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Abstract

The hierarchy of moment equations derived from the nonlinear Boltzmann equation is solved
for a gas of Maxwell molecules undergoing a stationary Poiseuille $ow induced by an external
force in a pipe. The solution is obtained as a perturbation expansion in powers of the force
(through third order). A critical comparison is done between the Navier–Stokes theory and
the predictions obtained from the Boltzmann equation for the pro3les of the hydrodynamic
quantities and their $uxes. The Navier–Stokes description fails to 3rst order and, especially, to
second order in the force. Thus, the hydrostatic pressure is not uniform, the temperature pro3le
exhibits a non-monotonic behavior, a longitudinal component of the $ux exists in the absence
of longitudinal thermal gradient, and normal stress di5erences are present. On the other hand,
comparison with the Bhatnagar–Gross–Krook model kinetic equation shows that the latter is
able to capture the correct functional dependence of the 3elds, although the numerical values
of the coe9cients are in general between 0.38 and 1.38 times the Boltzmann values. A short
comparison with the results corresponding to the planar Poiseuille $ow is also carried out.
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1. Introduction

The Poiseuille $ow, 3rst studied by Hagen and Poiseuille towards the half of the
19th century, is still one of the classical examples in $uid dynamics [1]. It describes
the steady $ow in a slab or in a pipe under the action of a longitudinal pressure
gradient, what produces a longitudinal macroscopic velocity with a typical parabolic
pro3le in the transverse directions. Essentially the same e5ect is generated when the
longitudinal pressure di5erence is replaced by a uniform external force mg (e.g. gravity)
directed longitudinally. This latter mechanism for driving the Poiseuille $ow does not
produce longitudinal gradients and so is more convenient than the former in computer
simulations as well as from the theoretical point of view, especially to assess the
reliability of the continuum description [2–16]. The 3rst study of the Poiseuille $ow
driven by an external force we are aware of was carried out by Kadano5 et al. [2],
who simulated the $ow with the FHP lattice gas automaton [17] to con3rm the validity
of a hydrodynamic description for lattice gas automata. In the context of a dilute
gas, Esposito et al. [3] studied the Boltzmann equation and found that if the force is
su9ciently weak there is a solution which converges, in the hydrodynamic limit, to the
local equilibrium distribution with parameters given by the stationary solution of the
Navier–Stokes (NS) equations. A generalized Navier–Stokes theory was seen to give
a reasonable account of a $uid composed of molecules with spin when compared with
molecular dynamics simulations [4].
The 3rst kinetic theory analysis of the Poiseuille $ow clearly exhibiting non-

Newtonian behavior was carried out by Alaoui and Santos [5], who found an exact
solution of the Bhatnagar–Gross–Krook (BGK) model kinetic equation for a particular
value of g. The general solution of the BGK model under the form of an expansion in
powers of g through 3fth order was obtained by Tij and Santos [6]. The most inter-
esting outcome of the solution, as 3rst recognized by Malek Mansour et al. [7], was
the presence of a positive quadratic term in the temperature pro3le to second order in
g, in addition to the negative quartic term predicted by the NS description. As a con-
sequence of this new term, the temperature pro3le exhibits a bimodal shape, namely a
local minimum at the middle of the channel surrounded by two symmetric maxima at a
distance of a few mean free paths. In contrast, the continuum hydrodynamic equations
predict a temperature pro3le with a ($at) maximum at the middle. The Fourier law
is dramatically violated since in the slab enclosed by the two maxima the transverse
component of the heat $ux is parallel (rather than anti-parallel) to the thermal gradient.
This phenomenon is not an artifact of the BGK model since the same results, except
for the numerical values of the coe9cients, were derived from an exact solution of
the Boltzmann equation for Maxwell molecules through second order [8], as well as
from approximate solutions of the Boltzmann equation for hard spheres by Grad’s mo-
ment method [9,10]. It is interesting to note that this correction to the NS temperature
pro3le is not captured by the next hydrodynamic description, namely the Burnett equa-
tions [11]. Therefore, in order to describe a non-monotonic temperature 3eld (which
is an O(g2)-order e5ect) from a hydrodynamic description one needs to go at least to
the super-Burnett equations [8]. A systematic asymptotic analysis of the BGK equation
with di5use boundary conditions to second order in the Knudsen number [12] validates
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the results of Ref. [6] as corresponding to the Taylor series expansion of the normal
(or Hilbert) solution around the center of the gap. The theoretical predictions of a
bimodal temperature pro3le have been con3rmed at a qualitative and semi-quantitative
level by numerical Monte Carlo simulations of the Boltzmann equation [7,11] and by
molecular dynamics simulations [9,13]. In the case of a dense gas, even though the
non-monotonic behavior of the temperature pro3le may disappear, the existence of a
quadratic term coexisting with the classical quartic term is supported by molecular
dynamics simulations [14]. It is worth mentioning that when the Poiseuille $ow is
driven by a longitudinal pressure gradient rather than by an external force, the NS de-
scription is in much better agreement with Monte Carlo simulations of the Boltzmann
equation [15].
Practically all the studies about the Poiseuille $ow driven by an external force have

considered the planar geometry [2–15], i.e., the $uid is assumed to be enclosed between
two parallel, in3nite plates orthogonal to the y-direction, the force acting along the
z-direction. In the stationary laminar $ow the physical quantities have a unidirectional
dependence on the y coordinate only. While the planar geometry is the simplest one to
study the Poiseuille $ow, it is much more realistic to consider that the $uid is enclosed
in a cylindrical pipe, the external force being directed along the symmetry axis z. In
that case, the quantities depend on the distance r =

√
x2 + y2 from the axis and the

$uxes have in general both radial and tangential components. Two of us have recently
solved the BGK model for the cylindrical Poiseuille $ow through fourth order in g
[16]. The results showed that the structure of the hydrodynamic and $ux pro3les in
the pipe geometry is similar to that of the slab geometry. In particular, the temperature
exhibits a non-monotonic behavior as one moves apart from the pipe axis. On the
other hand, the results are quantitatively sensitive to the geometry of the problem.
For instance, the normal stress along the gradient direction is uniform in the planar
case (Pyy=const), while it has a non-trivial spatial dependence in the cylindrical case
(Prr �= const). Also, comparison with the BGK solution for the planar geometry [6]
shows that the di5erences between the kinetic theory results and the NS predictions
are in general more pronounced in the planar case than in the cylindrical case.
As is well known, in the BGK model kinetic equation the complicated nonlinear

structure of the Boltzmann collision operator is replaced by a single relaxation-time
term to the local equilibrium distribution [18]. This is usually su9cient to account
for many of the nonequilibrium properties of the underlying Boltzmann equation, at
least at a qualitative level [19]. However, the existence of only one e5ective collision
frequency does not allow the BGK model to describe quantitatively those states where
momentum and heat $uxes coexist and are inextricably intertwined, as happens in the
Poiseuille $ow. This limitation of the BGK model is responsible for an incorrect value
Pr=1 of the Prandtl number [18], in contrast to the Boltzmann value [18,20] Pr � 2

3 .
In the planar Poiseuille $ow, it is possible to assess the validity of the BGK solution
[6] by comparing it with the results derived from the Boltzmann equation for Maxwell
molecules [8] and hard spheres [9,10]. The aim of this paper is to 3ll the gap caused
by the absence of results from the Boltzmann equation for the cylindrical Poiseuille
$ow. We consider a gas of Maxwell molecules and solve the in3nite hierarchy of
moment equations stemming from the Boltzmann equation through third order in the
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external force. The results con3rm the correctness of the functional dependence of the
hydrodynamic and $ux pro3les obtained from the BGK model [16]. On the other hand,
the numerical values of the coe9cients are in general di5erent in both kinetic theories,
as expected. The organization of the paper is the following. Section 2 is devoted to
the description of the $ow under study and its solution in a hydrodynamic description
to NS order. The kinetic theory description is presented in Section 3. In order to solve
the moment hierarchy in a systematic and recursive way, we carry out a perturbation
expansion in powers of the external 3eld in Section 4, the technical details being
relegated to Appendix B. The results are extensively discussed and compared with
those of the NS and BGK descriptions in Section 5. Finally, the main conclusions of
the paper are brie$y presented in Section 6.

2. Navier–Stokes description of the cylindrical Poiseuille �ow

The cylindrical Poiseuille $ow studied in this paper refers to a monatomic dilute
gas enclosed in a long pipe of radius R. Let us take the z-axis as the symmetry axis
of the cylinder. The gas particles are subjected to the action of a constant external
force per unit mass g = gẑ (e.g. gravity) parallel to z. After a certain transient stage,
the system reaches a steady laminar $ow. This nonequilibrium state is characterized
by gradients of the hydrodynamic variables along the directions x and y orthogonal to
the cylinder axis. By symmetry, the hydrodynamic 3elds are expected to depend on
x and y through the distance r =

√
x2 + y2 from the z-axis. In our analysis, we are

interested in the bulk region of the $ow. This means that the radius R of the cylinder
is assumed to be large enough (as compared with the mean free path) to allow for the
existence of such a region.
The steady-state balance equations expressing the conservation of momentum and

energy are

∇ · P = �g ; (1)

∇ · q + P :∇u = 0 ; (2)

where � is the mass density, u= uz ẑ is the $ow velocity, P is the pressure tensor and
q is the heat $ux vector. The geometry of the problem suggests the use of cylindrical
coordinates (see Appendix A). Using Eqs. (A.8)–(A.12), Eqs. (1) and (2) yield

9
9r (rPrr) = P

 ; (3)

1
r
9
9r (rPrz) = �g ; (4)

Przr
9uz
9r +

9
9r (rqr) = 0 : (5)

Eqs. (3)–(5) are exact, but they do not constitute a closed set.
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In the Navier–Stokes (NS) description, the momentum and heat $uxes are assumed
to be linear functions of the hydrodynamic gradients [1,18,20]. In the geometry of the
cylindrical Poiseuille $ow the NS constitutive equations are written as

Prr = P

 = Pzz = p ; (6)

Prz =−� 9uz9r ; (7)

qr =−� 9T9r ; (8)

qz = 0 : (9)

In Eq. (6), p = 1
3 tr P is the hydrostatic pressure. Eq. (7) is Newton’s friction law,

� being the shear viscosity. In addition, Eq. (8) is Fourier’s law, where � is the
thermal conductivity and T is the temperature. The latter is related to the number
density n= �=m (where m is the mass of a particle) and the pressure p by the (local)
equilibrium equation of state. In particular, for a dilute gas, p = nkBT , kB being the
Boltzmann constant. Eq. (6) implies the absence of normal stress di5erences in a
sheared Newtonian $uid, while Eq. (9) means that the heat $ux is parallel to the
thermal gradient in a $uid obeying Fourier’s law. The combination of Eqs. (3)–(8)
gives the following closed set of hydrodynamic equations:

9p
9r = 0 ; (10)

r−1 9
9r

(
r�
9uz
9r

)
=−�g ; (11)

9
9r

(
r�
9T
9r

)
=−�r

(
9uz
9r

)2

: (12)

In principle, the NS hydrodynamic equations (10)–(12) are too complicated to obtain
its explicit solution for arbitrary g. On the other hand, the solution can be found as a
series expansion in powers of g. To third order the result is

p(r) = p0 ; (13)

uz(r) = u0 − �0g4�0
r2

(
1 +

1
144

�20g
2

�0�0T0
r4
)
+ O(g5) ; (14)

T (r) = T0 − 1
64
�20g

2

�0�0
r4 + O(g4) ; (15)

where we have particularized to a dilute gas of Maxwell molecules, in which case
� ˙ T and � ˙ T [18,20]. The subscript 0 in Eqs. (13)–(15) denotes quantities
evaluated at r = 0, i.e., u0 = uz(0), T0 = T (0), �0 = �(T0); : : : : The corresponding
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expressions for the $uxes are

Prz(r) =
�0g
2
r
(
1 +

1
192

�20g
2

�0�0T0
r4
)
+ O(g5) ; (16)

qr(r) =
1
16
�20g

2

�0
r3 + O(g4) ; (17)

complemented with Eqs. (6) and (9). It is interesting to note that the spatial variable r
can be eliminated between Eqs. (14) and (15) to obtain the following nonequilibrium
‘equation of state’:

T = T0 − �0
4�0

(uz − u0)2 + O(g4) : (18)

By equation of state we mean in this context a relationship holding locally among the
hydrodynamic 3elds (p, uz and T ) and that does not contain g explicitly (at least up to
a certain order). Since the pressure is uniform in the NS description, it does not enter
into Eq. (18). Eq. (18) shows that in the Poiseuille $ow the velocity and temperature
pro3les are closely related.
From Eqs. (13)–(15) we can obtain the mass rate of $ow in the NS description. Let

us consider a circular section of radius a centered on the cylinder axis and orthogonal
to it. The mass of $uid $owing across this surface per unit time is de3ned, in the
reference frame moving with the $uid at r = a, as

Ṁ (a) = 2�
∫ a

0
dr r�(r)[uz(r)− uz(a)] : (19)

Using Eqs. (13)–(15) and taking into account that �= mp=kBT , one gets

Ṁ (a) =
��20ga

4

8�0

(
1 +

5
384

�20g
2

�0�0T0
a4
)
+ O(g5) : (20)

Before closing this Section, let us make a few remarks about our use of the term
“Navier–Stokes solution”. By that we mean the solution to the coupled set of hydrody-
namic equations (10)–(12). In $uid mechanics, on the other hand, it is usual to adopt a
more restrictive point of view in which by Navier–Stokes equation one means the mo-
mentum equation with a constant viscosity � and a constant density � (“incompressible
$uid”). In that case, the solution of Eq. (11) would simply be

uz(r) = u0 − �g4� r
2 ; (21)

regardless of the value of g. Accordingly, the mass rate of $ow would be

Ṁ (a) =
��2ga4

8�
: (22)

Eq. (21) gives the typical parabolic velocity pro3le under Poiseuille $ow, while
Eq. (22) is known as Poiseuille’s law [1]. Nevertheless, the shear viscosity � de-
pends in general on the temperature T and so the assumption of a constant viscosity
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implicitly implies a constant temperature. The same conclusion follows from Eq. (13)
and the incompressibility assumption � = const. The energy equation (12), however,
shows that a velocity pro3le is compatible with a constant temperature only if the
thermal conductivity � is allowed to be in3nite. As a matter of fact, Eqs. (14) and
(20) reduce to Eqs. (21) and (22), respectively, if we formally set �0 → ∞. Since
in a dilute gas the relative strength of the thermal conductivity is comparable to that
of the shear viscosity (as measured by the Prandtl number Pr ≡ 5kB�=2m� � 2

3 ), the
energy equation (12) cannot be neglected and hence T �= const.
In summary, in the remainder of this paper we will refer to Eqs. (10)–(12) as

Navier–Stokes equations and will compare their solution for a dilute gas of Maxwell
molecules (Eqs. (13)–(15)), along with the momentum and energy $uxes (Eqs. (6),
(9), (16) and (17)), with the results derived from the Boltzmann equation.

3. Kinetic theory description

In kinetic theory, the relevant information about the nonequilibrium state of a di-
lute gas is contained in the one-body distribution function f(r; v; t) [20]. Its temporal
evolution is governed by the non-linear Boltzmann equation [18,20], which in standard
notation reads

9
9t f + v · ∇f + g · 99v f=

∫
dv1

∫
dT|v − v1|�(|v − v1|; �)[f′f′

1 − ff1]

≡ J [f;f] : (23)

The in$uence of the interaction potential appears through the dependence of the dif-
ferential cross section � on the relative velocity |v− v1| and the scattering angle �. In
particular, for Maxwell molecules �(|v − v1|; �)˙ |v − v1|−1.
The knowledge of f in a dilute gas is su9cient to determine its macroscopic state.

For example, the hydrodynamic variables and their $uxes are just velocity moments of
the distribution function. Thus, the local number density n is de3ned by

n=
∫

dvf : (24)

Analogously, the $ow velocity u and the hydrostatic pressure p are given by the
following expressions:

u =
1
n

∫
dv vf ; (25)

p=
m
3

∫
dvV2f ; (26)

where the peculiar velocity V=v− u has been introduced as the velocity of a particle
relative to the $ow velocity. The momentum and energy $uxes are given by the pressure
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tensor P and the heat $ux vector q, respectively, as follows:

P = m
∫

dv VVf ; (27)

q =
m
2

∫
dv V2Vf : (28)

In the case of the stationary Poiseuille $ow in a pipe, the Boltzmann equation (23)
becomes

vx
9f
9x + vy

9f
9y + g

9f
9vz

= J [f;f] : (29)

This equation is invariant under the transformations

(x; vx) ↔ (−x;−vx); (y; vy) ↔ (−y;−vy); (vz; g) ↔ (−vz;−g) : (30)

Strictly speaking, Eq. (29) must be supplemented by the appropriate boundary con-
ditions at r = R describing the interaction of the particles with the cylinder surface.
However, in this work we are interested in the bulk region of the system (0¡r¡R−!,
where ! is the width of the boundary layer), which is not a5ected by the details of the
boundary conditions. This implies that the radius R of the cylinder must be su9ciently
large, compared to the mean free path of a particle, to allow the existence of such a
region (small Knudsen number). Here we will assume that this is the case and will
look for the Hilbert-class or normal solution to Eq. (29), namely a solution where
all the spatial dependence of the distribution function takes place through a functional
dependence of f on the hydrodynamic 3elds n, u and T .
Since the hydrodynamic variables of the gas and the associated $uxes are the 3rst

few moments of the function f, it is convenient to consider the hierarchy of moment
equations stemming from the Boltzmann equation (29). A moment of an arbitrary
degree k = k1 + k2 + k3 is de3ned as

Mk1 ;k2 ;k3 (x; y) =
∫

dv V k1x V
k2
y V

k3
z f(x; y; v) : (31)

The invariance properties (30) imply the parity relations

Mk1 ;k2 ;k3 (x; y; g) = (−1)k1Mk1 ;k2 ;k3 (−x; y; g)
= (−1)k2Mk1 ;k2 ;k3 (x;−y; g)
= (−1)k3Mk1 ;k2 ;k3 (x; y;−g) : (32)

Although the problem at hand calls for the use of cylindrical coordinates, we will use
Cartesian coordinates to construct the moment hierarchy. The reason is two-fold. First,
the collision integrals are easier to express in Cartesian (or even spherical) coordinates
than in cylindrical coordinates. Second, the use of Cartesian coordinates will serve us
as a test of the calculations since, when obtaining the cylindrical components according
to Eqs. (A.1) and (A.2), the relevant quantities must depend on x and y through the
variable r =

√
x2 + y2.
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The Boltzmann hierarchy of moments is obtained by multiplying both sides of
Eq. (29) by V k1x V

k2
y V

k3
z and then integrating over the velocity space. The resulting

expression is
9
9x Mk1+1;k2 ;k3 +

9
9y Mk1 ;k2+1;k3 + k3

9uz
9x Mk1+1;k2 ;k3−1 + k3

9uz
9y Mk1 ;k2+1;k3−1

− gk3Mk1 ;k2 ;k3−1 = Jk1 ;k2 ;k3 ; (33)

where

Jk1 ;k2 ;k3 =
∫

dv V k1x V
k2
y V

k3
z J [f;f] : (34)

In the sequel, we will use the roman boldface k to denote the triad {k1; k2; k3} and the
italic lightface k to denote the sum k1 + k2 + k3. Thus, Mk ≡ Mk1 ;k2 ;k3 is a moment of
degree k ≡ k1 + k2 + k3.
The collision integral Jk involves in general all the velocity moments of the distri-

bution (including those of a degree higher than k) and its explicit expression in terms
of those moments is unknown. An important exception is provided by the Maxwell
interaction potential ’(r) = K=r4. In that case, the collision rate is independent of the
velocity, i.e., |v − v1|�(|v − v1|; �) = �0(�), and thus Jk can be expressed as a bilinear
combination of moments of degree equal to or smaller than k [21,22]:

Jk =
†∑

k′ ;k′′
Ck

k′ ;k′′Mk′Mk′′ ; (35)

where the dagger denotes the constraint k ′ + k ′′ = k. The coe9cients Ck
k′ ;k′′ are linear

combinations of the eigenvalues [22,23]

&r‘ =
∫

dT �0(�)
[
1 + !r0!‘0 − cos2r+‘

�
2
P‘

(
cos
�
2

)

− sin2r+‘
�
2
P‘

(
sin
�
2

)]
(36)

of the linearized collision operator, where P‘(x) are Legendre polynomials. The thermal
conductivity and shear viscosity for Maxwell molecules (3rst obtained by Maxwell
himself) are [20]

�(T ) =
5kB
2m

p
n&11

; (37)

�(T ) =
p
n&02

; (38)

where &02 = 3
2&11 = 0:436 × 3�

√
2K=m. The eigenvalues &r‘ can also be expressed as

linear combinations of the integrals [21]

A2s =
∫

dT �0(�)sin
2s �
2
cos2s

�
2
: (39)

In particular, &02=3A2, &04=7A2− 35
4 A4 and &06= 27

2 A2− 357
8 A4+

231
8 A6. The 3rst few

ratios A2s=A2 are A4=A2 = 0:15778 : : :, A6=A2 = 0:031196 : : : and A8=A2 = 0:0066540 : : :.
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The general expression (35) for Jk was elaborated by Truesdell and Muncaster [21],
who also give Jk up to k = 5. A simpli3cation algorithm for this formula, along with
explicit expressions of Jk for k = 6–8, has been recently proposed [24].
To simplify the subsequent analysis, it is suitable to use dimensionless quantities.

First, let us de3ne an e<ective collision frequency as

*= n&02 : (40)

Next, without loss of generality, we choose a reference frame stationary with the $ow
at r = 0, i.e., u0 = 0. Now we introduce the dimensionless variables

g∗ = v−1
0 *

−1
0 g; u∗z = v

−1
0 uz; p∗ = p−1

0 p; T ∗ = T−1
0 T ;

M∗
k = n−1

0 v
−k
0 Mk; J ∗k = n−1

0 v
−k
0 *

−1
0 Jk; r∗ = *0v−1

0 r : (41)

In the above expressions, v0 =(kBT0=m)1=2 is the thermal velocity and, as in Eqs. (13)–
(18), the subscript 0 means that the quantities are evaluated at r = 0. The reduced
(gravity) acceleration g∗ has a clear physical meaning. The quantity h0 ≡ v20=g is the
so-called scale height [25], i.e., the characteristic distance associated with the external
(gravity) 3eld. Thus, g∗ = (v0=*0)=h0 represents the ratio between the mean free path
and the distance through which a typical particle undergoes the action of g. While the
parameter g∗ is a measure of the 3eld strength on the scale of the mean free path, the
Froude number

Fr =
v20
gR

=
h0
R

(42)

measures the strength on the scale of the radius of the pipe. The relationship between
both dimensionless parameters is

Fr =
Kn
g∗
; (43)

where Kn ≡ (v0=*0)=R is the Knudsen number.
The solution of the hierarchy of equations (33) is a very di9cult task, even for

Maxwell molecules, due to its nonlinear character and the fact that moments of degree
k are coupled to the 3rst spatial derivatives of moments of degree k + 1. On the
other hand, we will restrict ourselves to cases where the parameter g∗ is weak. This
assumption is well justi3ed in most of the practical situations, where values g∗¿ 10−2

would be abnormally large. For instance, in the case of air at room temperature under
the action of terrestrial gravity, g∗ ∼ 10−12. Consequently, we can solve the hierarchy
(33) by means of a perturbation expansion in powers of g∗, in a similar way as done
in other works [6,8,16]. 1

1 For a similar analysis of the Boltzmann equation but for the Fourier $ow, see Ref. [26].
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4. Expansion in powers of the external force

For the sake of clarity, the asterisks will be dropped in this Section, so all the
quantities will be understood to be expressed in reduced units (cf. Eqs. (41)], unless
stated otherwise.
Before performing the power series expansion of the moments, it is convenient to

take into account the symmetry properties (32). For example, it is obvious that the
pro3les of the temperature and the hydrostatic pressure are even functions of g, while
the $ow velocity uz is an odd function. Therefore, we can write

p= 1 + p(2)g2 + p(4)g4 + · · · ; (44)

T = 1 + T (2)g2 + T (4)g4 + · · · ; (45)

uz = u(1)g+ u(3)g3 + · · · : (46)

The expansion of the number density n=M000 =p=T can be obtained from Eqs. (44)
and (45). These hydrodynamic 3elds are (even) functions of x and y through the
distance r=

√
x2 + y2. As for the moments Mk, they are even (odd) functions of g if

their index k3 is even (odd). Thus,

Mk =M
(0)
k +M (1)

k g+M
(2)
k g

2 +M (3)
k g

3 + · · · ; (47)

where M (s)
k = 0 if s + k3 = odd. The zeroth-order term M (0)

k is the moment of the
equilibrium distribution function normalized to p(0) = 1, T (0) = 1. Its expression is

M (0)
k = Ck1Ck2Ck3 ; (48)

where Ck = (k − 1)!! = (k − 1) × (k − 3) × (k − 5) × · · · × 1 if k = even, being 0 if
k = odd.
In the 3rst stage of the calculations, the expansions (44)–(47) are inserted into

Eq. (33). By equating the terms of degree s in g on both sides, we get

9
9x M

(s)
k1+1;k2 ;k3 +

9
9yM

(s)
k1 ;k2+1;k3 + k3

[(s−1)=2]∑
i=0

[
9u(2i+1)

9x M (s−1−2i)
k1+1;k2 ;k3−1

+
9u(2i+1)

9y M (s−1−2i)
k1 ;k2+1;k3−1

]
− k3M (s−1)

k1 ;k2 ;k3−1 = J
(s)
k ; (49)

where [/] means the integer part of /. According to Eq. (35), the right side of (49) is

J (s)k =
†∑

k′ ;k′′
Ck

k′ ;k′′

s∑
i=0

M (s−i)
k′ M (i)

k′′ : (50)

Eq. (49) is still very di9cult to solve in general. First, it is nonlinear and couples
moments of degree k and lower to moments of degree k + 1. Second, the coe9cients
M (s)

k are unknown functions of the spatial variables x and y. To overcome the latter
obstacle, we assume that a self-consistent solution of Eq. (49) exists in which the
coe9cients in the series de3ned by (44)–(47) are polynomials in x and y. This ansatz
is justi3ed by the results obtained in the case of the planar geometry from the BGK
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model [6] and the Boltzmann equation [8], as well as in the case of the cylindrical
geometry from the BGK model [16]. More speci3cally, we assume that the coe9cients
of the hydrodynamic pro3les are of the form

p(s) =
s−1∑
i=1

p(s)2i r
2i ; (51)

T (s) =
s∑
i=1

T (s)2i r
2i ; (52)

u(s) =
s∑
i=1

u(s)2i r
2i : (53)

The task becomes more di9cult when guessing the spatial dependence of the coef-
3cients M (s)

k . It can be checked that the only representation that leads to consistent
solutions of the hierarchy (49) is of the form

M (s)
k =

�(s)∑
i=0

i∑
j=0

1(s; i−j; j)k xi−jyj ; (54)

where �(s=1)= 1 and �(s) = 2s for s¿ 1. From Eqs. (32) it follows that 1(s; i; j)k1 ;k2 ;k3 = 0
if s + k3 = odd or i + k1 = odd or j + k2 = odd. Insertion of Eq. (54) into Eq. (50)
shows that J (s)k has the same structure as M (s)

k , namely

J (s)k =
�(s)∑
i=0

i∑
j=0

J (s; i−j; j)k xi−jy j : (55)

The numerical coe9cients p(s)2i , T
(s)
2i , u

(s)
2i and 1(s; i; j)k are determined by consistency. To

do so, we insert Eqs. (51)–(54) into Eq. (49) and equate the coe9cients of the terms
xiyj in both sides. This yields a hierarchy of linear equations for the unknowns. In
the hierarchy, the coe9cients of the moments of degree k + 1, k and k − 1 on the
left-hand side are related to those of degree k; k − 1; k − 2; : : : on the right-hand side.
In addition, the coe9cients of the type 1(s; i+1; j)

k1+1;k2 ;k3 and 1(s; i; j+1)
k1 ;k2+1;k3 on the left-hand side

determine those of the type 1(s; i; j)k1 ;k2 ;k3 on the right-hand side. In spite of the intricacy of
the resulting hierarchy, it can be recursively solved by following steps similar to those
made in the case of the planar geometry [8]. To get explicit results to order s = 3 it
is necessary to consider the moment equations up to degree k = 8.
The method is outlined in Appendix B and the main results are presented in the

next section.

5. Discussion

5.1. Hydrodynamic pro?les

By proceeding along the recursive scheme described in Appendix B, we have
obtained the explicit spatial dependence of the coe9cients in the series expansions
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(44)–(46) through order g4 and those of the series expansion (47) for moments of
second (k =2) and third (k =3) degrees through order g3. Here we display the results
to third order. Also, to ease the physical interpretation of the results, they are expressed
in cylindrical coordinates and in real units. The hydrodynamic pro3les are

uz(r) = u0 − �0r
2g

4�0

[
1 +

1
144

�20g
2

�0�0T0
r4 + 2u

(
mg
kBT0

)2

r2 + 2′u
�0�20g

2

p30

]
+ O(g5) ;

(56)

p(r) = p0

[
1 + 2p

(
mg
kBT0

)2

r2
]
+ O(g4) ; (57)

T (r) = T0

[
1− 1

64
�20g

2

�0�0T0
r4 + 2T

(
mg
kB T0

)2

r2
]
+ O(g4) ; (58)

where 2u= 4429
12600 � 0:35, 2′u=24:322 : : :, 2p= 3

10 and 2T = 34
175 � 0:19. We recall that the

subscript 0 in a quantity represents its value on the z-axis, i.e., at r = 0. Elimination
of r among Eqs. (56)–(58) allows one to get the following nonequilibrium equation
of state:

T = T0 − �0
4�0

(uz − u0)2 + 2T2p
T0
p0

(p− p0) + O(g4) : (59)

The non-zero elements of the pressure tensor are

Prr(r) = p0

[
1 +

1
6
2p

(
mg
kBT0

)2

r2 − 2′P
�0�20g

2

p30

]
+ O(g4) ; (60)

P

(r) = p0

[
1 +

1
2
2p

(
mg
kBT0

)2

r2 − 2′P
�0�20g

2

p30

]
+ O(g4) ; (61)

Pzz(r) = p0

[
1 +

7
3
2p

(
mg
kBT0

)2

r2 + 22′P
�0�20g

2

p30

]
+ O(g4) ; (62)

Prz(r) =
�0g
2
r

[
1 +

1
192

�20g
2

�0�0T0
r4 +

2p − 2T
2

(
mg
kBT0

)2

r2
]
+ O(g5) ; (63)

where 2′P = 1:7388 : : :. Finally, the components of the heat $ux are

qr(r) =
1
16
�20g

2

�0
r3 + O(g4) ; (64)

qz(r) =−2
5
�0mg
kB

[
20 − 2q �

2
0g

2

�0�0T0
r4 − 2′q

(
mg
kBT0

)2

r2 − 2′′q
�0�20g

2

p30

]
+ O(g5) ;

(65)

where 20 = 1, 2q = 37
28 � 0:29, 2′q = 3:2527 : : : and 2′′q = 86:415 : : :.



M. Sabbane et al. / Physica A 327 (2003) 264–290 277

Equations (56)–(65) are the main results of this paper. They give the exact pro3les
in the bulk region of the hydrodynamic 3elds and their $uxes for a dilute gas of
Maxwell molecules through third order in the external force. Comparison of Eqs. (6),
(9) and (13)–(18) with Eqs. (56)–(65) show that the NS constitutive equations predict
2u= 2′u= 2p= 2T = 2

′
P= 20 = 2q= 2

′
q= 2

′′
q =0. These vanishing values of the coe9cients

summarize the main limitations of the NS description of the Poiseuille $ow induced
by an external force. Eq. (65) shows that qz �= 0, even to 3rst order in g (20 �=
0), despite the absence of a thermal gradient along the longitudinal direction. This
represents an obvious breakdown of Fourier’s law and is in fact a Burnett-order e5ect
[8]. To second order in g the hydrostatic pressure is not uniform but increases radially
(2p ¿ 0); analogously, there are normal stress di5erences, so that Prr ¡P

¡p¡Pzz.
These are non-Newtonian e5ects.
Also to second order in g, there exists a positive quadratic term (2T ¿ 0) in addition

to the negative quartic term in the temperature pro3le. The former term is responsi-
ble for the fact that the temperature has a local minimum rather than a maximum at
r = 0. The maximum temperature is located at a distance rmax =

√
322T ‘0 � 2:49‘0

(independent of g), where ‘0 ≡ (�0�0T0)1=2=p0 =
√

2
5 Pr(v0=*0) is the (local) mean

free path at r = 0; the relative di5erence between the maximum temperature and the
temperature on the cylinder axis is (Tmax − T0)=T0 = 1622T (‘0=h0)

2 � 0:604(‘0=h0)2,
where we recall that h0 ≡ kBT0=mg. This result represents a dramatic violation of
Fourier’s law: while the heat $ows radially outwards, the temperature increases from
r = 0 to r = rmax. Therefore, within the region 06 r6 rmax, the heat $ows from the
colder to the hotter layers. This paradoxical e5ect, which is beyond the Burnett de-
scription [11], does not violate the conservation of energy (5) since the radial increase
of rqr (which tends to cool the gas) is exactly compensated for by the viscous heat-
ing term rPrz9uz=9r. It is interesting to note that from Eqs. (58) and (64) one can
obtain

− � 9T9r = qr − 1
9
r2max∇2qr + O(g4) ; (66)

where ∇2X = r−19(r9X=9r)=9r is the Laplacian in cylindrical coordinates. Eq. (66) is
an extension of Fourier’s law (8) showing that the sign of the thermal gradient results
from a competition between the radial component of the heat $ux and its Laplacian
[10]. The latter dominates for r ¡ rmax and so 9T=9r ¿ 0 in that region.

Third-order contributions appear in uz and Prz but they do not have a qualitatively
important in$uence. They are responsible for a spatial variation of the $ow velocity
uz and the shear stress Prz more pronounced than expected from the NS equations.
The same happens for the mass rate of $ow de3ned by Eq. (19). Insertion of the
hydrodynamic pro3les (56)–(58) yields

Ṁ (a) =
��20ga

4

8�0

[
1 +

5
384

�20g
2

�0�0T0
a4 +

42u + 2p − 2T
3

(
mg
kBT0

)2

a2 + 2′u
�0�20g

2

p30

]

+O(g5) : (67)
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Comparison with Eq. (20) shows that the mass rate of $ow grows with the radius
a more rapidly than predicted by the NS approximation, but otherwise the qualitative
behavior is similar in both descriptions.

5.2. Generalized constitutive equations

Let us use Eqs. (56)–(65) to rewrite the $uxes under the form of generalized con-
stitutive equations. We begin with the shear stress:

Prz =−� 9uz9r
[
1− 2′u

152T

‘2

T
∇2T − 4

15

(
2′u

152T
+ 82u + 62T − 22p

)

× ‘2

kBT=m

(
9uz
9r

)2
]
+ O(g5) : (68)

Here �˙ T is the local shear viscosity at r, so �−�0 ˙ T −T0 =O(g2). Analogously,
‘=(��T )1=2 =p is the local mean free path and ‘−‘0=O(g2). In Eq. (68) the NS term
is of order g, while the super-Burnett terms (i.e., of third order in the hydrodynamic
gradients) are of order g3. The normal stresses can be written as

Prr = p
[
1 +

102p
3
‘2

T
∇2T −

(
2′P

152p
+

102T
3

)
‘2

p
∇2p

]
+ O(g4) ; (69)

P

 = p
[
1 + 22p

‘2

T
∇2T −

(
2′P

152p
+ 22T

)
‘2

p
∇2p

]
+ O(g4) ; (70)

Pzz = p
[
1− 162p

3
‘2

T
∇2T +

(
22′P
152p

+
162T
3

)
‘2

p
∇2p

]
+ O(g4) : (71)

Thus, in order to obtain the normal stresses to order g2 we need to include at least the
Burnett contributions in the Chapman–Enskog expansion.
The radial component of the heat $ux can be expressed as

qr =−� 99r
(
T + 42T ‘2∇2T

)
+ O(g4) : (72)

In this case, both the NS term and the super-Burnett term are of order g2. As for the
longitudinal heat $ux, one has

qz =
�2

2�
(∇2uz)

(
�4 −

2′u + 2
′′
q

52T
∇2T

)
+

2
5
nkB‘2

9uz
9r

×
(
�5
9T
9r +

�3
3
T
p
9p
9r + 4‘2

9
9r ∇

2T
)
+ O(g5) ; (73)

where �3 =−3, �4 = 320 = 3, �5 = 1
2 (1 + 642q) = 39

4 and

4 =
2′u + 2

′′
q

152T
+ 162u + 22T (7 + 642q) + 42′q − 82p � 64:141 : : : : (74)
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The Burnett term headed by �4 is of 3rst order in g, while the Burnett terms with �3
and �5 are of third order. In addition, there are super-super-Burnett terms that are also
of order g3.
Eqs. (68)–(73) can be written in other equivalent forms by taking into account that

the hydrodynamic gradients are not independent in our problem. For instance,

m
kBT

(
9uz
9r

)2

=
15
4

(
2T
2p

1
p
∇2p− 1

T
∇2T

)
+ O(g4) ; (75)

∇2p=−42p
p
T
‘2∇4T + O(g4) =

16
15
2p
mp
kBT
‘2(∇2uz)2 + O(g4) : (76)

In particular, Eq. (76) implies that the Burnett term ∇2p and the super-super-Burnett
terms ∇4T and (∇2uz)2 are of order g2. Therefore, in order to obtain correctly the
pro3les (56)–(65) from the Chapman–Enskog method one would actually need to go
beyond the apparent orders in the gradients of Eqs. (68)–(73).
The previous analysis shows that the Chapman–Enskog expansion and the expansion

in powers of g in the Poiseuille $ow are quite di5erent, even though the gradients are
induced by the external force. Both expansions require a weak 3eld, namely h0�‘0.
On the other hand, while the Chapman–Enskog expansion requires that ‘20T

−1
0 ∇2T�1,

i.e., r�‘0, the expansion in powers of g remains valid for distances smaller than or of
the order of the mean free path. Since the non-monotonic behavior of the temperature
pro3le occurs for 06 r6 rmax ∼ ‘0, this e5ect is neglected by the NS description.

5.3. Comparison with the BGK solution

Once we have discussed the limits of validity of the NS theory (which otherwise
provides a powerful tool to study the macroscopic state of many nonequilibrium $ows)
in our Poiseuille problem, it is worthwhile wondering whether the BGK model kinetic
equation succeeds in capturing the main qualitative features of the Boltzmann solution.
The solution of the BGK model for the cylindrical Poiseuille $ow was obtained by
Tij and Santos [16] to fourth order in g for a general class of power-law repulsive
potentials. The results agree exactly with the structure of Eqs. (56)–(65). On the other
hand, most of the coe9cients 2’s have di5erent numerical values. The failure of the
BGK model to reproduce the exact Boltzmann values for those coe9cients is not
surprising, given the simplicity of the model, which assumes that the practical e5ect
of collisions is to make the distribution function relax to local equilibrium with a
single characteristic rate *. In fact, it is well known [18] that the BGK model yields a
value (Pr = 1) for the Prandtl number Pr ≡ 5kB�=2m� di5erent from the correct one
(Pr = 2

3). Table 1 compares the numerical values of the coe9cients 2’s given by the
Boltzmann equation for Maxwell molecules (BM) with those obtained from the BGK
model. Except for 2p and 20, the coe9cients are di5erent in both theories, the ratio
being bounded between 0:38 and 1:38. For instance, the location rmax of the maximum
temperature is in the BGK model 15% smaller than in the Boltzmann equation and
the temperature di5erence Tmax − T0 in the BGK model is almost half the Boltzmann
value. A comparison of the coe9cients appearing in the hydrodynamic 3elds to fourth
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Table 1
Numerical values of the coe9cients appearing in Eqs. (56)–(65), as obtained from the Boltzmann equation
for Maxwell molecules (BM) and from the BGK model for Maxwell molecules. The ratio between the BM
and BGK values are displayed in the third column

2 BM BGK BM/BGK

2u 4429
12600

89
200 0:79

2′u 24:322 64 0:38
2p 3

10
3
10 1

2T 34
175

7
50 1:38

2′P 1:7388 92
25 0:47

20 1 1 1
2q 37

128
15
64 1:23

2′q 3:2527 209
50 0:78

2′′q 86:415 5432
25 0:39
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0

Fig. 1. Pro3le of the $ow velocity uz(r) for g=0:1v20=‘0, as obtained from the Navier–Stokes (NS) equations
(dotted line), the Boltzmann equation for Maxwell molecules (BM) (solid line) and the BGK model (dashed
line).

order in g (not shown in Eqs. (57) and (58), but given in Appendix B) shows that the
discrepancies between the BGK and Boltzmann equations increase with the power of g.
In particular, the series obtained from the BGK model seem to diverge more quickly
than those obtained from the Boltzmann equation.
In order to illustrate graphically the di5erences between the NS, BGK and BM

descriptions, we plot in Figs. 1–6 the hydrodynamic and $ux pro3les for the case
g = 0:1v20=‘0 (which corresponds to h0=‘0 = 10), when only terms through third or-
der in g are retained. Of course, higher order terms are not expected to be negligible
for that particular high value of the external 3eld, 2 especially as one departs from

2 Consider for instance a highly rare3ed gas of argon atoms (m = 6:63 × 10−26 kg) treated as hard
spheres of diameter 3:5 WA. At a number density n0 = 10−20 m−3 the mean free path is ‘0 = 0:028 m. If the
temperature is T0 = 300 K, then the value g = 0:1v20=‘0 is equivalent to g = 2:24× 105 m=s2.
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Fig. 2. Same as in Fig. 1, but for the hydrostatic pressure p(r). Note that the BM and BGK curves coincide.

0 1 2 3 4 5
0.90

0.92

0.94

0.96

0.98

1.00

T/
T 0

r/l
0

Fig. 3. Same as in Fig. 1, but for the temperature T (r).
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Fig. 4. Same as in Fig. 1, but for the shear stress Prz(r). The NS and BGK curves are slightly below and
above, respectively, the BM curve.
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Fig. 5. Same as in Fig. 1, but for the normal stresses Prr(r), P

(r) and Pzz(r). Note that in the NS
approximation Prr = P

 = Pzz = p.
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Fig. 6. Same as in Fig. 1, but for the components of the heat $ux. Note that the NS, BM and BGK curves
coincide for the radial component qr(r).

the axis, as discussed in Section 5.5. However, the retained terms are su9cient to
show the qualitative di5erences in the predictions of the three approaches, so that
the main aim of Figs. 1–6 is to highlight those di5erences. It must be born in mind
that the BGK curves in Figs. 1–6 correspond to Eqs. (56)–(65) with the BGK val-
ues for the coe9cients 2’s (cf. Table 1) but with the correct value Pr = 2

3 of the
Prandtl number. As expected, the BGK model is in qualitative agreement with the BM
results.

5.4. Comparison with the planar Poiseuille Aow

Let us now add a few comments on the similarities between the cylindrical and
the planar Poiseuille $ows. The solution of the Boltzmann equation for Maxwell
molecules to order g2 in the planar geometry [8] yields pro3les analogous to those of
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Eqs. (56)–(65). In particular, the temperature pro3le is

T (y) = T0

[
1− 1

12
�20g

2

�0�0T0
y4 + 2T

(
mg
kBT0

)2

y2
]
+ O(g4) ; (77)

where now 2T = 1:0153. As a consequence, the temperature has a maximum with
(Tmax−T0)=T0=322T (‘0=h0)

2 � 3:09(‘0=h0)2 at |y|=ymax=
√
62T ‘0 � 2:47‘0. Therefore,

the maximum temperature occurs at a separation ymax from the middle plane practically
equal to the radial distance rmax of the cylindrical case, but the relative temperature
change (Tmax−T0)=T0 is about 3ve times larger in the former case than in the latter. In-
terestingly, this e5ect is accurately captured by the BGK model [16], as explained by
the fact that in the planar Poiseuille $ow one has [6,8] 2BMp =2

BGK
p = 1, 2BMT =2

BGK
T =

1:0153=(19=25) � 1:34, 2′BMP =2
′BGK
P = 6:2602=(306=25) � 0:51, 2BM0 =2

BBGK
0 = 1, in

close agreement with the corresponding ratios in the cylindrical Poiseuille $ow (see
Table 1).

5.5. Boundary conditions

When solving the Boltzmann hierarchy of moments (cf. Eq. (33)) by a perturbation
expansion in powers of gravity we have taken the hydrodynamic quantities at the
axis (r = 0) as reference values. In so doing, we have avoided the need of imposing
speci3c boundary conditions. The price to be paid is that it is di9cult to determine
how far from the axis the pro3les (56)–(65) remain valid. Consider for instance the
temperature pro3le (58). The 3rst neglected term O(g4) is a polynomial in r of degree
8 (cf. Eq. (B.19)]. This term can actually be neglected versus the retained terms only
if g∗4(r=‘0)8�g∗2(r=‘0)4, i.e., if

g∗(r=‘0)2�1 : (78)

The same conclusion is obtained from the velocity pro3le (56) and the pressure pro3le
(57). If r ∼ ‘0, condition (78) is equivalent to g∗�1. On the other hand, a much
stronger condition g∗�Kn2 is needed to extend the pro3les (56)–(65) to distances
r comparable with the pipe radius R. In order to 3nd the hydrodynamic 3elds for
r ∼ R when condition (78) does not hold, one would need to solve the full Boltzmann
equation with the appropriate (e.g. di5use re$ection) boundary conditions at r = R
corresponding to a given wall temperature Tw. This has been done by Aoki et al.
[12] in the case of the BGK equation for the planar geometry. They derived the
hydrodynamic equations and the matching conditions corresponding to the normal (or
Hilbert) solution by an asymptotic expansion in powers of the Knudsen number Kn and
for values of the Froude number of order Fr ∼ 1=Kn. In view of Eq. (43), this implies
that g∗ ∼ Kn2. The successive hydrodynamic equations had to be solved numerically,
but Aoki et al. veri3ed that a Taylor series expansion around the center of the gap
agreed with the perturbation solution found in Ref. [6].
An asymptotic method analogous to that worked out by Aoki et al. [12] would

be much more di9cult to carry out in the case of the Boltzmann equation for the
cylindrical geometry. Nevertheless, it is natural to expect that the results derived in
this paper would be recovered by performing a Taylor series expansion around r = 0
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of the solution for g∗ ∼ Kn2. This in addition would provide the matching conditions
for the pro3les (56)–(58) in the region r=‘0 ∼ g∗−1=2 ∼ Kn−1.

6. Conclusion

In this work, we have studied the (laminar) stationary Poiseuille $ow in a cylindrical
pipe induced by an external force mg. We have considered a dilute gas of Maxwell
molecules and have analyzed the hierarchy of moment equations associated with the
nonlinear Boltzmann equation. A consistent solution has been found under the form of
a perturbation expansion in powers of g through third order. In principle, the method
can be pushed to higher orders but, not only the algebraic intricacy of the solution
scheme grows rapidly, but the results would not be of practical use given the suspected
asymptotic character of the series. The discussion of the results has focused on the most
relevant physical quantities, namely the hydrodynamic pro3les ($ow velocity, pressure
and temperature) and the associated $uxes (pressure tensor and heat $ux). The results
obtained here show once again that the Navier–Stokes (NS) theory remains unable to
envisage the correct hydrodynamic pro3les, even at a qualitative level, for distances
smaller than or of the order of the mean free path. The most important limitation
of the NS description is that it predicts a monotonically decreasing temperature as
one moves apart from the cylinder axis. In contrast, our solution to the Boltzmann
equation shows that the temperature has a local minimum (T = T0) at the axis (r=0)
and reaches a maximum value T = Tmax � T0[1 + 0:6(‘0=h0)2] at a distance from
the center r = rmax � 2:5‘0 of the order of the mean free path ‘0. In addition, a
longitudinal component of the heat $ux exists (qz �= 0) in the absence of gradients
along the longitudinal direction and normal stress di5erences (Prr ¡P

¡p¡Pzz)
are present. On the other hand, the BGK model provides results qualitatively similar
to those found in this paper [16]. Notwithstanding this, the pro3les predicted by the
BGK model require some corrections from a quantitative point of view, as expected. In
particular, the BGK model underestimates the maximum value Tmax of the temperature,
as well as its location rmax. From that point of view, one might say that the BGK model
deviates from the NS predictions less than the Boltzmann equation, at least for Maxwell
molecules. The same conclusion arises from a comparison between the Boltzmann and
BGK results for the planar Poiseuille $ow [6,8]. Nevertheless, it is worth noting that the
BGK model is accurate in describing the e5ect of the geometry of the Poiseuille $ow
on the pro3les. For instance, it correctly predicts that in the planar case the maximum
temperature is located at a separation ymax from the middle plane practically equal to
the radial distance rmax of the cylindrical case, although the relative temperature change
(Tmax − T0)=T0 is about 3ve times larger in the former case than in the latter.
Although we have not considered interactions di5erent from Maxwell’s, we expect

the results found here to remain essentially valid, except that the numerical values of
the coe9cients may change. This expectation is supported by the results obtained with
the BGK kinetic model [16]. In that case one 3nds that the coe9cients 2p, 2T , 2′P and
20 are universal, while the coe9cients 2u, 2′u, 2q, 2

′
q and 2

′′
q change by 5%, 0.5%, 3%,

0.7% and 0.8%, respectively, when going from Maxwell molecules to hard spheres.
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Let us conclude by asserting that the stationary Poiseuille $ow driven by an external
force, both in a slab and in a pipe, is a good and conceptually simple example in $uid
dynamics showing the limitations of a purely continuum theory in contrast to a kinetic
theory approach. Next, we want to emphasize the important role played by the BGK
model kinetic equation to pave the way towards a more fundamental theory based on
the Boltzmann equation.
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Appendix A. Cylindrical coordinates

The relationships between the cylindrical and Cartesian components of a vector A
and a tensor B are


Ar

A


Az


= U ·



Ax

Ay

Az


 ; (A.1)



Brr Br
 Brz

B
r B

 B
z

Bzr Bz
 Bzz


= U ·



Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz


 · U† ; (A.2)

where

U =



x=r y=r 0

−y=r x=r 0

0 0 1


 (A.3)

is a unitary matrix and U† is its transpose.
In general, the divergence of a vector A in cylindrical coordinates is [27]

∇ · A =
1
r
9
9r (rAr) +

1
r
9
9
 A
 +

9
9z Az : (A.4)

The cylindrical components of the divergence of a tensor B are [27]

(∇ · B)r = 1
r
9
9r (rBrr) +

1
r
9
9
 B
r +

9
9z Bzr −

1
r
B

 ; (A.5)
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(∇ · B)
 = 1
r
9
9r (rBr
) +

1
r
9
9
 B

 +

9
9z Bz
 +

1
r
B
r ; (A.6)

(∇ · B)z = 1
r
9
9r (rBrz) +

1
r
9
9
 B
z +

9
9z Bzz : (A.7)

In the Poiseuille problem the cylindrical components of the $ow velocity u, the heat
$ux q and the pressure tensor P depend on the radial variable r only. Consequently,

∇ · q =
1
r
9
9r (rqr) ; (A.8)

(∇ · P)r = 1
r
9
9r (rPrr)−

1
r
P

 ; (A.9)

(∇ · P)
 = 0 ; (A.10)

(∇ · P)z = 1
r
9
9r (rPrz) ; (A.11)

P :∇u = Prz
9uz
9r : (A.12)

In Eq. (A.10) we have taken into account that, by symmetry, Pr
 = P
r = 0.

Appendix B. Solution of the hierarchy of moment equations

In this Appendix we outline the steps needed to solve the hierarchy (49) with the
pro3les (51)–(54). To do so, we proceed sequentially from a given order s to the next
order s+ 1. It is also necessary to use the consistency relation

p=
1
3
(M2;0;0 +M0;2;0 +M0;0;2) (B.1)

to any order in g. Let us start from the 3rst-order equations.

B.1. First order in g (s= 1)

Setting s= 1, Eq. (49) becomes

9
9x M

(1)
k1+1;k2 ;k3 +

9
9y M

(1)
k1 ;k2+1;k3 + k3

9u(1)
9x M

(0)
k1+1;k2 ;k3−1

+ k3
9u(1)
9y M

(0)
k1 ;k2+1;k3−1 − k3M (0)

k1 ;k2 ;k3−1 = J
(1)
k : (B.2)

Next, inserting (53) and (54) into (B.2), we obtain

1(1;1;0)k1+1;k2 ;k3 + 1
(1;0;1)
k1 ;k2+1;k3 + 2k3M

(0)
k1+1;k2 ;k3−1u

(1)
2 x + 2k3M

(0)
k1 ;k2+1;k3−1u

(1)
2 y

− k3M (0)
k1 ;k2 ;k3−1 = J

(1;0;0)
k + J (1;1;0)k x + J (1;0;1)k y ; (B.3)
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where J (s; i; j)k is de3ned by Eq. (55). Equating the coe9cients of the same degree in x
and y, Eq. (B.3) decouples into the following set of equations:

2k3M
(0)
k1+1;k2 ;k3−1u

(1)
2 = J (1;1;0)k1 ;k2 ;k3 ; (B.4)

2k3M
(0)
k1 ;k2+1;k3−1u

(1)
2 = J (1;0;1)k1 ;k2 ;k3 ; (B.5)

1(1;1;0)k1+1;k2 ;k3 + 1
(1;0;1)
k1 ;k2+1;k3 − k3M

(0)
k1 ;k2 ;k3−1 = J

(1;0;0)
k1 ;k2 ;k3 : (B.6)

Let us start with the moments of small degree (k = 2). For example, by taking
{k1; k2; k3}= {1; 0; 1} in (B.4) and {k1; k2; k3}= {0; 1; 1} in (B.5), we obtain

2u(1)2 =−1(1;1;0)1;0;1 ; (B.7)

2u(1)2 =−1(1;0;1)0;1;1 : (B.8)

Now we insert the above equations into Eq. (B.6) with {k1; k2; k3} = {0; 0; 1}. This
allows us to obtain the coe9cient of the $ow velocity pro3le to 3rst order in g:

u(1)2 =−1
4
: (B.9)

The process of solution continues in the same manner for the coe9cients of moments
of degree k ¿ 2. We use the relations (B.4) and (B.5) in a 3rst stage to determine the
coe9cients 1(1;1;0)k and 1(1;0;1)k with k =4. In the second stage, the obtained results are
inserted into (B.6) to evaluate the coe9cients of degree k = 3. The same steps can
continue in3nitely by following the routes k =6 → k =5; k =8 → k =7; : : : . It is not
necessary to evaluate all the coe9cients, but some of them are essential to the solution
of the problem to the next order in g.

B.2. Second order in g (s= 2)

As done in the 3rst-order evaluation, let us take s = 2 in Eq. (49) and insert
Eqs. (51)–(54). We then obtain an equation more complicated than that of the 3rst
order. Of course, the symmetry property 1(s; i; j)k = 0 if i + k1 = odd or j + k2 = odd
must be applied. By equating the coe9cients of the same degree in x and y we get
the following set of algebraic equations:

(a) i + j = 4

0 = J (2; i; j)k ; (B.10)

(b) i + j = 3

(i + 1)1(2; i+1; j)
k1+1;k2 ;k3 + (j + 1)1(2; i; j+1)

k1 ;k2+1;k3 = J
(2; i; j)
k ; (B.11)

(c) i + j = 2

(i + 1)1(2; i+1; j)
k1+1;k2 ;k3 + (j + 1)1(2; i; j+1)

k1 ;k2+1;k3 + 2k3u
(1)
2

[
1(1; i−1; j)
k1+1;k2 ;k3−1

+ 1(1; i; j−1)
k1 ;k2+1;k3−1

]
= J (2; i; j)k ; (B.12)
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(d) i + j = 1

(i + 1)1(2; i+1; j)
k1+1;k2 ;k3 + (j + 1)1(2; i; j+1)

k1 ;k2+1;k3 + 2k3u
(1)
2

[
1(1; i−1; j)
k1+1;k2 ;k3−1

+ 1(1; i; j−1)
k1 ;k2+1;k3−1

]
− k31(1; i; j)k1 ;k2 ;k3−1 = J

(2; i; j)
k ; (B.13)

(e) i + j = 0

1(2;1;0)k1+1;k2 ;k3 + 1
(2;0;1)
k1 ;k2+1;k3 − k31

(1;0;0)
k1 ;k2 ;k3−1 = J

(2;0;0)
k : (B.14)

In the above equations the convention 1(2; i; j)k =0 if i¡ 0 or j¡ 0 is implicitly under-
stood.
According to the system (B.11)–(B.14), the coe9cients of degree k+1 with i+ j=

/+ 1 determine those of degree k with i+ j= /. For instance, Eq. (B.10) allows one
to determine the coe9cients with k =4 and i+ j=4. The results obtained are inserted
into (B.11) to determine the coe9cients of degree k =3 and i+ j=3. Then we go to
Eq. (B.12) in order to determine those of degree k = 2 and i + j = 2. In general, the
process of solution is done according to the following scheme:

{1(2; i+j=4)
k } → {1(2; i+j=3)

k−1 } → {1(2; i+j=2)
k−2 } → {1(2; i+j=1)

k−3 } → {1(2; i+j=0)
k−4 } ;

(B.15)

where {1(2; /)k } denotes the set of coe9cients of the same degree, namely {1(2; /)k } ≡
{1(2; i; j)k ; k1 + k2 + k3 = k; i+ j= /}. The expression of J (2; i; j)k is a linear combination
of the coe9cients 1(2; i; j)k , T (2)4 , T (2)2 and p(2)2 . Once a row k of the chain (B.15) is
solved, it is necessary to go to the following row k + 2. This process continues until
all the coe9cients of the required pro3les are completely determined. The results for
the pressure and temperature are

p(2) =
3
10
r2; T (2) =

34
175
r2 − 1

240
r4 : (B.16)

B.3. Third and fourth orders in g (s= 3; 4)

The process to third order in g is practically the same as the previous one. Since
the pressure and the temperature are even functions of g, only the coe9cients of uz
appear at this level. The result is

u(3) = u(3)2 r
2 − 4 429

50 400
r4 − 1

2 160
r6 ; (B.17)

where the coe9cient u(3)2 =−6:0806 : : : is related to the ratio A4=A2.
The calculation algorithm is essentially the same for the higher orders in g. How-

ever, the equations become more and more cumbersome and their solution requires a
considerable computational e5ort. Here we give the 3nal results for the pressure and
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the temperature to fourth order:

p(4) = p(4)2 r
2 + p(4)4 r

4 +
7

7 200
r6 ; (B.18)

T (4) = T (4)2 r
2 + T (4)4 r

4 − 30 931
13 608 000

r6 − 23
691 200

r8 ; (B.19)

where p(4)2 =−24:160 : : :,p(4)4 =−0:062666 : : :, T (4)2 =−59:511 : : : and T (4)4 =−0:52856 : : : .
The high values of |p(4)2 | and |T (4)2 | suggest that the series (44)–(47) are only asymp-
totic, in agreement with the situation in the case of the BGK model [8].
Along with the hydrodynamic 3elds, we have obtained all the moments of degrees
k = 3 and k = 4 to third order in g. This allows us to get the pressure tensor and the
heat $ux. Their expressions in cylindrical coordinates are given in Section 5.
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