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Abstract

Motivated by the disagreement found at high dissipation between simulation data for the heat flux transport coefficients

and the expressions derived from the Boltzmann equation by the standard first Sonine approximation [J.J. Brey, M.J.

Ruiz-Montero, Phys. Rev. E 70 (2004) 051301, J.J. Brey, M.J. Ruiz-Montero, P. Maynar, M.I. Garcı́a de Soria, J. Phys.

Condens. Matter 17 (2005) S2489], we implement in this paper a modified version of the first Sonine approximation in

which the Maxwell–Boltzmann weight function is replaced by the homogeneous cooling state (HCS) distribution. The

structure of the transport coefficients is common in both approximations, the distinction appearing in the coefficient of the

fourth cumulant a2. Comparison with computer simulations shows that the modified approximation significantly improves

the estimates for the heat flux transport coefficients at strong dissipation. In addition, the slight discrepancies between

simulation and the standard first Sonine estimates for the shear viscosity and the self-diffusion coefficient are also partially

corrected by the modified approximation. Finally, the extension of the modified first Sonine approximation to the

transport coefficients of the Enskog kinetic theory is presented.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The usefulness of kinetic theory tools to describe the dynamical properties of granular fluids has been widely
recognized [1,2]. The primary difference from normal fluids lies in the inelastic character of collisions, what
introduces features not present in ordinary matter, such as the absence of equilibrium states, the spontaneous
formation of clusters, and the development of high-energy tails, among others. The prototype model of a
granular gas is a system composed by a large number of smooth hard spheres colliding inelastically with a
constant coefficient of normal restitution 0oap1. In the dilute limit, the Boltzmann kinetic equation, suitably
modified to incorporate inelasticity, provides a convenient framework to investigate some of the most relevant
properties of granular gases.
e front matter r 2006 Elsevier B.V. All rights reserved.
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One of the main applications of the inelastic Boltzmann equation is the derivation of the constitutive
equations for the stress tensor and the heat flux in a hydrodynamic description. These constitutive equations
define the relevant Navier–Stokes (NS) transport coefficients and are determined by means of the
Chapman–Enskog (CE) method to solve the Boltzmann equation for sufficiently long space and time scales.
While in the elastic case the velocity distribution function f is expanded about the local equilibrium
distribution function f M, the reference state for granular gases is the local version f ð0Þ of the so-called
homogeneous cooling state (HCS). The first-order stage of the CE expansion allows one to express the
transport coefficients in terms of the solutions of linear integral equations [3–7]. In these equations the
distribution f ð0Þ appears explicitly in the inhomogeneous terms and implicitly through the linearized
Boltzmann collision operator. As happens in the elastic case, the solutions of the integral equations are not
known exactly, so that approximations must be introduced in order to get the transport coefficients as explicit
nonlinear functions of a. The standard method consists of approximating the solutions by the
Maxwell–Boltzmann distribution f M times truncated Sonine polynomial expansions. The simplest possibility
is the first Sonine approximation, where only the lowest Sonine polynomial is retained. The resulting
expressions for the effective collision frequencies associated with the transport coefficients have an explicit
dependence on a (due to the collision rules) as well as an implicit one through a linear dependence on the
fourth cumulant a2 of f ð0Þ.

The reliability of the standard first Sonine approximation has been tested in the last few years [8–17] by
comparison with computer simulations of the Boltzmann equation by means of the direct simulation Monte
Carlo (DSMC) method [18]. The comparisons show that the shear viscosity Z and the self-diffusion coefficient
D are accurately estimated by the first Sonine approximation, even for strong dissipation. The two transport
coefficients k and m characterizing the heat flux are well described by the first Sonine approximation for
moderate and small inelasticity (say a\0:7). However, recent studies [14,15] show that the first Sonine
approximation dramatically overestimates k and m for high dissipation ðat0:7Þ.

Although the range a\0:7 encompasses the region of practical and experimental interest, especially if one
considers the inherent coupling between gradients and dissipation in steady states [19,20], it is important from
a fundamental point of view to understand the origin of those discrepancies for k and m and propose
alternative approximations. Since in the simulations carried out in Refs. [14,15] the transport coefficients were
obtained from two-time correlation functions by means of Green–Kubo (GK) relations, the discrepancies
might be due to velocity correlation effects outside the domain of the Boltzmann equation. However, as
discussed in Ref. [17], the disagreement seems to be directly related to the failure of the Sonine expansion
truncated after the first term to capture the velocity dependence of the NS distribution function. One
possibility of improving the approximation could be to consider higher order terms in the Sonine expansion
[13]. However, the involved algebra would be rather intricate and it is not obvious that the improvement
would be significant.

The aim of this paper is to implement an alternative route to the standard first Sonine approximation. The
idea is based on the assumption that the isotropic part of the NS velocity distribution f ð1Þ is mainly governed
by the HCS distribution f ð0Þ rather than by the Maxwellian distribution f M [7]. More specifically, our modified
first Sonine approximation has the same form as the standard one, except that the weight function f M is
replaced by f ð0Þ. As a consequence, the effective collision frequencies derived from the modified approximation
have the same structure as those derived from the standard one, except that the respective coefficients of a2

differ markedly in both approximations. Since the high-velocity population in f ð0Þ is larger than in f M, it is
reasonably expected that the former captures better the influence of the high-velocity tail of f ð1Þ on the NS
transport coefficients, especially those related to the heat flux. In fact, the results show that, in the region
at0:7, the modified values for the collision frequencies are larger than their standard counterparts, so that the
corresponding transport coefficients are smaller in the modified first Sonine approximation than in the
standard one. As will be shown later, the modified estimates for the transport coefficients k and m compare
quite well with available computer simulations, even for extreme dissipation, in contrast to what happens with
the standard estimates. For the remaining transport coefficients Z and D, which are already well described by
the standard approximation, the modified approximation provides even better values.

The plan of the paper is as follows. The expressions of the NS transport coefficients obtained by the
application of the standard first Sonine approximation are recalled in Section 2. Our modified first Sonine
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approximation is described and discussed in Section 3. Next, the two Sonine approximations are compared in
Section 4 with available and new simulation data for the transport coefficients k, m, Z, and D, both for two-
and three-dimensional systems. The extension to the transport coefficients provided by the Enskog theory is
presented in Appendix B. The paper is closed with some concluding remarks in Section 5.

2. Standard first Sonine approximation

We consider a granular gas of smooth, inelastic hard spheres (in d dimensions) of mass m, diameter s, and
coefficient of restitution a. In the low-density regime, the one-particle velocity distribution function f ðr; v; tÞ
obeys the (inelastic) Boltzmann equation [21,22]. Under the conditions of weak hydrodynamic gradients, the
CE method [23] provides a solution of the Boltzmann equation based on an expansion f ¼ f ð0Þ þ f ð1Þ þ � � �,
where f ð0Þ is the local version of the HCS [21,24]. The first-order distribution f ð1Þ has the form [3,5]

f ð1ÞðVÞ ¼AðVÞ � r lnT þBðVÞ � r ln nþ CijðVÞriuj , (2.1)

where n, T, and u are the number density, granular temperature, and flow velocity, respectively, and V ¼ v� u

is the peculiar velocity. The functions AðVÞ, BðVÞ, and CijðVÞ are the solutions of a set of linear integral
equations. While AðVÞ and CijðVÞ obey autonomous equations, the equation for BðVÞ requires the knowledge
of AðVÞ. However, the combination A0ðVÞ ¼AðVÞ � 1

2
BðVÞ satisfies a closed equation [17]. From the

solutions to those linear integral equations, the shear viscosity Z (associated with the pressure tensor), the
thermal conductivity k, and a new transport coefficient m (the two latter associated with the heat flux) are
formally given by [3,5,17]

Z ¼ Z0
1

n�Z �
1
2
z�

, (2.2)

k ¼ k0
d � 1

d

1þ 2a2

n�k � 2z�
, (2.3)

m ¼
2T

n
ðk� k0Þ; k0 ¼ k0

d � 1

d

1þ 3
2
a2

n�k0 �
3
2
z�

, (2.4)

where, Z0 and k0 are the elastic values (in the first Sonine approximation) of the shear viscosity and thermal
conductivity [23], respectively (cf. Eq. (B.10)). In addition, z� ¼ zð0Þ=n0 is the reduced cooling rate of the HCS,
where n0 ¼ nT=Z0 is an effective collision frequency (cf. Eq. (B.12)), and a2 is the fourth velocity cumulant of
f ð0Þ. Furthermore, in Eqs. (2.2)–(2.4) the (reduced) effective collision frequencies are

n�Z ¼

R
dvDijðVÞLCijðVÞ

n0
R
dvDijðVÞCijðVÞ

, (2.5)

n�k ¼

R
dvSðVÞ �LAðVÞ

n0
R
dvSðVÞ �AðVÞ

; n�k0 ¼

R
dvSðVÞ �LA0ðVÞ

n0
R
dvSðVÞ �A0ðVÞ

, (2.6)

where L is the linearized Boltzmann collision operator and we have introduced the polynomials

DijðVÞ ¼ m V iV j �
1

d
V2dij

� �
, (2.7)

SðVÞ ¼
m

2
V 2 �

d þ 2

2
T

� �
V. (2.8)

Another relevant transport coefficient for a single gas is the self-diffusion coefficient D, which measures the
diffusion of tagged particles in a fluid of mechanically equivalent particles in the HCS. Application of the CE
method leads to f ð0Þs ¼ ðns=nÞf ð0Þ and

f ð1Þs ðVÞ ¼ DðVÞ � rns, (2.9)
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where ns and f s are the number density and velocity distribution function of the tagged particles, respectively.
As before, the function DðVÞ is the solution of a linear integral equation. The CE expression for the self-
diffusion coefficient D is [9,13]

D ¼ D0
d þ 2

2d

1

n�D �
1
2
z�

, (2.10)

where D0 is the elastic value of the self-diffusion coefficient (in the first Sonine approximation) (cf. Eq. (B.11))
and

n�D ¼

R
dvV �LsDðVÞ

n0
R
dvV �DðVÞ

(2.11)

is the (reduced) collision frequency associated with the self-diffusion coefficient, Ls being the
Boltzmann–Lorentz operator.

So far, the expressions for the NS transport coefficients are formally exact, but their a-dependence through
the quantities z�, a2, n�Z, n

�
k, n
�
k0 , and n�D is not explicitly known. The two first quantities (z� and a2) depend on

the HCS distribution and are very accurately estimated by [24–26]

z� ¼
d þ 2

4d
ð1� a2Þ 1þ

3

16
a2

� �
, (2.12)

a2 ¼
16ð1� aÞð1� 2a2Þ

25þ 24d � að57� 8dÞ � 2ð1� aÞa2
. (2.13)

However, the determination of the collision frequencies n�k, n
�
k0 , n

�
Z, and n�D is much more complicated since it

requires the knowledge of AðVÞ, A0ðVÞ, CijðVÞ, and DðVÞ, respectively. These functions are the solutions of

linear integral equations in which the HCS distribution f ð0Þ appears explicitly in the inhomogeneous terms and
also implicitly through the linearized Boltzmann operator. From that point of view, those collision frequencies

are functionals of f ð0Þ. In order to get explicit expressions for the dependence of the transport coefficients on a
one has to resort to some approximations. As in the elastic case, the simplest approximation consists of

truncating the Sonine polynomial expansions of AðVÞ, A0ðVÞ, CijðVÞ, and DðVÞ after the first term. More

explicitly, the first Sonine approximation is

AðVÞ

A0ðVÞ

CijðVÞ

DðVÞ

0
BBBB@

1
CCCCA! f MðVÞ

ckSðVÞ

ck0SðVÞ

cZDijðVÞ

cDV

0
BBB@

1
CCCA, (2.14)

where the Maxwellian

f MðVÞ ¼ n
m

2pT

� �d=2
e�mV2=2T (2.15)

is the weight factor in the scalar product with respect to which the orthogonal polynomials are defined. The
coefficients ck, ck0 , cZ, and cD are directly related to the transport coefficients by

k ¼ �
d þ 2

2

nT2

m
ck, (2.16)

k0 ¼ �
d þ 2

2

nT2

m
ck0 , (2.17)

Z ¼ �nT2cZ, (2.18)
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D ¼ �
nT

m
cD. (2.19)

Note that the approximations (2.14) imply that A0ðVÞ /AðVÞ, what leads to n�k0 ¼ n�k.
Inserting the approximations (2.14) into Eqs. (2.5), (2.6), and (2.11), and taking the Sonine approximation

for f ð0Þ, one can evaluate explicitly the (reduced) collision frequencies (2.5), (2.6), and (2.11). The results are
[3,5,9]

n�k ¼ n�k0 ¼
1þ a

d

d � 1

2
þ

3

16
ðd þ 8Þð1� aÞ þ

4þ 5d � 3ð4� dÞa
512

a2

� �
, (2.20)

n�Z ¼
3

4d
1� aþ

2

3
d

� �
ð1þ aÞ 1�

1

32
a2

� �
, (2.21)

n�D ¼
d þ 2

4d
ð1þ aÞ 1�

1

32
a2

� �
. (2.22)

Therefore, the NS transport coefficients in the standard first Sonine approximation are given by
Eqs. (2.2)–(2.4) and (2.10) with the collision frequencies given by Eqs. (2.20)–(2.22). In addition, the cooling
rate z� and the fourth cumulant a2 are given by Eqs. (2.12) and (2.13), respectively.

As said in the Introduction, while the results obtained in the first Sonine approximation for the shear
viscosity [8,14–16] and the diffusion coefficient [9,10,13] compare quite well with computer simulations over a
wide range of inelasticities, the coefficients k and m associated with the heat flux show important discrepancies
with simulation data for strong inelasticity [14,15,17].
3. Modified first Sonine approximation

One of the possible sources of discrepancy between the standard first Sonine approximation for the
transport coefficients associated with the heat flux and computer simulations could be the existence of non-
Gaussian features. Although the Maxwellian distribution f M is a good approximation to f ð0Þ in the region of
thermal velocities relevant to low-order moments (hydrodynamic quantities), quantitative discrepancies
between both distributions are expected to be important in the case of higher velocity moments, such as the
heat flux. The departure of f ð0Þ from f M is partially accounted for by a2. However, in the approximation (2.14)
the behavior of f ð1Þ is assumed to be essentially dominated by the Maxwellian distribution f M. From that
point of view, one might say that a certain mismatch exists in the standard first Sonine approximation applied
to inelastic gases. This could be fixed by incorporating more terms in the Sonine polynomial expansion [13],
but this would be at the expense of significantly increasing the technical difficulties of the method.

Here we follow an alternative route, similar to the one discussed in Ref. [7]. Specifically, we keep the
structure of (2.14), except that the distribution f ð0Þ is chosen instead of the simple Maxwellian form f M as the
convenient weight function. According to these arguments, we take the approximations

AðVÞ

A0ðVÞ

CijðVÞ

DðVÞ

0
BBBB@

1
CCCCA! f ð0ÞðVÞ

ckSðVÞ

ck0SðVÞ

cZDijðVÞ

cDV

0
BBBB@

1
CCCCA, (3.1)

where SðVÞ and DijðVÞ have the same polynomial structure as SðVÞ and DijðVÞ, respectively, but must be
chosen to preserve the solubility conditions [23,27]. A simple calculation yields

DijðVÞ ¼ DijðVÞ, (3.2)

SðVÞ ¼ SðVÞ �
d þ 2

2
a2TV. (3.3)



ARTICLE IN PRESS
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As before, A0ðVÞ /AðVÞ, so that n�k0 ¼ n�k in the modified first Sonine approximation also. The coefficients ck,
ck0 , cZ, and cD are related to the transport coefficients by

k ¼ �
d þ 2

2

nT2

m
1þ

d þ 8

2
a2 �

d þ 2

2
a2
2 �

d þ 4

2
a3

� �
ck, (3.4)

k0 ¼ k
ck0

ck
, (3.5)

Z ¼ �nT2 1þ a2ð ÞcZ, (3.6)

D ¼ �
nT

m
cD. (3.7)

In Eq. (3.4), a3 is the sixth cumulant of f ð0Þ [24]. Note that in Eqs. (3.2)–(3.7) no explicit form for f ð0Þ has been
needed to be assumed.

In the modified first Sonine approximation, the collision frequencies are obtained from Eqs. (2.5), (2.6), and
(2.11) by inserting the approximations (3.1), and neglecting a3 and nonlinear terms in a2. After lengthy algebra
[28], one gets

n�k ¼ n�k0 ¼
1þ a

d

d � 1

2
þ

3

16
ðd þ 8Þð1� aÞ þ

296þ 217d � 3ð160þ 11dÞa
256

a2

� �
, (3.8)

n�Z ¼
3

4d
1� aþ

2

3
d

� �
ð1þ aÞ 1þ

7

16
a2

� �
, (3.9)

n�D ¼
d þ 2

4d
ð1þ aÞ 1þ

3

16
a2

� �
. (3.10)

Thus, the NS transport coefficients in the modified first Sonine approximation are given by Eqs. (2.2)–(2.4)
and (2.10), with the collision frequencies given by Eqs. (3.8)–(3.10).

Comparison between the standard approximations, Eqs. (2.20)–(2.22), and the modified ones,
Eqs. (3.8)–(3.10), shows that they only differ in the coefficient of the term linear in a2. In the standard
approximation, the dependence of the collision frequencies on a2 only arises from the presence of the HCS
distribution f ð0Þ in the linear operators L and Ls. On the other hand, in the modified approximation there
exist additional contributions arising from the weight factor f ð0Þ in Eq. (3.1) and, in the case of n�k, also from
the modified Sonine polynomial SðVÞ. These additional contributions give rise to a renormalization of the
coefficients of a2, which change dramatically with respect to their values in the standard approximation. More
specifically, the coefficient of a2 in Eq. (3.8) is at least 46 times larger than the coefficient in Eq. (2.20), both
being positive. In the cases of n�Z and n�D, the coefficients are negative in the standard first Sonine
approximation, while they are positive in the modified Sonine approximation. Moreover, the magnitudes of
the coefficients in the latter approximation are 14 and 6 times larger, respectively, than in the former one.
These discrepancies are not significant as long as the magnitude of a2 is relatively small. This is what happens
for a\0:7. However, for larger inelasticity, the fourth cumulant a2 is not negligible [25,26,29,30]. Since a240
for at0:7, then the standard estimates for the collision frequencies are smaller than their modified
counterparts. Consequently, the associated transport coefficients are larger in the standard approximation
than in the modified one. The fact that these effective collision frequencies associated with the transport
coefficients are larger in the modified approximation than in the standard one is possibly due to the
overpopulation of f ð0Þ with respect to f M for high velocities. Since the collision rate for hard spheres
increases with velocity, this overpopulation yields a more efficient average collisional transfer of momentum
and energy.
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In principle, Eq. (3.1) can be seen as the first-order approximation in a polynomial expansion. For instance,
in the case of AðVÞ one can write

AðVÞ ¼ f ð0ÞðVÞV
X1
k¼1

ckL
ðd=2Þ
k ðc2Þ, (3.11)

where fL
ðd=2Þ
k ðxÞg is a set of orthogonal polynomials with respect to an inner product involving f ð0Þ. If f ð0Þ is

replaced by f M, then the polynomials L
ðd=2Þ
k ðxÞ become the generalized Laguerre polynomials L

ðd=2Þ
k ðxÞ. The

expansion (3.11) differs from the one considered in Ref. [7] in the use of the modified polynomials L
ðd=2Þ
k ðxÞ

instead of the conventional polynomials L
ðd=2Þ
k ðxÞ, which do not constitute an orthogonal set in this case. The

recursive procedure to get the polynomials L
ðd=2Þ
k ðxÞ in terms of the cumulants of f ð0Þ is briefly described in

Appendix A.
4. Comparison with computer simulations

In this section we compare the theoretical expressions for the transport coefficients obtained from the
standard and modified first Sonine approximations with available and new computer simulations.
4.1. Heat flux

The NS transport coefficients associated with the heat flux are k and m. These transport coefficients have been
measured from the GK relations [31] by means of the DSMC method [18], both for two- [14] and three-
dimensional [15] systems. In addition, the coefficient k0 ¼ k� nm=2T has been measured in DSMC simulations by
an alternative method based on the application of an external force in the three-dimensional case [17].

Figs. 1 and 2 show the a-dependence of the reduced transport coefficients k=k0 and m=ðTk0=nÞ, respectively. It is
apparent that the standard first Sonine approximation significantly overestimates both transport coefficients for
strong inelasticity. On the other hand, the modified approximation compares well with computer simulations, even
Fig. 1. (Color online) Plot of the (reduced) thermal conductivity k=k0 as a function of a for hard disks (top panel) and hard spheres

(bottom panel). The dashed and solid lines represent the standard and modified first Sonine approximations, respectively. The symbols are

DSMC results obtained from the GK relations [14,15].
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Fig. 2. (Color online) Plot of the (reduced) transport coefficient m=ðk0T=nÞ as a function of a for hard disks (top panel) and hard spheres

(bottom panel). The dashed and solid lines represent the standard and modified first Sonine approximations, respectively. The symbols are

DSMC results obtained from the GK relations [14,15].

Fig. 3. (Color online) Plot of the (reduced) modified thermal conductivity k0=k0 as a function of a for hard spheres. The dashed and solid

lines represent the standard and modified first Sonine approximations, respectively. The symbols are DSMC results obtained from the GK

relations [15] (triangles) and from the application of an external force [17] (circles).

V. Garzó et al. / Physica A 376 (2007) 94–107 101
for low values of a, especially in the three-dimensional case. This reflects the fact that the modified approximation
is more accurate than the standard one in describing the effective collision frequencies for heat transport.

Since both k and m are overestimated by the standard approximation, it could happen that, by a cancelation
of errors, the transport coefficient k0 ¼ k� nm=2T might be well captured by that approximation. However,
this is not the case. The comparison between the computer simulations for k0 obtained from the two
alternative methods of Refs. [15,17] and the two theoretical approaches is shown in Fig. 3. As in the cases of k
and m, the modified Sonine approximation for k0 agrees quite well with the simulation results.

The good agreement found in Figs. 1–3 between the modified first Sonine approximation and the simulation
data for the heat flux transport coefficients suggests that the NS distribution functions AðVÞ and A0ðVÞ are
well represented by the forms (3.1). To test this expectation, we compare now the standard and modified
Sonine approximations for A0ðVÞ with simulation data presented in Ref. [17] for the three-dimensional case.
By symmetry arguments, the function A0ðVÞ can be written as

A0ðVÞ ¼ lv�10 f MðVÞFðc
2ÞV, (4.1)
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where l ¼ 1=
ffiffiffi
2
p

pns2 is the mean free path, v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
is the thermal speed, and Fðc2Þ is a dimensionless

isotropic function of the scaled velocity c ¼ V=v0. All the information contained in Fðc2Þ is retained by the
marginal distribution [17]

jðc2xÞ ¼ p�1
Z 1
�1

dcy

Z 1
�1

dcz e
�ðc2yþc2z ÞFðc2Þ. (4.2)

According to the standard approximation (2.14)

Fðc2Þ ¼
4k0

5nlv0

5

2
� c2

� �
, (4.3)

so that

jðc2xÞ ¼
4k0

5nlv0

3

2
� c2x

� �
. (4.4)

In contrast, the modified approximation (3.1) yields,

Fðc2Þ ¼
4k0

5nlv0
1þ

a2

2
c4 � 5c2 þ

15

4

� �� � 5
2
ð1þ a2Þ � c2

1þ 11
2

a2

¼
4k0

5nlv0

5

2
� c2 þ a2

105

16
þ

21

8
c2 �

15

4
c4 þ

1

2
c6

� �� �
,

ð4:5Þ

where in the last equality we have neglected nonlinear terms in a2. The corresponding marginal distribution is

jðc2xÞ ¼
4k0

5nlv0

3

2
� c2x � a2

75

16
�

15

8
c2x �

9

4
c4x þ

1

2
c6x

� �� �
. (4.6)
Fig. 4. (Color online) Plot of the marginal distribution function jðc2xÞ obtained from DSMC (solid lines) for a ¼ 0:5 (top panel) and

a ¼ 0:3 (bottom panel). The dashed and dotted–dashed lines represent the standard and modified first Sonine approximations,

respectively.
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Fig. 5. (Color online) Plot of the (reduced) shear viscosity Z=Z0 as a function of a for hard disks (top panel) and hard spheres (bottom

panel). The dashed and solid lines represent the standard and modified first Sonine approximations, respectively. The symbols are DSMC

results obtained from the decay of a sinusoidal perturbation [8] (squares), from the GK relations [14,15] (triangles), and from the

application of an external force [16] (circles). In the latter case, the data corresponding to d ¼ 3 for ap0:5 and to d ¼ 2 have been obtained

in the present work.
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The function jðc2xÞ is plotted in Fig. 4 for a ¼ 0:5 and a ¼ 0:3. We see that the modified first Sonine distribution
(4.6) captures reasonably well the main features of the true distribution, especially for a ¼ 0:5. On the other hand,
the standard first Sonine distribution (4.4) strongly disagrees with the simulation data for c2x\6. This velocity
region has a significant influence on the evaluation of the thermal conductivity at high inelasticity [17].

4.2. Pressure tensor

Although the a-dependence of the shear viscosity is well described by the standard first Sonine
approximation, it is worthwhile comparing the modified first Sonine estimate against computer simulations.
To the best of our knowledge, the NS shear viscosity has been measured in DSMC simulations by three
alternative methods: (i) by analyzing the time decay of a weak transverse shear wave in the HCS [8]; (ii) from
the GK relation [14,15]; and (iii) by the application of a homogeneous external force [16]. The simulation data
obtained by these methods and the two theoretical approximations are presented in Fig. 5. The data obtained
from the method (i) are restricted to d ¼ 3 and aX0:7 [8], while the ones from the method (ii) are available for
d ¼ 2 [14] and d ¼ 3 [15]. Regarding the method (iii), the data corresponding to d ¼ 3 for aX0:6 were
reported in Ref. [16], while those corresponding to d ¼ 3 for aX0:5 and to d ¼ 2 have been obtained in this
work. We observe that up to a ’ 0:6 the simulation data are consistent among themselves and also with both
theories. However, for higher inelasticities, there is a certain discrepancy (less than 10%) between the data
reported in Refs. [14,15] and those presented here, the former being close to the standard estimates and the
latter being close to the modified estimates, especially in the three-dimensional case. The small difference
between our simulation data and those of Refs. [14,15] might be due to the influence of velocity correlations in
the correlation function involved in the GK expression of the shear viscosity. These velocity correlations are
larger than in the case of the heat-flux transport coefficients [14].

In conclusion, while the standard first Sonine approximation does quite good a job for the shear viscosity, it
is fair to say that the modified approximation is still better, especially for three-dimensional systems.
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Fig. 6. (Color online) Plot of the (reduced) self-diffusion coefficient D=D0 as a function of a for hard disks (top panel) and hard spheres

(bottom panel). The dashed and solid lines represent the standard and modified first Sonine approximations, respectively. The symbols are

computer simulation results obtained from the mean square displacement. In the top panel, the triangles correspond to molecular

dynamics results [9] and the circles are DSMC results obtained in the present work. In the bottom panel, the triangles are DSMC results

reported in Ref. [9] and the circles are DSMC results presented in Ref. [13] (aX0:6) and obtained in the present work (ap0:5).
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4.3. Self-diffusion

Finally, we consider the self-diffusion coefficient. This coefficient has been measured in computer
simulations from the mean square displacement of a tagged particle in the HCS [9,10,13], as well as by the
decay of a sinusoidal perturbation in the concentration of tagged particles [9]. We observe in Fig. 6 that both
Sonine approximations provide a general good agreement with simulation data. However, the standard
approximation slightly overestimates the self-diffusion coefficient at high inelasticity, this effect being
corrected again by the modified approximation.

5. Concluding remarks

This work has been mainly motivated by the disagreement found at high dissipation between the simulation
data for the heat flux transport coefficients and the expressions derived from the standard first Sonine
approximation [14,15,17]. Although this disagreement appears beyond the region of inelasticity of practical
interest, it is physically relevant from a fundamental point of view to propose alternative theoretical
approaches that correct the limitations of the standard approximation. Here, we have implemented a modified
version (3.1) of the first Sonine approximation (2.14), where the weight function is no longer the
Maxwell–Boltzmann distribution f M but the HCS distribution f ð0Þ. Moreover, in order to preserve the
solubility conditions, the polynomial SðVÞ defined by Eq. (2.8) must be replaced by the modified polynomial
SðVÞ defined by Eq. (3.3). The idea behind the modified method is that the deviation of f ð0Þ from f M has an
important influence on the NS distribution f ð1Þ, so that the latter is better captured by the approximation (3.1)
than by the approximation (2.14). In other words, the rate of convergence of the polynomial expansion is
expected to be accelerated when f ð0Þ rather than f M is used as weight function.

The structure of the transport coefficients is common in both approximations. They are given by
Eqs. (2.2)–(2.4) and (2.10). However, the a-dependence of the characteristic collision frequencies differs in
both methods. In the standard first Sonine approximation, those collision frequencies are given by
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Eqs. (2.20)–(2.22), while they are given by Eqs. (3.8)–(3.10) in the modified first Sonine approximation. It is
apparent that the distinction between both approximations occurs in the value of the coefficient of the fourth
cumulant a2. In the standard approximation that coefficient comes from the dependence of the linearized
Boltzmann collision operator on f ð0Þ only, while in the modified approximation it also comes from the
assumed form for f ð1Þ. The effect of the latter contribution becomes more important than that of the former,
so that, for each collision frequency, the coefficient of a2 changes dramatically from the standard
approximation to the modified one.

As observed in Figs. 1–3, the modified approximation significantly improves the a-dependence of k, m, and
the difference k0 ¼ k� nm=2T . This is the primary result of this paper. Additionally, as shown in Figs. 5 and 6,
the slight discrepancies between simulation and the standard first Sonine estimates for the shear viscosity Z and
the self-diffusion coefficient D are partially corrected by the modified approximation.

Although the results reported here have been restricted to a low-density granular gas described by the
inelastic Boltzmann equation, they can be straightforwardly extended to finite density in the framework of the
Enskog kinetic theory. In that case, application of the CE method shows that the effective collision frequencies
are the same as in the dilute limit, except for a density-dependent factor w [4,7]. The explicit expressions for the
NS transport coefficients are presented in Appendix B. We expect that these Enskog results can stimulate the
performance of molecular dynamics simulations to test whether or not the modified first Sonine
approximation improves again over the predictions of the standard approximation, especially in the case of
the heat flux transport coefficients at high inelasticity.
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Appendix A. Modified polynomial expansion

Given a weight function

wðxÞ ¼ e�x 1þ
X1
k¼2

akL
ðp�1Þ
k ðxÞ

" #
, (A.1)

the mathematical problem consists of finding a set of polynomials fL
ðpÞ

k ðxÞg such that they are mutually
orthogonal with respect to the scalar product

ðf 1; f 2Þ ¼

Z 1
0

dx xpwðxÞf 1ðxÞf 2ðxÞ. (A.2)

If ak ¼ 0, then wðxÞ ¼ e�x and one has the Laguerre polynomials, i.e., L
ðpÞ

k ðxÞ ¼ L
ðpÞ
k ðxÞ. In the general case,

the polynomials L
ðpÞ

k ðxÞ can be obtained following the Gram–Schmidt orthogonalization procedure. Suppose

the polynomials L
ðpÞ

‘ ðxÞ with ‘pk � 1 are already known. The next unknown polynomial can be written as

L
ðpÞ

k ðxÞ ¼ c
ðkÞ
k xk þ

Xk�1
‘¼0

c
ðkÞ
‘ L

ðpÞ

‘ ðxÞ, (A.3)

where the coefficients c
ðkÞ
‘ are to be determined. One of them can be fixed by the standardization condition. For

instance, we can take c
ðkÞ
k ¼ ð�1Þ

k=k!, which is the same coefficient as in L
ðpÞ
k ðxÞ. The orthogonalization

condition ðL
ðpÞ

‘ ;L
ðpÞ

k Þ ¼ 0 for ‘pk � 1 gives

c
ðkÞ
‘ ¼ �c

ðkÞ
k

ðL
ðpÞ

‘ ;x
kÞ

ðL
ðpÞ

‘ ;L
ðpÞ

‘ Þ
. (A.4)

This closes the construction of L
ðpÞ

k ðxÞ and the process can be recursively continued. Since L
ðpÞ

k�1ðxÞx
kþ1 is a

polynomial of degree 2k, and given the orthogonality properties of the Laguerre polynomials L
p�1
k ðxÞ
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appearing in the representation (A.1), it is straightforward to see that only the first k coefficients fa‘; ‘pkg

appear in L
ðpÞ

k ðxÞ. The norm of L
ðpÞ

k ðxÞ, however, involves the coefficient a2kþ1.

The three first polynomials are L
ðpÞ

0 ðxÞ ¼ 1,

L
ðpÞ

1 ðxÞ ¼ ðpþ 1Þð1þ a2Þ � x, (A.5)

L
ðpÞ

2 ðxÞ ¼
1
2
x2 þ c

ð2Þ
0 þ c

ð2Þ
1 L
ðpÞ

1 ðxÞ, (A.6)

where

c
ð2Þ
0 ¼ �

p2 þ 3pþ 2

2
ð1þ 3a2 � a3Þ, (A.7)

c
ð2Þ
1 ¼

pþ 2

2

2þ 2ðpþ 7Þa2 � ðpþ 1Þa2ð3a2 � a3Þ � ð3pþ 11Þa3 þ ðpþ 3Þa4

1þ ðpþ 4Þa2 � ðpþ 1Þa2
2 � ðpþ 2Þa3

. (A.8)

Appendix B. Transport coefficients for a dense granular gas

In this Appendix, we give the expressions for the NS transport coefficients obtained from the Enskog kinetic
equation by the application of the CE method [4,7] in the first Sonine approximation.

The bulk viscosity (which vanishes in the dilute limit) is

g ¼ Z0
22dþ1

ðd þ 2Þp
f2wð1þ aÞ 1�

1

16
a2

� �
, (B.1)

where

f �
pd=2

2dGð1þ d=2Þ
nsd (B.2)

is the solid volume fraction and wðfÞ is the pair correlation function at contact. The shear viscosity Z has a
kinetic part Zk and a collisional part Zc, where

Zk ¼
Z0
w

n�Z �
1

2
z�

� ��1
1�

2d�2

d þ 2
ð1þ aÞð1� 3aÞfw

� �
, (B.3)

Zc ¼
2d�1

d þ 2
fwð1þ aÞZk þ

d

d þ 2
g. (B.4)

Analogously, the coefficients associated with the heat flux have also kinetic and collisional contributions.
They are

kk ¼
k0
w

d � 1

d
ðn�k � 2z�Þ�1 1þ 2a2 þ 3

2d�3

d þ 2
fwð1þ aÞ2½ð1þ aÞa2 � 1þ 2a�

	 

, (B.5)

kc ¼ 3
2d�2

d þ 2
fwð1þ aÞkk þ

22dþ1ðd � 1Þ

ðd þ 2Þ2p
f2wð1þ aÞ 1þ

7

16
a2

� �
k0, (B.6)

mk ¼
T

n

k0
w

n�k �
3

2
z�

� ��1 kk

k0
xz� þ

d � 1

d
a2 þ 3

2d�3ðd � 1Þ

dðd þ 2Þ
fðwþ xÞð1þ aÞ

	

�
1

6
ð3a2 � 3aþ 10þ 2dÞa2 � að1� aÞ

� �

, ðB:7Þ

mc ¼ mk3
2d�2

d þ 2
fwð1þ aÞ. (B.8)

In Eq. (B.7), we have introduced the quantity x � qðfwÞ=qf.
Finally, the self-diffusion coefficient is simply given by

D ¼
D0

w
d þ 2

2d

1

n�D �
1
2
z�

. (B.9)
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In the above equations, Z0, k0, and D0 are the elastic values of the low-density shear viscosity, thermal
conductivity, and self-diffusion coefficient, respectively. They are given by

Z0 ¼
nT

n0
; k0 ¼

dðd þ 2Þ

2ðd � 1Þ

Z0
m

, (B.10)

D0 ¼
2d

d þ 2

T

mn0
, (B.11)

where the collision frequency n0 is defined by

n0 ¼
8

d þ 2

pðd�1Þ=2

Gðd=2Þ
nsd�1 T

m

� �1=2

. (B.12)

In addition, the reduced cooling rate z� for a dilute gas in the HCS is given by Eq. (2.12).
Expressions (B.3)–(B.9) are common to the standard and the modified first Sonine approximations.

However, as discussed in the main text, they differ in the a-dependence of the (reduced) effective collision
frequencies n�Z, n

�
k, and n�D, which are given by Eqs. (2.20)–(2.22) in the standard approximation and by

Eqs. (3.8)–(3.10) in the modified one. Note that, since the collisional contributions depend on their kinetic
counterparts, they also differ in both approximations.
References

[1] C.S. Campbell, Annu. Rev. Fluid Mech. 22 (1990) 57;

I. Goldhirsch, Annu. Rev. Fluid Mech. 35 (2003) 267.
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[13] V. Garzó, J.M. Montanero, Phys. Rev. E 69 (2004) 021301.

[14] J.J. Brey, M.J. Ruiz-Montero, Phys. Rev. E 70 (2004) 051301.

[15] J.J. Brey, M.J. Ruiz-Montero, P. Maynar, M.I. Garcı́a de Soria, J. Phys. Condens. Matter 17 (2005) S2489.
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