS
2 → 0, in consistency with the local equilibrium approximation

(C.6) for the cooling rate. Inserting Eqs. (C.6) and (C.7) into Eqs. (C.3)–(C.5), one
gets

*(�) = *0
4d

1 + �




2[4 + 3d− (4 − d)�]−1 (undriven system) ;

[1 + d + (d− 1)�]−1 (Gaussian thermostat) ;

(3 + 2d− 3�)−1 (white noise thermostat) ;

(C.8)

+(�) = +0
4d

1 + �




2[d(1 + 3�)]−1 (undriven system) ;

[1 + d + (d− 1)�]−1 (Gaussian thermostat) ;

2[8 + 5d− (8 + d)�]−1 (white noise thermostat) ;

(C.9)

�(�) =
T
n

+0
8(d + 2)(1 − �)

(1 + �)(1 + 3�)[1 + d + (d− 1)�]

×




1 (undriven system) ;

0 (Gaussian thermostat) ;

0 (white noise thermostat) ;

(C.10)

In the above equations we have taken into account that *0=m+0 =2=(d+2) in the BGK
model, while the Boltzmann value is *0=m+0 = 2(d− 1)=d(d + 2). This discrepancy in
the Prandtl number is a known feature of the BGK model for elastic collisions and is
due to the fact that the model contains a single relaxation time.
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