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a b s t r a c t

We study diffusion–reaction processes on periodic simple cubic (sc) lattices and square
planar lattices. We consider a single diffusing reactant undergoing an irreversible reaction
upon first encounterwith a static co-reactant placed at a given site (‘‘one-walker problem’’).
We also allow for a competing reaction, namely, instantaneous trapping of the diffusing
reactant at any other site (with probability s) before interacting with the static co-reactant.
We use a generating function approach and Markov theory, as well as MC simulations,
to determine the mean walklength ⟨n⟩ of the diffusing reactant before either of the two
competing reactions takes place. To investigate the dependence of ⟨n⟩ on lattice size we
compute the first, finite size corrections to the Green function of the sc lattice, correcting
results reported in the literature. Using these results, space exploration properties and first-
passage properties (e.g. walklength statistics, mean number of distinct sites visited, statis-
tics of return to the origin, etc.) of both conventional (immortal) walks and mortal walks
can be determined. In this context, we develop a novel approach based on a two-point Padé
approximant for theGreen function. Finally,we study bymeans ofMC simulations themore
complex casewhere both reactant and co-reactant undergo synchronous nearest-neighbor
displacements (‘‘two-walker problem’’). Here, we assume that reactant and co-reactant can
individually be trapped with probability s at any lattice site, or can undergo an irreversible
reaction on first encounter at any site. When s = 0 we find that, both for the one-walker
and the two-walker problem, for lattices with (approximately) the same number of sites,
the meanwalklength is smaller (and hence the reaction efficiency greater) in d = 3 than in
d = 2. Increasing s tends to reduce differences in system dimensionality, and distinctions
between the one-walker problem and the two-walker problem. Ourmodel provides a good
starting point to develop studies on the efficiency of apparently diverse diffusion–reaction
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processes, such as diffusion on a partially poisoned catalytic substrate or photosynthetic
trapping of excitations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Lattice models provide an important paradigm for the study of phenomena involving diffusion-controlled reactions. One
of the simplest models consists of a single diffusing reactant undergoing a nearest-neighbor random walk on a d = 2
Euclidean lattice. One site of the lattice is regarded as a (static) reaction center. As reviewed by Weiss [1], an extensive
literature deals for the case where the diffusing reactant is assumed to undergo an irreversible trapping reaction on
first encounter at the active site (static trap). This setting corresponds to what we term ‘‘one-walker problem’’, since
only one of the two reaction partners is mobile. Beyond its numerous possible applications, the one-walker problem has
historically played a central role in the theory of random walks, notably in the development of powerful methods relying
on generating functions. Of fundamental importance in this context is the computation of lattice Green functions, whence
many characteristic space exploration properties of walks in discrete and continuous time can be derived [2,3].

In real systems, one usually does not have a single active site, but rather a variety of active sites which compete with
one another. As a result of this competition, the time scale of the reaction is significantly reduced. In general, the trapping
probability si of each of these reaction centers is different. See, for example, the seminal paper by den Hollander and
Kasteleyn [4].

The case where a perfect trap at one lattice site (s = 1) coexists with a non-zero probability of absorption (0 < s < 1)
at all other lattice sites (also termed background trapping in what follows) lends itself particularly well to the analysis of
finite size effects [5]. Although the above model is of interest for a variety of different situations, a possible interpretation of
non-zero background trapping is site deactivation due to partial poisoning of a catalyst. In the above simplified setting, there
is a single fully active site or deep trap, whereas all other sites are only partially active. As argued in Ref. [5], differences in
the catalytic activities of individual sites may be ascribed to differences in the affinity with a chemisorbed poisoning species,
resulting in selective poisoning [6]. Despite its simplicity, the above model, with a single site immune to poisoning and all
other sites partially poisoned, efficiently illustrates the onset of a nonlinear decrease in the catalytic efficiency as a function
of the concentration of the poisoning agent [5]. As already mentioned, this setting also provides a suitable starting point to
describe more realistic situations by introducing additional sites immune to poisoning [7,8].

In the present work we study the above model in Euclidean dimension d = 3 and compare our results with previous
results for d = 2 [5]. In this context, we also consider the ‘‘two-walker’’ problem; that is, instead of assuming that the
reaction center is static, we allow for the possibility that it is a moving target. In the language of chemical kinetics, we study
the effect of competing reaction centers on diffusion controlled first- and second-order chemical processes occurring on
surfaces or in three dimensions. Both the cases s = 0 and s > 0 are studied. We report Monte Carlo (MC) simulations to
corroborate and extend results obtained in our analytic studies.

It is worth noting that the computation of the walklength of a walker subject to background trapping is a particular
example of a broad class of first-passage problems for so-called mortal walkers, i.e., walkers that have a finite probability
of dying as they move. Recently, there has been a surge of interest in such problems [9–21] motivated by a large number
of applications, including photosynthetic trapping [5], oocyte fertilization [12], game theory [5], radioactive decay [5,17],
target deactivation problems [13] or foraging behavior [21].

While the physics of mortal random walkers may be very different from that of standard walkers, generating function
approaches à la Montroll–Weiss [1,22–24] still apply and can be used to obtain space exploration properties provided that
the lattice remains translationally invariant.

The extension of the generating function approach to deal with ‘‘mortal walkers’’ [9–21] has not only expanded the range
of physical problems that can be explored using a lattice-based theory, but has also motivated the development of novel
approximations for lattice Green functions, as will be illustrated later on in this study. At present, however, an approach
based on lattice Green functions can be implemented only for translationally-invariant lattices. To study diffusion–reaction
processes on latticeswith spatial (or other) defects, fractal lattices, or disordered lattices, onemust rely on the classical theory
of finite Markov processes and/or numerical experiments (MC or molecular dynamics simulations). A distinguishing feature
of this contribution is that we implement all three strategies, viz. generating functions, Markov theory, and MC simulation,
to study the influence of competing reaction centers on the efficiency of diffusion-controlled reactions.

Finally, we note that in the present paper we consider the kinetics of a pair of coreactants both in the limit of large
and small system sizes. The larger the system, the better Smoluchowski-like approaches based on continuum diffusion are
expected to apply. However, for small systems (the 5 × 5 lattice considered in Section 2, say), effects due to the discrete
nature of the reactants as well as crowding effects arising from the finite system size become apparent, and significant
departures from continuum approximations may appear.

The remainder of this paper is organized as follows. In Section 2, we first present the Markov method and show how
to use it to compute the walklength of a mortal walker (representing a diffusing reactant) in the presence of a deep trap
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(representing a static reaction center) for the particular case of a periodic 5 × 5 lattice. In Section 3, we introduce the
generating function formalism for a d-dimensional hyperlattice, we give a general formula for the walklength in terms of
the nonsingular part of the lattice Green function, and we illustrate the method by rederiving the result obtained in Section
2 for the 5 × 5 lattice. Section 4 is devoted to the computation of finite size corrections to the Green function of the periodic
sc lattice; these results are the starting point to compute various approximations for the mean walklength of the mortal
walker. These approximations are subsequently compared with exact results, which are in turn validated via MC simulation.
In Section 5, we discuss the role of the lattice dimensionality and of the probability s in the one-walker problem and in
the two-walker problem. In this section, we also discuss the possible relevance of our results for real systems. Finally, we
summarize themain conclusions and outline possible pathways for future research in Section 6. Technical details of themost
relevant calculations are given in the appendices.

2. Markovian approach

Sixty years ago, Montroll and Shuler published a review [25] describing a comprehensive approach for studying
theoretically chemical and physical transformations. Consider a reaction space of given size and shape, characterized by
N discrete lattice points having local connectivity v and embedded in a Euclidean space of dimension d. The probability
distribution function governing the fate of a diffusing particle satisfies a stochastic master equation whose kernel is related
to the fundamental matrix of the theory of finite Markov processes. In the limit of (sufficiently) large N , the first moment
of the probability distribution function, which is just the mean walklength ⟨n⟩ of the Markovian theory, is related to the
smallest eigenvalue of the stochastic master equation, and from thence to a chemical rate constant; see the later review [26]
and references cited therein.

The methods described in Ref. [27] allow one to calculate quantities from random walk trajectories from any site l to
another site j of a host lattice, and in particular, the total number of steps taken by a random walker before reaching site j,
the average of this quantity over all sites l ̸= j (overall mean walklength), as well as any desired higher-order moment of
the probability distribution function for the latter quantity.

In the present work, we are interested in studying the change in the efficiency of a trapping reaction when a diffusing
reactant can be trapped before encountering a static co-reactant. The first application of the Markovian approach described
above to this problem was presented in Refs. [28,29]. Exact numerical results were reported for a random walker on a d-
dimensional Euclidean lattice of N sites, in which a deep trap is placed at a given site and imperfect traps with trapping
probability s < 1 are placed at each of the remaining N − 1 sites.

In Refs. [28,29], the above program was illustrated for a random walker on a 5 × 5 square-planar Euclidean lattice. Each
site can be assigned a symmetry class depending on its relative position with respect to the deep centrosymmetric trap T . In
the present case, apart from the centrosymmetric site T , if the boundary conditions are homogeneous there are five distinct
symmetry classes, illustrated by the following scheme:

5 4 3 4 5
4 2 1 2 4
3 1 T 1 3
4 2 1 2 4
5 4 3 4 5

(1)

In order to proceed further, one has to specify the boundary conditions. In Ref. [5], periodic boundary conditions were
chosen, implying that the lattice becomes translationally invariant. Here, we stick to this choice, since we wish to keep our
setting as simple as possible by assessing the influence of finite size effects only (for a discussion of boundary effects, see
Ref. [26]). For each symmetry-distinct initial condition i = 1, . . . , 5, let us denote by ⟨n⟩i the number of times a random
walker performs site-to-site transitions before being trapped at site T (site specific mean walklength). Let us further define
⟨n⟩T as the mean walklength when the walker starts from the deep trap. These quantities are related to one another via the
following linear system:

⟨n⟩1 = s + (1 − s)
(
1
4
⟨n⟩T +

1
2
⟨n⟩2 +

1
4
⟨n⟩3 + 1

)
, (2a)

⟨n⟩2 = s + (1 − s)
(
1
2
⟨n⟩1 +

1
2
⟨n⟩4 + 1

)
, (2b)

⟨n⟩3 = s + (1 − s)
(
1
4
⟨n⟩1 +

1
4
⟨n⟩3 +

1
2
⟨n⟩4 + 1

)
, (2c)

⟨n⟩4 = s + (1 − s)
(
1
4
⟨n⟩2 +

1
4
⟨n⟩3 +

1
4
⟨n⟩4 +

1
4
⟨n⟩5 + 1

)
, (2d)

⟨n⟩5 = s + (1 − s)
(
1
2
⟨n⟩4 +

1
2
⟨n⟩5 + 1

)
. (2e)
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These equations reflect the fact that a particle starting at a given site undergoes one of twomutually exclusive events: either
it dies upon taking the first step (in which case the walklength is equal to one) or else it continues its walk from another site
which does not in general belong to the same symmetry class as the previous site. The first event isweightedwith probability
s and is represented by the first term on the right hand side of the above equations. The second event (described by the last
term on the right hand side) is weighted with the complementary probability 1 − s. Due to the absence of memory effects
(Markovian hypothesis), this event effectively results in the random walk starting anew from any of the possible arrival
sites (except for the fact that the walklength must be increased by one unit). In this term, the walklengths referring to each
of these sites are weighted with the corresponding transition probabilities, which are directly obtained by inspecting the
scheme (1) [for a general formulation beyond the 5 × 5 case see Refs. [5,28,29]].

Unless otherwise specified, inwhat followswe shall assume that awalker initially placed at the deep trap T is immediately
absorbed. This allows one to solve for the ⟨n⟩i’s by setting ⟨n⟩T = 0 in Eqs. (2). The resulting expressions for the ⟨n⟩i’s are
given in Appendix A. From these expressions, the overallmeanwalklength ⟨n⟩ before thewalker is trapped can be calculated.
The quantity ⟨n⟩ is defined as the average over all the possible starting sites (excluding site T ) under the assumption that all
of them have the same statistical weight. In general, the number of sites in each symmetry class is different and this needs
to be taken into account when computing ⟨n⟩ [28]. In the present case of a 5 × 5 lattice one eventually obtains [see (1)]

⟨n⟩ =
⟨n⟩1 + ⟨n⟩2 + ⟨n⟩3 + 2⟨n⟩4 + ⟨n⟩5

6

=
1
3

475 + 500s − 150s2 − 60s3 + 3s4

5 + 161s + 158s2 − 50s3 − 19s4 + s5
. (3)

In Section 3, we will show how this result can be recovered by means of a generating function approach, which is especially
well suited to assess finite size effects.

3. Generating function approach

The use of generating functions to study random walks on d-dimensional Euclidean lattices with a single deep trap was
developed by Montroll and Weiss [22–24]. More recently, a generating function approach for studying the consequences of
introducing partial traps at the remaining N − 1 sites was introduced to study the case of periodic lattices in d = 1 and
d = 2 [9,11]. In this section, we recall some of the main results and give a general formula for the walklength in terms of the
Green function of a finite d-dimensional hypercubic lattice.

Consider a Pólya walk on a d-dimensional, translationally invariant lattice with N = Ld sites and a deep trap placed at
a given site (which we term the origin ‘‘

−→
0 ’’) and N − 1 partially absorbing sites. The walker dies with probability one if it

steps on the origin; when the walker steps on any other site, it either dies with probability s or else it performs a jump to a
nearest-neighbor site with complementary probability 1 − s.

We denote by ⟨n⟩ℓ⃗ the trajectory-averagedwalklength of awalker starting at a given lattice site ℓ⃗ = (ℓ1, ℓ2, . . . , ℓd) ̸=
−→
0 .

Let us further introduce the initial-condition averaged walklength (overall mean walklength)

⟨n⟩ =
1

N − 1

∑
ℓ̸⃗=

−→
0

⟨n⟩ℓ⃗ (4)

to characterize the (coarse-grained) mean lifetime of this so-called mortal walk. In Ref. [5], the following general result was
derived, viz.,

⟨n⟩ =
1 − Γ (

−→
0 , 1 − s)
s

. (5)

(For s = 0, the right-hand side should be interpreted as the limit s → 0.) The auxiliary quantity Γ (
−→
0 , z) is defined as

follows:

Γ (
−→
0 , z) ≡

1
N − 1

[
1

(1 − z)P(
−→
0 , z)

− 1

]
. (6)

Here, P(
−→
0 , z) stands for the lattice Green function

P(0⃗, z) =

∞∑
n=0

Pn(0⃗)zn, (7)

defined as the generating function for the probability that a conventional (immortal) walk starting at the origin (lattice site
where the deep trap is located) returns to it [Pn(0⃗) is the probability that thewalker is found at the origin after exactly n time
steps]. In what follows, we shall use for convenience the short-hand notation Pd(z) in place of P(0⃗, z). The explicit reference
to the spatial dimension in our notation has some advantages that will become evident later on.
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Note that the validity of Eq. (5) is not restricted to a Pólyawalk, since it also applies to non-nearest neighbor walks as long
as the lattice remains translationally invariant. It is worth noting that the (initial-condition-averaged) probability pT for the
walker to eventually be absorbed at the deep trap rather than at any other site is simply given by the expression pT = 1−s⟨n⟩
(see Ref. [5]). This probability is simply pT =

∑
∞

n=0 pT ,n, where pT ,n is the probability of absorption after exactly n time steps
(this quantity is the discrete analog of the particle flux towards the trap in the framework of a continuum approximation).
As shown in Appendix B, one obtains

pT ,n =
(1 − s)n

n!(N − 1)
∂n

∂zn
{(1 − z)Pd(z)}−1

⏐⏐
z=0 (8)

The generating function Pd(z) can be separated into a part that diverges as z → 1− (singular part) and a nonsingular part
Qd(z) which remains finite in this limit, i.e.,

Qd(z) = Pd(z) −
1

N(1 − z)
. (9)

From Eq. (5), it is then easy to show that the mean walklength ⟨n⟩ is given by
⟨n⟩
N

=
N

N − 1
Qd(1 − s)

1 + NsQd(1 − s)
, (10)

whence the small s-expansion

⟨n⟩
N

=
N

N − 1
Qd(1) −

N
N − 1

[
Q 2
d (1) +

Q ′

d(1)
N

]
Ns + O(s2) (11)

follows. The above expansion turns out to be useful for the study of the small s limit (weak background absorption), but it
is, in general, a rather poor approximation for larger s because of the comparatively large contribution of nonlinear terms in
Ns [5]. To study symmetric nearest-neighbor randomwalks (the classic Pólya walk), we proceed from the well-known result

Pd(z) =
d
Ld

L−1∑
k1=0

L−1∑
k2=0

· · ·

L−1∑
kd−1=0

L−1∑
kd=0

1

d − z
∑d

i=1 Ci
, (12)

where

Ci ≡ cos
2πki
L

, i = 1, . . . , d. (13)

The first term of the sum (with all the ki’s equal to 0) is the singular part, whereas the remaining contribution corresponds
to the nonsingular part Qd(z).

In d = 1 (N = L) one has

Q1(z) =
1

√
1 − z2

1 + [X(z)]N

1 − [X(z)]N
−

1
N(1 − z)

, (14)

with X(z) ≡ z−1(1 −
√
1 − z2). From here, exact results for ⟨n⟩ for arbitrary values of s and N can be obtained [5]:

⟨n⟩ =

Ns +
√
2s − s2

(
1 −

2
1+[X(1−s)]N

)
s2(N − 1)

. (15)

In the limit of weak background absorption, the series expansion (11) yields
⟨n⟩
N

=
N + 1

6
−

(N − 2)(N + 1) (N + 2)
30

s + O(s2). (16)

For a d = 2 dimensional walk (N = L2), results for arbitrary values of s were obtained for square planar lattices in the
limit of small N [5]. For asymptotically-large N , results for square planar lattices in the small s limit have also been derived.
From Eq. (11), one finds to leading order [5]

⟨n⟩
N

= π−1 logN − (π−2 log2 N + a′

1)Ns + O(s2), (17)

with a′

1 = 0.061871145451 · · ·. In Section 2, we illustrated the Markov method for computing the mean walklength, and
the absorption probability at the deep trap for a specific example, namely the 5 × 5 periodic square planar lattice. In the
framework of the generating function formalism, the corresponding calculation proceeds as follows. Setting d = 2 and
N = L2 = 25 in Eq. (12), one has

P2(z) =
2
25

4∑
k1=0

4∑
k2=0

1

2 − z(cos 2πk1
5 + cos 2πk2

5 )
. (18)
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Simplification of the cosines and subsequent use of Eq. (9) yields

Q2(z) =
8
25

(
4

4 + z
+

16 − 6z
16 − 12z + z2

+
4 + z

4 + 2z − z2

)
. (19)

Inserting Eq. (19) into Eq. (10), we recover the expression for the walklength given in Section 2, viz. Eq. (3).

4. Main results

We now apply the methods presented in Sections 2 and 3 to deal with the case of simple cubic (sc) lattices. The
corresponding is obtained by setting d = 3 in Eq. (12), i.e.,

P3(z) =
3
L3

L−1∑
k1=0

L−1∑
k2=0

L−1∑
k3=0

1
3 − z (C1 + C2 + C3)

. (20)

In Appendix C tabulated results for the overall mean walklength are displayed for the first few cubic lattices (L = 2, . . . , 5).
These results can be obtained either by taking Eq. (20) as a starting point or by invoking the Markovian theory described in
Section 2.

As one can see from the expressions in Appendix B, the walklength is given by ratios of polynomials of increasing degree,
but it is not obvious how the resulting expressions depend on the lattice sizeN or, equivalently, on the linear size L. Were this
the case, one could obtain analytic expressions similar to the formulae (16) and (17), valid in the small s limit (or consider
other limits).

The above considerations lead to the following overview of methods for studying general problems in the theory of
random walks. While the Markovian theory is very flexible and allows one to easily deal with situations such as multiple
interacting walkers or imperfect lattices, the generating function approach described above is better suited for one of our
main purposes, i.e., assessing the role of finite size effects in the case of a one-walker problem on a perfect periodic lattice.
To this end, it will be necessary to quantify the effect of finite size corrections by computing the corresponding coefficients
as accurately as possible.

The first step consists in investigating the large N behavior of the generating function P3(z) in the limit z → 1−, which
we shall develop in the following section.

4.1. Asymptotic behavior of the lattice Green function

Eq. (10) relates the walklength ⟨n⟩ of a mortal walker to the nonsingular part Qd(z) of the lattice Green function. Hence,
to infer the behavior of the walklength, it is of primary importance to obtain the asymptotic behavior of this quantity.

As shown by Watson [30], the value of the nonsingular part Q3(z) in the limit when L → ∞ and z → 1− is

b0 ≡ lim
L→∞

Q3(1) =
6
π2 (κ + 1)K 2(κ), (21)

where κ ≡ [(2 −
√
3)(

√
3 −

√
2)]2 and

K (k) =

∫ 1

0

dt√
(1 − t2)(1 − kt2)

, |k| < 1, (22)

is the complete elliptic integral of the first kind. This result can be further simplified by expressing it in terms of gamma
functions [2, p. 614]:

b0 =

√
6

32π3 Γ

(
1
24

)
Γ

(
5
24

)
Γ

(
7
24

)
Γ

(
11
24

)
= 1.5163860 · · · . (23)

In contrast, the coefficients associated with finite size corrections to this value are, to the best of our knowledge, unknown.
Formally, one has the following representation (see Appendix D)

Q3(1) = b0 +
b1
L

+
b3
L3

+ O(L−4) (24)

with the values b1 = −1.354709757(1) and b3 = 0.2574(1), where the digit enclosed by parentheses is a conservative
estimate of the error bar in the last digit. While these values are empirical and very accurate, it is possible to obtain a very
good analytic approximation for b1, with only a small contribution (less than 0.26%) needing to be evaluated empirically.
To the best of our knowledge, values of the coefficients b1 and b3 have not been reported in the literature. Knowledge of
these coefficients is essential to obtain accurate values for many space exploration properties of mortal and immortal Pólya
walkers on finite lattices, e.g., the mean number of distinct sites visited after a given number of steps [1].
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Even though the behavior of Q3(1) given by Eq. (24) turns out to be sufficient to develop acceptable approximations for
the walklength [cf. Eq. (40)], the series expansion (11) valid for the small s limit requires additional knowledge of higher
order derivatives. Here, we shall restrict ourselves to study the behavior of the first-order derivative Q ′

3(1). To proceed, first
we observe that there are nested relations between generating functions corresponding to different dimensionalities. From
Eq. (12), we obtain1

P2(z) =
2
L

L−1∑
k1=0

P1
(

z
2−zC1

)
2 − zC1

, (25)

P3(z) =
3

(3 − z)L
P2

(
2z

3 − z

)
+

3
L2

L−1∑
k1=0

L−1∑
k2=1

P1
(

z
3−z(C1+C2)

)
3 − z(C1 + C2)

. (26)

From the nested relations (25) and (26) we find

Q2(z) =
2

(2 − z)L
Q1

(
z

2 − z

)
+

2
L

L−1∑
k1=1

P1
(

z
2−zC1

)
2 − zC1

, (27)

Q3(z) =
3

(3 − z)L
Q2

(
2z

3 − z

)
+

3
L2

L−1∑
k1=0

L−1∑
k2=1

P1
(

z
3−z(C1+C2)

)
3 − z(C1 + C2)

. (28)

On the other hand, the exact expression (14) implies

Q1(1) =
L
6

−
L−1

6
, (29)

Q ′

1(1) =
L3

180
−

L
9

+
19L−1

180
. (30)

It is also known that [4]

Q2(1) =
2
π

ln L + a2 + a3L−2
+ a4L−4

+ · · · , (31)

Q ′

2(1) = a′

1L
2
−

1
π

ln L + a′

3 + a′

4L
−2

+ a′

5L
−4

+ · · · , (32)

with

a2 = 0.195062532 · · · , a3 = −0.116964779 · · · , a4 = 0.484065704 · · · , (33a)

a′

1 = 0.061871145451 · · · , a′

3 = −0.1347623119 · · · , (33b)

a′

4 = 0.2005850758 · · · , a′

5 = 0.4283683639 · · · . (33c)

The goal now is to find (empirically) the asymptotic behavior ofQ ′

3(1). A low-degree polynomial fit of the exact evaluation
of Q ′

3(1) up to L = 500 yields

Q ′

3(1) = c0L + c1 + O(L−1), (34)

where

c0 = 0.381871(1), c1 = −1.0785(1). (35)

The fit also gives c2 = 0.7954(1) for the coefficient of L−1 but, for the sake of caution, it will not be used in Eq. (34).
Eq. (24), taken in conjunction with Eq. (34), allows us to investigate the lattice size dependence of the walklength in the

small s limit for the one-walker problem [via Eq. (11)], as was already demonstrated for dimensions d = 1 and d = 2 in
Ref. [5] [cf. Eqs. (16) and (17)].

1 Notice that the relation between generating functions corresponding to different dimensionalities via Eqs. (25) and (26) provides an a posteriori
justification for our non-standard notation Pd(z), which makes explicit reference to the Euclidean dimension d. To our knowledge, such a relation does
not seem to have been noticed, or to the very least emphasized, in the literature so far.
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Table 1
Role of the probability s in influencing reaction efficiency in the one-walker problem. The reaction space is a d = 2, L × L square-planar lattice subject to
periodic boundary conditions. The tabulated quantity is ⟨n⟩/N; ‘‘Exact’’ denotes results obtained using (both) lattice Green’s functions and the theory of
finite Markov processes (see text).
L s Exact MC s Exact MC

3 0 1 1.0000 0.01 0.92498 0.9246
5 0 1.2667 1.2668 0.01 0.96590 0.9658
7 0 1.4615 1.4614 0.01 0.85115 0.8508
9 0 1.6124 1.6124 0.01 0.69643 0.6954
11 0 1.7350 1.7350 0.01 0.55640 0.5564
13 0 1.8382 1.8381 0.01 0.44440 0.4442
15 0 1.9271 1.9268 0.01 0.35836 0.3583
17 0 2.0053 2.0049 0.01 0.29277 0.2927
19 0 2.0750 2.0744 0.01 0.24247 0.2425
21 0 2.1379 2.1370 0.01 0.20345 0.2035

4.2. One-walker problem

4.2.1. Exact results vs. simulation results
The influence of competing reaction centers on the probability of reaction at a target site and on the mean walklength of

the random walker before localization was studied in Ref. [5] for planar surfaces of different topologies. See Tables I–IV in
Ref. [5] for a summary of analytic results and Table V for representative numerical results.

The first of the extensions considered in the present study is to expand the reaction space from d = 2 to d = 3. Analytic
results for the first few cubic lattices were derived using both Markov theory and generating functions, and the results
presented in Appendix B.

To complement (and later extend) the analytic results in d = 2, we have carried out MC simulations for a series of L × L
square-planar lattices subject to periodic boundary conditions. As in Ref. [5], the reaction center is static and positioned at
the centrosymmetric site of the planar lattice, and s denotes the probability of absorption of the diffusing reactant at other
sites.

For each lattice, a varying number of statistical realizations were carried out sequentially to ensure that the amplitude
of the 95% confidence intervals for ⟨n⟩ was < 0.01. Because of the reduced dispersion in the length of the random walk
trajectories for larger s values, the number of realizations needed to ensure the prescribed accuracy was smaller than for
larger s (typical values were between 3.6 × 108 and 1.5 × 109).

Displayed in Table 1 is a comparison with results calculated using the analytic expressions derived in Ref. [5] and MC
simulations for two values of s, namely s = 0 (no background trapping) and s = 0.01. The agreement between the analytic
and ‘‘experimental’’ results is excellent, as the relative differences are in all cases < 10−3, and typically of the order of 10−4

or smaller.
For the same set of conditions described in the preceding paragraph, MC simulations were carried out for a d = 3

dimensional reaction space, here a L × L × L cubic lattice subject to periodic boundary conditions. As is evident from the
data in Table 2, agreement between results obtained from the generating function approach, the Markov approach, and MC
simulations is again excellent.

4.2.2. Small s approximation
To complement the above results, we now particularize the expansion (11) to the d = 3 case. Using Eqs. (24) and (34),

we find
⟨n⟩
N

= b0 +
b1

N1/3 +
b0 + b3

N
+ · · · −

[
b20 −

2b0b1
N1/3 +

b21 + c0
N2/3 +

b0(b0 + 2b3) + c1
N

+ · · ·

]
Ns + · · · . (36)

For s = 0, one then has
⟨n⟩
N

= b0 +
b1

N1/3 +
b0 + b3

N
+ · · · . (37)

As one can see in Fig. 1, approximations based on the above expansion match exact results very well.
Finally, we note that for s = 0 the result (36) implies

⟨n⟩ ∼ b0N + b1N2/3
+ O(1), (38)

which, at the level of the subdominant term, is at odds with the result originally given by Montroll, namely [24]

⟨n⟩ ∼ b0N + O(N1/2). (39)

This discrepancy presumably arises because, in his derivation, Montroll assumed that Q3(z) ∼ const + O(
√
1 − z) in the

vicinity of z = 1. However, this is only the case for an infinite lattice. For a finite lattice, one has Q3(z) ∼ const + O(1 − z).
In other words, Q ′

3(1) is finite at finite L, although it diverges as Q ′

3(1) ∼ L in the limit L → ∞.
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Table 2
Role of the probability s in influencing reaction efficiency in the one-walker problem. The reaction space is a d = 3, L× L× L cubic lattice subject to periodic
boundary conditions. The tabulated quantity in the columns labeled ‘‘Exact’’ and ‘‘MC’’ is ⟨n⟩/N , where ‘‘Exact’’ denotes results obtained using (both) lattice
Green’s functions and the theory of finite Markov processes (see text). The last three columns give the percentage error of the approximations (40), (47),
and (50).
s L Exact MC % Eq. (40) % Eq. (47) % Eq. (50)

0 3 1.1282 1.1282 1.111 1.111 1.111
5 1.2587 1.2586 0.086 0.086 0.086
7 1.3276 1.3273 0.013 0.013 0.013
9 1.3681 1.3681 3.3 × 10−3 3.3 × 10−3 3.3 × 10−3

11 1.3945 1.3945 1.1 × 10−3 1.1 × 10−3 1.1 × 10−3

13 1.4129 1.4129 4.8 × 10−4 4.8 × 10−4 4.8 × 10−4

15 1.4266 1.4266 2.3 × 10−4 2.3 × 10−4 2.3 × 10−4

0.005 3 0.98241 0.98239 0.820 0.848 0.848
5 0.70539 0.70535 0.174 0.014 0.012
7 0.40519 0.40518 0.190 4.8 × 10−3 8.4 × 10−3

9 0.22845 0.22845 0.145 6.4 × 10−4 3.2 × 10−3

11 0.13559 0.13559 0.107 3.5 × 10−3 2.1 × 10−4

13 0.08549 0.08549 0.080 4.8 × 10−3 1.3 × 10−4

15 0.05688 0.05688 0.061 5.3 × 10−3 2.1 × 10−3

0.01 3 0.87000 0.8700 0.596 0.645 0.645
5 0.49002 0.4903 0.273 0.011 0.017
7 0.23909 0.2390 0.223 2.8 × 10−3 0.011
9 0.12464 0.1246 0.154 6.1 × 10−3 2.2 × 10−3

11 0.07126 0.07129 0.108 9.3 × 10−3 1.6 × 10−3

13 0.04408 0.04411 0.078 0.010 3.3 × 10−3

15 0.02902 0.02902 0.058 0.011 4.1 × 10−3

0.1 3 0.28452 0.28450 0.524 0.362 0.356
5 0.07548 0.07553 0.402 0.028 0.056
7 0.02855 0.02855 0.210 0.085 5.4 × 10−3

9 0.01358 0.01358 0.119 0.088 5.9 × 10−3

11 0.007473 0.007478 0.073 0.081 8.4 × 10−3

13 0.004537 0.004538 0.048 0.074 8.4 × 10−3

15 0.002957 0.002958 0.033 0.067 7.6 × 10−3

Fig. 1. Comparison of exact results for ⟨n⟩/N (d = 3, s = 0) with approximations of decreasing order in N and results from numerical simulations.

4.2.3. Alternative approximations
An alternative approximationwhichworks surprisingly well amounts to replacing Q3(1− s) by Q3(1) in the exact formula

(10) for d = 3. One then has
⟨n⟩
N

≈
N

N − 1
Q3(1)

1 + NsQ3(1)
. (40)

Replacing Q3(1) with successive approximations based on the retention of an increasingly large number of terms from the
expansion (24) in the above equation is expected to provide a very good approximation for sufficiently large N . In our
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Fig. 2. Comparison of exact results for ⟨n⟩ (d = 3, s = 0.01) with the approximation (40) and results from numerical simulations.

calculations, we have retained all the terms on the right-hand side of Eq. (24), except the O(L−4) term. Fig. 2 and Table 2
show that Eq. (40) does extremely well, even for not so large lattices. The good performance of Eq. (40) is not restricted to
small s. In fact, we have checked that the maximum error of Eq. (40) in the whole range 0 ≤ s ≤ 1 is about 1.1%, 0.41%,
0.24%, 0.15%, 0.11%, 0.08%, and 0.06% for L = 3, 5, 7, 9, 11, 13, and 15, respectively. This shows that the dependence of ⟨n⟩
on s is dominated by the term Ns in the denominator of Eq. (10) rather than by the s-dependence of Q3(s).

For values of N even larger than those considered in Table 2, Eq. (40) yields the expected behavior ⟨n⟩ ∼ s−1. This
asymptotic s−1 law is actually universal in the sense that it does not depend on dimensionality, but rather on the fact that
the probability p to die at the deep trap becomes vanishingly small for sufficiently large N (correspondingly, the probability
to die at a any other site is almost one). A simple probabilistic argument then yields the above result [28,29].

On the other hand, it is possible to refine the approximation given by Eq. (40) by taking as a starting point the Taylor-
expansion of Qd(1 − s):

Qd(1 − s) = Qd(1) +

∞∑
n=1

(−1)n

n!
Q (n)
d (1)sn. (41)

Now we particularize to d = 3. In that case, we already know that Q3(1) ∼ L0 and Q ′

3(1) ∼ L. It can also be numerically
checked that Q ′′

3 (1) ∼ L3. Let us conjecture that

Q (n)
3 (1) ∼ L2n−1, n ≥ 1. (42)

This conjecture is supported by the following heuristic argument. From Eqs. (27) and (28) one can see that one of the main
contributions to Q (n)

3 (1) comes from Q (n)
1 (1)/L2 and, according to Eq. (14), Q (n)

1 (1) ∼ L2n+1. Under this premise, Eq. (41) yields

Q3(1 − s) = q0 + L−1
∞∑
n=1

(−1)nqn
n!

(sL2)n, (43)

where

q0 ≡ Q3(1) ∼ L0, (44a)

qn ≡
Q (n)
3 (1)
L2n−1 ∼ L0, n ≥ 1. (44b)

Then, the first few terms in the expansion in powers of s of (N − 1)⟨n⟩/N2 are

N − 1
N2 ⟨n⟩ = q0 −

(
q20 +

q1
L2

)
Ns+

(
q30 +

2q0q1
L2

+
q2
2L3

)
(Ns)2 −

(
q40 +

3q20q1
L2

+
q0q2
L3

+
6q21 + q3

6L4

)
(Ns)3 +· · · . (45)
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We observe that, at any order in s, the dominant and subdominant terms depend on q0 and q1 only. Therefore, in the limit
of large L, we can neglect qn for n ≥ 2 and make the approximation

N − 1
N2 ⟨n⟩ ≈q0

[
1 − q0Ns + (q0Ns)2 − (q0Ns)3 + · · ·

]
−

q1Ns
L2

[
1 − 2q0Ns + 3(q0Ns)2 − 4(q0Ns)3 + · · ·

]
=

q0
1 + q0Ns

−
q1Ns
L2

1
(1 + q0Ns)2

≈
q0 − q1Ns/L2

1 + Ns(q0 − q1Ns/L2)
. (46)

In summary, if N ≫ 1, we can expect that

⟨n⟩
N

≈
N

N − 1
Q3(1) − Q ′

3(1)s
1 + Ns[Q3(1) − Q ′

3(1)s]
, (47)

with Q3(1) and Q ′

3(1) given, respectively, by the approximations (24) and (34), is a reliable approximation for any s. If (at
finite Ns) one additionally neglects q1Ns/L2 versus q0 in Eq. (46), Eq. (40) is recovered. Table 2 shows that, in general, Eq. (47)
indeed represents an improvement over the already very accurate approximation (40) for s ≤ 0.1. Nevertheless, it can be
checked that, somewhat paradoxically, Eq. (40) ismore accurate than Eq. (47) for s > 0.414, s > 0.205, s > 0.130, s > 0.092,
s > 0.069, and s > 0.054 if L = 5, 7, 9, 11, 13, and 15, respectively. Essentially, the reason is that the linear approximation
Q3(1 − s) ≈ Q3(1) − Q ′

3(1)s does not perform well when being extrapolated to the region s ∼ Q3(1)/Q ′

3(1) (or, equivalently,
to the region s ∼ L−1).

Finally, we note that in two dimensions the approximation corresponding to Eq. (40) turns out towork verywell for s = 0
thanks to the detailed knowledge of the behavior of Q2(1) in terms of the coefficients {ai}. When s > 0, the approximation
remains good, but performs worse than in the d = 3 case. A refined approximation based on the d = 2 analog of Eq. (47)
yields only a very modest improvement.

A limitation of both Eqs. (40) and (47) is their inconsistency with the boundary condition ⟨n⟩ = 1 at s = 1, which must
hold regardless of the value ofN . Such a boundary condition is equivalent to the relationQd(0) = 1−N−1. Obviously, neither
Q3(1 − s) ≈ Q3(1) nor Q3(1 − s) ≈ Q3(1) − Q ′

3(1)s satisfies this requirement. This shortcoming prompts one to consider the
introduction of a two-point Padé approximant for Q3(1 − s) that satisfies the boundary condition Q3(0) = 1 − N−1 while
simultaneously reproducing Q3(1) and Q ′

3(1) . Such an approximant reads

Q Padé
3 (1 − s) =

Q3(1)(1 − s) + (1 − N−1)Bs
1 − s + Bs

, (48)

where

B ≡
Q ′

3(1)
Q3(1) − 1 + N−1 . (49)

The associated approximation for ⟨n⟩ is then

⟨n⟩
N

≈
N

N − 1
Q Padé
3 (1 − s)

1 + NsQ Padé
3 (1 − s)

. (50)

Table 2 shows that Eq. (50) performs excellently well, generally outperforming both Eqs. (40) and (47), especially for large N
and sufficiently large s. Given that Eq. (50) does not require more coefficients than those already present in Eq. (47), it is our
recommended approximation. In fact, we have checked that Eq. (48) is more accurate than higher-order Padé approximants
that can be constructed by using the exact property Q ′

d(0) = −N−1.
A test of the approximations (48)–(50) for d = 1 and d = 2 shows a very good performance as well, although inferior to

the three-dimensional case. For instance, if s = 0.1 and L = 15, the error in the analogs of Eq. (50) is 0.04% and 0.11% for
d = 1 and d = 2, respectively.

4.3. Two-walker problem

The above results are for a single diffusing reactant and a static co-reactant (reaction center), with the remaining sites of
the reaction space either passive (s = 0) or activated (s ̸= 0). We now suppose that the co-reactant is no longer immobile,
implying that both reactant and co-reactant can be viewed as two identical walkers performing synchronous displacements
between nearest-neighbor sites at each time step. Here, attempts to exchange the position of both walkers become possible,
and one must specify what happens in this case. To account for excluded volume effects, we shall assume (as in previous
references [31,32]) that both walkers are instantaneously reset to their previous positions. The only case in this genre for
which exact numerical results are available corresponds to d = 2 and no background trapping (s = 0) (see Refs. [31,32]).

We present in Tables 3 and 4 aMC study for the case of two co-reactants diffusing, without andwith background trapping.
The prescribed simulation accuracy was the same as in the one-walker case (amplitude of the 95% confidence intervals
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Table 3
Role of the probability s in influencing reaction efficiency in the two-walker problem. The reaction space is a d = 2, L × L square-planar lattice subject to
periodic boundary conditions. The tabulated quantity is ⟨n⟩/N . For s = 0.01, ‘‘MC I (II)’’ denotes MC simulation results for process I (II). ‘‘Markov’’ denotes
values obtained from Markov theory.
L s Markov MC s MC I MC II

3 0 0.8889 0.8891 0.01 0.7805 0.8925
5 0 1.0429 1.0436 0.01 0.6943 1.0173
7 0 1.1561 1.1559 0.01 0.5463 1.0004
9 0 1.2435 1.2435 0.01 0.4145 0.8887
11 0 1.3129 1.3128 0.01 0.3150 0.7503

Table 4
Role of the probability s in influencing reaction efficiency in the two-walker problem. The reaction space is a d = 3, L×L×L cubic lattice subject to periodic
boundary conditions. The tabulated quantity is ⟨n⟩/N .‘‘MC I (II)’’ denotes MC simulation results for process I (II).
L s MC s MC I MC II s MC I MC II s MC I MC II

3 0 0.9826 0.005 0.7830 0.9832 0.01 0.6513 0.9453 0.1 0.1678 0.3925
5 0 1.0693 0.005 0.4599 0.8613 0.01 0.2935 0.6597 0.1 0.04077 0.1096
7 0 1.1126 0.005 0.2318 0.5519 0.01 0.1297 0.3494 0.1 0.01517 0.04185
9 0 1.1379 0.005 0.1228 0.3261 0.01 0.06497 0.1879 0.1 0.00718 0.01997
11 0 1.1544 0.005 0.07072 0.1977 0.01 0.03652 0.1089 0.1 0.00394 0.01010

< 0.01). Our study is restricted to odd lattices, since on an even lattice the two walkers never meet for certain initial
conditions, implying that the joint walk never terminates in the s = 0 case.

In the two-walker case, application of the generating function approach is complicated by the fact that in the comoving
frame defined by one of the walkers the other walker performs a random walk with varying step length. In addition, this
random walk becomes inhomogeneous as a result of the walkers’ hard core interaction when attempting to exchange
positions. However, as noted in our earlier remarks, the theory of finite Markov processes can still be mobilized to obtain
analytic results. In this case, the transient states of the corresponding Markov chain are not specified by the position of the
walker with respect to an immobile site (as in the one-walker problem), but rather by the relative position of one walker
with respect to the other.

The analytic calculations given in Refs. [31,32] for the square planar lattice and s = 0 were performed according to the
above procedure. Comparison between the numerically exact results obtained therein and MC results (respectively labeled
‘‘Markov’’ and ‘‘MC’’ in Table 3) is again excellent (the relative difference is of the order of 10−3 or less). These results are
important, since they provide a level of confidence in simulations, which can then be used reliably to extend the results to
more general situations.

As already mentioned, to our knowledge there are no analytic results available for the two-walker problem in d = 2
reaction spaces with s > 0, nor any results in d = 3 for any s. Simulation results for special cases in this parameter regime
are shown in Tables 3 and 4. Two types of situations are considered: process I, in which the joint walk is instantaneously
terminated if the two walkers meet at the same lattice site or if either of the walkers dies at any site prior to encounter; and
process II, in which the walk is terminated if the two walkers meet at the same lattice site or if both of them are trapped at
any site prior to encounter.

5. Discussion

As reviewed in Ref. [5], a myriad of physical problems provide experimental realizations of the consequences of
background trapping on the efficiency of reaction between a pair of randomly diffusing co-reactants localized on a d = 2
template. In the context of, say, heterogeneous catalysis, the question is whether, and to what extent, degradation owing
to catalyst poisoning (in our case, a decrease in the probability s) has the same influence when the dimensionality of the
reaction space increases from d = 2 to d = 3. An exact comparison is possible only for lattices in d = 2 and d = 3 with the
same number N of lattice sites. Here, for the square-planar and simple cubic lattices used to model the reaction space, we
can analyze one lattice pair for which this constraint is nearly satisfied.

For the 11 × 11 square-planar lattice, the number of lattices sites (121) is close to the 125 sites defining the 5 × 5 × 5
cubic lattice. Geometrically, expanding the reaction space from d = 2 to d = 3 puts more background sites closer to the
static target molecule; thus, for s = 0, the mean walklength in d = 2, ⟨n⟩ = 209.9, is larger than in d = 3, ⟨n⟩ = 157.3. If
one now switches from s = 0 to s = 0.01 (see Tables 1 and 2), the mean walklength decreases by 68% in d = 2 and by 61%
in d = 3. The example suggests that when background sites are activated, their relative influence on the reaction efficiency
is greater in d = 2 than in d = 3. This conjecture is confirmed by the following argument. For d = 2 the walklength grows
more rapidly with N as for d = 3 (∼ N logN vs. ∼ N), and so the walklength becomes larger in d = 2. However, activating
background trapping tends to negate geometry-induced differences in the reaction efficiency for sufficiently large N , and
the walklength drops to a value close to s−1 both in d = 2 and in d = 3. This means that the decrease with respect to the
value of ⟨n⟩ for the case where background trapping is absent is more pronounced in the two-dimensional case. For d = 1,
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one has ⟨n⟩ ∼ N2 when s = 0 [24], implying that activation of background trapping is expected to have an even stronger
impact than in d = 2,3.

A comparison similar to the above one can be made for the two-walker problem. As reported in Tables 3 and 4 (see MC
I), the mean walklength before the reactive process terminates is ⟨n⟩ = 158.9 in d = 2 and ⟨n⟩ = 133.7 in d = 3 for the
s = 0 case, a result in qualitative agreement with the behavior noted in the previous paragraph. When background trapping
is turned on (s = 0.01), the mean walklength decreases by 76% in d = 2 and by 72.6% in d = 3. For the process II, the
relative decrease in the walklength is also higher in d = 2 (cf. MC II in Tables 3 and 4). Thus, for both variants, I and II, of the
two-walker problem, we arrive at the same conclusion as for the one-walker case.

Having analyzed the influence of a change in s in different spatial dimensions,we now turn to the study of the comparative
efficiency of the one-walker problem (first-order kinetics) and the two-walker problem (second-order kinetics) in different
spatial dimensions, both with and without background trapping (s = 0.01 and s = 0, respectively). For the two-walker
problem, taking again the cases of the 5 × 5 × 5 lattice and the 11 × 11 as a reference, one finds that the value of the
walklength is in all cases smaller in d = 3 than in d = 2, i.e., the reaction is more efficient in three dimensions. While this
was already known to be true for the one-walker problem, here it is also corroborated for the two-walker problem.

Finally, we note that, irrespective of the value of s, when the second co-reactant becomes mobile, the relative decrease
in the walklength is larger in d = 2 than in d = 3. In lower dimensions mixing effects due to enhanced diffusion have a
stronger impact on the efficiency of the underlying diffusion-controlled process, since the geometric constraints imposed
by the template are more severe, and mobility is important to increase the rate of reactive collisions.

Let us now discuss possible implications of our findings for a simple model of catalyst activation. Assume that the lattice
represents a catalytic substrate with active sites subject to inhomogeneous degradation. The case s = 1would correspond to
a perfect catalyst, whereas the case s < 1 would imply that all the sites but one suffer partial deactivation. Local differences
in the degree of activation of individual catalytic sites (selective poisoning) may arise owing to differences in affinity of the
chemisorbed poison species [6]. In the present case, if one takes a perfect catalyst as a starting point (s = 1), as catalyst
degradation progresses, one initially has universal 1/s behavior in d = 2 and d = 3, but then the trapping time increases
faster in d = 2, implying that a d = 3 lattice is more robust against the deactivation process.

While the type of inhomogeneous catalyst degradation considered here may seem rather specific, we point out that, due
to the translational invariance of the lattice, the results for the one-walker case are more general than what they might look
at first sight since (a) they do not depend on the specific location of the lattice site immune to poisoning (deep trap), which
may actually be chosen at random, and (b) for a lattice of a given size containing a deep trap, the result also holds for any
lattices constructed by juxtaposing n replicas of the original lattice (each of them containing one deep trap). Note also that,
according to the scheme (1), if one imposes confining rather than periodic boundary conditions on an odd lattice, our results
continue to hold, since any time the walker attempts to leave the lattice, it bounces back to the same site, implying that the
symmetry class is conserved (as is the case for the periodic lattice).

The above results also emphasize that the simplest inhomogeneity in the catalyst deactivation process suffices to induce
interesting, nonlinear behavior. This finding acquires special relevance when considering the recent, rapidly accelerating
progress in the design of nanocatalysts at the level of their individual constituents [33,34]. If the site degradation probability
1 − s is assumed to be proportional to the concentration c of the poisoning agent in a certain regime, the asymptotic 1/s
behavior of the walklength (corresponding to homogeneous, non-selective poisoning) results in a linear decrease of the
‘‘reaction rate’’ 1/⟨n⟩ quantifying the catalytic efficiency as a function of c. However, a single site immune to poisoning
suffices to destroy this linear dependence, resulting in dramatic deviations for increasingly small systems (decreasing N).
For instance, under the above assumption, one has s = 1 − µc , where µ is a suitably chosen proportionality constant.
Inserting this ansatz into the expressions given in Appendix B, the nonlinear behavior in c can be characterized in more
detail for the d = 3 case. Taken together with the results in Ref. [5], the general conclusion reaffirms that the observed
nonlinearities are very sensitive to the geometric details of the support, and notably to dimensionality and finite size effects.

A refinement of the present model may unveil interesting features for systems where selective poisoning takes place and
a nonlinear dependence of the catalytic activity on c are observed (e.g., catalytic reactions facilitated by acid zeolites [6], or
the conversion of para-H2 on a Pt-foil in the presence of CO poisoning [35]).

Finally, let us turn our attention to the problem of exciton trapping in photosynthetic units. A basic model considered by
Montroll [24] is inspired by the idea that chlorophyll molecules form some kind of regular lattice in which exciton traps are
embedded. Each chlorophyllmolecule has the same a prioriprobability to capture a photon and to convert it into an excitation
which performs a lattice walk until it reaches a (static) reaction center. This trapping event then triggers production of sugar
and carbohydrates. Here, two scenarios are possible.

First, all lattice sites may be regarded as reaction centers, one of which is fully activated, with the remaining N − 1 sites
partially so. Here, turning on the trapping at background sites increases the efficiency of the photosynthetic event. Even for
small values of s, these imperfect traps increase dramatically the rate ⟨n⟩−1 of the photosynthetic process. Here, increasing s
becomes advantageous for photosynthesis, as is also the case for the catalyst system.

Conversely, the reaction site is assumed to be aperfect trap,whereas all other sites are considered to be identical imperfect
traps with absorption probability s (the case elaborated in [5] and referenced in Section 1). These traps may ‘‘kill’’ the
exciton prematurely, i.e., before it is trapped by the reaction center. Even for small values of s, these imperfect traps reduce
dramatically the probability p = 1− s⟨n⟩ of the excitation arriving at the reaction center. Thus, increasing s is a disadvantage
for photosynthesis, as opposed to the catalyst system, where the reaction rate grows when s becomes larger.
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For a given value of s and a fixed value of N , the walklength is larger in d = 2 than in d = 3, therefore p remains larger in
d = 3 over the whole range of s. However, differences become much less pronounced in the limits of large N and/or s close
to 1, since ⟨n⟩ → 1/s in both cases.

6. Conclusions and outlook

In this work, we have extended previous calculations for the walklength of a mortal Pólya walker on periodic lattices in
d = 1 and d = 2 to the case of the sc lattice d = 3. We have also relaxed the original restriction of a static co-reactant
by allowing for the possibility that both co-reactants perform (mortal) Pólya walks. For lattices with similar values of N ,
the relative decrease in the walklength when background trapping is turned on is larger the lower the spatial dimension.
Inasmuch as the analytic difficulties encountered in seeking a closed expression for the walklength in terms of the lattice
size are extremely challenging, we have developed and assessed the worth of several approximations, notably one based on
a two-point Padé approximant which works surprisingly well. In our route to these results, we have been led to compute
semiempirically the first finite size corrections to the sc lattice Green function. These results will hopefully pave the way for
the study of many space exploration properties of random walks in sc lattices. A first consequence is the already noted
discrepancy at the level of the first subdominant term between our result for the walklength on the sc lattice and the
corresponding result reported earlier by Montroll for the s = 0 case [24].

A possible extension of the results for the one-walker problem to dimensions d > 3 would in principle lead to the
cumbersome task of computing generating functions involving an increasing number of nested sums. While this problem
is beyond the scope of the present work, we have derived (see Appendix E) an alternative, integral representation of Pd(z)
which might prove useful to investigate the behavior of the walklength in higher dimensions, viz.,

Pd(z) =
d
z

∫
∞

0
dζ e−ζd/z

(
1
L

L−1∑
k=0

eζ cos(2πk/L)

)d

. (51)

A second extension of the present work would consist in computing higher-order moments of the walklength for the
one-walker problem. The moments can be expressed in terms of higher order z derivatives of Pd(z). For small enough values
of s, the initial-condition-averaged variance

1
N − 1

∑
ℓ̸⃗=

−→
0

(
⟨n2

⟩ℓ⃗ − ⟨n⟩2
ℓ⃗

)
(52)

is expected to be large (actually, of the order of ⟨n⟩2 itself [36]), especially because of the contributions from sites ℓ⃗ which
are far away from the origin

−→
0 . This reflects the large trajectory-to-trajectory scattering observed in different realizations

of the random walk. Hence, one anticipates that a modest increase in swill decrease this variability drastically.
We also note that the generating function method can be used to compute the mean walklength ⟨n⟩−→0 (and higher order

moments) for the case where the walker is allowed to start at the static deep trap, and is only absorbed the first time it
revisits the trap (provided that it has not been killed before as a result of background trapping). While a detailed study is
beyond the scope of the present work, it is straightforward to derive the identity ⟨n⟩−→0 = [sPd(1 − s)]−1, from which one
would proceed to determine the moments.

These are of course only some possibilities out of many space exploration properties that can be extracted from Qd(z)
and the associated higher-order z-derivatives evaluated at z = 1 − s. Examples include the mean number of distinct sites
visited after a given number of time steps (of special relevance for rate theories of diffusion controlled reactions), the average
number of sites revisited at least or exactly a given number of times, the average number of returns to the origin, etc. [9,11].

To extend the presentwork, one could also considermore complicated settings involving (a) inhomogeneous background
trapping, whereby each site i is assigned a different trapping probability si, and (b) inhomogeneous diffusion, where the
mobility of the particle/excitation at certain sites is decreased drastically as a result of large activation barriers or absorption
processes followed by reemission, say. Of special interest in this context is the computation of the probability that the walk
is terminated at a given site (splitting probability), as well as of the associated conditional mean walklength [37,38].

In both situations (a) and (b), the translational invariance of the lattice is broken, and one must deal with defective
lattices.When a translationally invariant lattice is perturbed by introducing a (very) small number of defects (trapping sites),
generating function approaches can still be used [22,39]. However, with increasing number of trapping sites such approaches
quickly becomes impractical. Up to some exceptions, a similar remark applies to the case of boundary conditions other than
periodic, often used to describe rather common experimental situations, such as confining or open boundaries. In all of such
cases, it is preferable to apply Markov theory in tandem with MC simulations.

Summarizing, we have shown that three different approaches, viz. the Markov method, the generating function method,
and MC simulations, can be mobilized to obtain results of interest in the lattice theory of diffusion-controlled chemical
reactions and/or physical processes. The results obtained using this triangulated approach mutually reinforce and com-
plement each other. Our results suggest that the theoretical insights obtained can serve to cast light on two complex
problems, i.e., diffusion on apartially poisoned catalytic substrate andphotosynthetic trapping of excitations. Amore realistic
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application of our three-fold approach to either problem is possible, butwould require a full-length study, one inwhich there
is a concrete interface with existing experimental data.
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Appendix A. Site specific walklengths for the 5 × 5 lattice

⟨n⟩1 = 8
15 + 23s − 3s2 − 3s3

5 + 161s + 158s2 − 50s3 − 19s4 + s5
, (A.1)

⟨n⟩2 = 2
75 + 94s − 28s2 − 14s3 + s4

5 + 161s + 158s2 − 50s3 − 19s4 + s5
, (A.2)

⟨n⟩3 = 16
10 + 11s − 4s2 − s3

5 + 161s + 158s2 − 50s3 − 19s4 + s5
, (A.3)

⟨n⟩4 = 2
85 + 80s − 30s2 − 8s3 + s4

5 + 161s + 158s2 − 50s3 − 19s4 + s5
, (A.4)

⟨n⟩5 = 4
45 + 33s − 9s2 − 5s3

5 + 161s + 158s2 − 50s3 − 19s4 + s5
. (A.5)

Appendix B. Derivation of absorption probabilities at the deep trap

The probability that a mortal walker starting at site ℓ⃗ ̸= 0⃗ hits the deep trap located at 0⃗ exactly after n steps is [5]

pT ,n(ℓ⃗) = (1 − s)nFn(ℓ⃗), (B.1)

whereFn(ℓ⃗) is the probability to hit the deep trap in the absence of background trapping. The above equation follows directly

from the notion of conditional probability. In terms of the generating function F(ℓ⃗, z) ≡
∑

∞

n=0 Fn(ℓ⃗)zn one has

pT ,n(ℓ⃗) =
(1 − s)n

n!
∂n

∂zn
F(ℓ⃗, z)

⏐⏐⏐
z=0

(B.2)

On the other hand, one has the well-known relation [23]

F(ℓ⃗, z) =
P(ℓ⃗, z)

P(0⃗, z)
, (B.3)

where

P(ℓ⃗, z) =

∞∑
n=0

Pn(ℓ⃗)zn. (B.4)

Inserting Eq. (B.3) into Eq. (B.2), averaging the resulting equation over the N − 1 possible locations of the starting site ℓ⃗,
and taking into account the probability conservation relation

∑
ℓ̸⃗=0⃗ P(ℓ⃗, z) + P(0⃗, z) = (1 − z)−1, Eq. (8) for the initial-

condition-averaged probability pT ,n = (N − 1)−1∑
ℓ̸⃗=0⃗ pT ,n(ℓ⃗) follows, where the short-hand notation Pd(z) ≡ P(0⃗, z) has

been used.

Appendix C. Overall walklengths for sc lattices of increasing size

C.1. 2 × 2 × 2

⟨n⟩ =
1
7
116 − 52s − s2

2 + 14s − 7s2
. (C.1)
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C.2. 3 × 3 × 3

⟨n⟩ =
18
13

22 + 7s − 3s2

1 + 30s + 9s2 − 4s3
. (C.2)

C.3. 4 × 4 × 4

⟨n⟩ =
4
63

6068 + 4772s − 7093s2 + 952s3 + 484s4 − 80s5

5 + 286s + 291s2 − 444s3 + 61s4 + 30s5 − 5s6
. (C.3)

C.4. 5 × 5 × 5

⟨n⟩ =
1
31

(
1341250 + 5413125s + 4313750s2 − 1113875s3 − 1444050s4 + 65975s5

+109450s6 − 6825s7 − 784s8
)
/
(
275 + 44250s + 174575s2 + 137815s3 − 36195s4

−46213s5 + 2173s6 + 3501s7 − 220s8 − 25s9
)
. (C.4)

Appendix D. Derivation of finite size corrections to Q3(1)

D.1. Formally exact expressions for Q3(1)

From the nested relations (27), (28), and from Eq. (29) one finds for z = 1

Q2(1) =
2
L
Q1(1) + R2, (D.1)

Q3(1) =
3
2L

[Q2 (1) + R2] + R3

=
3
L
Q2 (1) −

3
L2

Q1(1) + R3, (D.2)

where we have introduced the quantities

R2 ≡
2
L

L−1∑
k1=1

P1
(

1
2−C1

)
2 − C1

, (D.3)

R3 ≡
3
L2

L−1∑
k1=1

L−1∑
k2=1

P1
(

1
3−C1−C2

)
3 − C1 − C2

. (D.4)

Eqs. (9) and (14) allow one to perform the decomposition P1(z) = P1A(z) + P1B(z) with

P1A(z) ≡
1

√
1 − z2

, P1B(z) ≡
1

√
1 − z2

2 [X(z)]L

1 − [X(z)]L
. (D.5)

Consequently, R2 and R3 may also be decomposed as R2 = R2A + R2B and R3 = R3A + R3B, respectively. In particular,

R2A =
1
L

L−1∑
k1=1

F0

(
πk1
L

, 0
)

, (D.6a)

R3A =
3
2L2

L−1∑
k1=1

L−1∑
k2=1

F0

(
πk1
L

,
πk2
L

)
, (D.6b)

where

F0(x1, x2) ≡
1√

sin2 x1 + sin2 x2

1√
1 + sin2 x1 + sin2 x2

. (D.7)

Combining Eqs. (D.1) and (D.2),

Q3(1) =
3
L2

Q1(1) + T3A +
3
L
R2B + R3B, (D.8)
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where

T3A ≡
3
L
R2A + R3A

=
3
2L2

L∑
k1=0

L−1∑
k2=1

F0

(
πk1
L

,
πk2
L

)
. (D.9)

Now we consider the asymptotic properties for L ≫ 1.

D.2. Asymptotic behavior of R2B and R3B

Let us write R2B [cf. Eq. (D.3)] as

R2B =
4
L

[L/2]∑
k1=1

P1B
(

1
2−C1

)
2 − C1

, (D.10)

where [L/2] stands for the integer part of L/2 and we have taken into account that cos(2π − x) = cos x. We now follow
Montroll’s method [24], according to which only the first few terms are relevant. Let us define

z1 ≡
1

2 − cos 2πk1
L

. (D.11)

Then, for small k1/L,

z1√
1 − z21

=
L

2πk1
−

πk1
6L

+ · · · , (D.12a)

X(z1) = 1 −
2πk1
L

+
2π2k21
L2

+ · · · , (D.12b)

[X(z1)]L = e−2k1π

(
1 +

2π3k31
3L2

−
π5k51
3L4

+ · · ·

)
. (D.12c)

Therefore,

R2B = r (0)2B +
r (2)2B

L2
+ O(L−4), (D.13)

where the dominant contribution in the large size limit

r (0)2B =
4
π

∞∑
k1=1

1
k1

e−2πk1

1 − e−2πk1
= 0.00238437 · · · (D.14)

is obtained by taking L → ∞ in the upper limit of the sum in Eq. (D.10). Further, one has

r (2)2B =
4π
3

∞∑
k1=1

k1
e−2πk1

1 − e−2πk1

(
2πk1

1 − e−2πk1
− 1

)
= 0.04183562895 · · · . (D.15)

Analogously, in the case of

R3B =
12
L2

[L/2]∑
k1=1

[L/2]∑
k2=1

P1B
(

1
3−C1−C2

)
3 − C1 − C2

(D.16)

we define

z12 ≡
1

3 − cos 2πk1
L − cos 2πk2

L

. (D.17)

Then, for small k1/L and k2/L,

z12√
1 − z212

=
L

2πk
−

π

6L
k4 + k21k

2
2

k3
+ · · · , k ≡

√
k21 + k22, (D.18a)
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X(z12) = 1 −
2πk
L

+
2π2k2

L2
+ · · · , (D.18b)

[X(z12)]L = e−2πk
[
1 +

2π3(k4 − k21k
2
2)

3kL2
−

π5(15k8 − 16k4k21k
2
2 − 5k41k

4
2)

45k3L4
+ · · ·

]
. (D.18c)

Consequently,

R3B =
r (1)3B

L
+

r (3)3B

L3
+ O(L−5), (D.19)

with

r (1)3B =
12
π

∞∑
k1=1

∞∑
k2=1

1
k

e−2πk

1 − e−2πk = 0.000376447 · · · , (D.20a)

r (3)3B = 4π
∞∑

k1=1

∞∑
k2=1

1
k2

e−2πk

1 − e−2πk

[
2π

k4 − k21k
2
2

1 − e−2πk −
k4 + k21k

2
2

k

]
= 0.0138005442 · · · . (D.20b)

D.3. Asymptotic behavior of T3A

Again, we closely follow Montroll’s approach [24], originally devised for R2A. First, we define the function

F (x1, x2) ≡ F0(x1, x2) −
1√

x21 + x22
−

1√
(π − x1)2 + x22

−
1√

x21 + (π − x2)2
−

1√
(π − x1)2 + (π − x2)2

(D.21)

and decompose T3A as follows,

T3A = T3A,1 + T3A,2, (D.22)

where [cf. Eq. (D.9)]

T3A,1 ≡
3
2L2

L∑
k1=0

L−1∑
k2=1

F
(

πk1
L

,
πk2
L

)
, (D.23a)

T3A,2 ≡
6
πL

L∑
k1=0

L−1∑
k2=1

1√
k21 + k22

. (D.23b)

D.3.1. Euler–Maclaurin formula
According to the Euler–Maclaurin summation formula [40],

1
L

L−1∑
k=1

f
(

πk
L

)
=

1
π

∫ π

0
dx f (x) −

1
2L

[f (0) + f (π )] +
π

12L2
[
f ′(π ) − f ′(0)

]
+ O(L−4), (D.24)

where f (x) is assumed to be a continuous function in the interval 0 ≤ x ≤ π . Let us consider a function F (x1, x2) well defined
at x1 = x2 = 0 and with the symmetry properties F (x1, x2) = F (x2, x1) = F (π − x1, x2). Then, double application of the
Euler–Maclaurin formula yields

1
L2

L−1∑
k1=1

L∑
k2=0

F
(

πk1
L

,
πk2
L

)
=

1
π2

∫ π

0
dx1

∫ π

0
dx2 F (x1, x2) −

1
3L2

∫ π

0
dx2 Fx1 (0, x2)

−
1
L2

F (0, 0) −
π

6L3
lim
x1→0

[
Fx1 (x1, 0) − Fx2 (x1, 0)

]
+ O(L−4), (D.25)

where Fx1 (x1, x2) ≡ ∂x1F (x1, x2) and Fx2 (x1, x2) ≡ ∂x2F (x1, x2). Because of the symmetry properties of F , one has Fx2 (x1, x2) =

Fx1 (x2, x1). Therefore, if the value of Fx1 (x1, x2) at x1 = x2 = 0 is well defined [i.e., limx1→0 limx2→0 Fx1 (x1, x2) =

limx2→0 limx1→0 Fx1 (x1, x2)], then the termofO(L−3) in Eq. (D.25) vanishes. On the other hand, if limx1→0 limx2→0 Fx1 (x1, x2) ̸=

limx2→0 limx1→0 Fx1 (x1, x2), the term of O(L−3) is not necessarily zero.
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D.3.2. T3A,1
We now identify F (x1, x2) with the function defined by Eq. (D.21) and apply the Euler–Maclaurin formula (D.25) to T3A,1

[cf. Eq. (D.23)]. For details see e.g. [41]. The result is

T3A,1 = t (0)3A,1 +
t (2)3A,1

L2
+

t (3)3A,1

L3
+ O(L−4), (D.26)

with

t (0)3A,1 =
3

2π2

∫ π

0
dx2

∫ π

0
dx1F (x1, x2)

= −1.85021305488 · · · , (D.27a)

t (2)3A,1 =
12 + 5

√
2

4π
. (D.27b)

Since Fx1 (x1, x2) is not univocally defined at x1 = x2 = 0 [in fact, limx1→0 limx2→0 Fx1 (x1, x2) − limx2→0 limx1→0 Fx1 (x1, x2) =

−
1
3 ], it turns out that the coefficient t (3)3A,1 is different from zero. An empirical fit gives

t (3)3A,1 = 0.6181(1). (D.28)

The digit enclosed by parentheses is a conservative estimate of the error bar in the last digit. The fit (D.28) is obtained by
evaluating

[
T3A,1 − t (0)3A,1 − t (2)3A,1L

−2
]
L3 at L = 500, 1000, 2000, and 3000, which yields 0.618054, 0.618059, 0.618073, and

0.618085, respectively. A quadratic extrapolation to L → ∞ gives the value 0.618091. The same procedure confirms that
the remainder in Eq. (D.26) is indeed O(L−4).

D.3.3. T3A,2
Next, we consider the term T3A,2 defined by Eq. (D.23b). We eliminate one of the summations by means of the Euler–

MacLaurin formula (D.24). The result is

T3A,2 = S1 + S2 +
ϵ

L
+ O(L−4), (D.29)

where

S1 ≡
3
πL

L−1∑
k=1

(
1
k

− 2 ln
πk
L

)
, (D.30a)

S2 ≡
6
πL

L−1∑
k=1

ln

⎡⎣π +

√
π2 +

(
πk
L

)2
⎤⎦+

3
L2

L−1∑
k=1

1√
π2 + ( πk

L )2
−

π2

2L3

L−1∑
k=1

1[
π2 + ( πk

L )2
]3/2 , (D.30b)

and ϵ/L accounts for small contributions to T3A,2 not captured by the Euler–Maclaurin formula. The numerical value of ϵ can
be empirically measured as

ϵ = 0.003510438(1). (D.31)

This is obtained by evaluating
[
T3A,2 − S1 − S2

]
L up to L = 500 and extrapolating to L → ∞. This also confirms that the

remainder in Eq. (D.29) is O(L−4).
The sum S1 can be explicitly evaluated as

S1 =
3
πL

[
ln L + γE −

1
2L

−
1

12L2
+ O(L−4) + 2(L − 1) ln

L
π

− 2 ln(L − 1)!

]

=
3
π

[
2 − lnπ2

+
γE + ln π

2

L
−

2
3L2

−
1

12L3
+

1
180L4

]
+ O(L−5), (D.32)

where γE is the Euler constant.
As for S2, reapplication of the Euler–Maclaurin formula yields

S2 =
6
π2

∫ π

0
dx ln

[
π +

√
π2 + x2

]
−

3
πL

ln[2(1 +
√
2)π2

] +
1

2π (2 +
√
2)L2

+
3
πL

∫ π

0

dx
√

π2 + x2
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−
3(1 +

√
2)

2
√
2πL2

−
1

8
√
2πL3

−
π

2L2

∫ π

0

dx(
π2 + x2

)3/2 +
1 + 2

√
2

8
√
2πL3

+ O(L−4)

=
6
π

{
ln
[
(1 +

√
2)2π

]
− 1

}
−

3 ln 2π2

πL
−

4 + 5
√
2

4πL2
+

1
4πL3

+ O(L−4). (D.33)

Insertion of Eqs. (D.32) and (D.33) into Eq. (D.29) gives

T3A,2 = t (0)3A,2 +
t (1)3A,2

L
+

t (2)3A,2

L2
+ O(L−4), (D.34)

with

t (0)3A,2 =
12
π

ln
(
1 +

√
2
)

= 3.366599 · · · , (D.35a)

t (1)3A,2 = −
3
π

(ln 4π − γE) + ϵ = −1.862239324(1) (D.35b)

t (2)3A,2 = −
12 + 5

√
2

4π
= −t (2)3A,1. (D.35c)

D.3.4. T3A
Combining Eqs. (D.26) and (D.34) in Eq. (D.22), one finds

T3A = t (0)3A,1 + t (0)3A,2 +
t (1)3A,2

L
+

t (3)3A,1

L3
+ O(L−4). (D.36)

D.4. Final results

From Eqs. (29), (D.8), (D.13), (D.19), and (D.36), we finally obtain Eq. (24), where

b0 = t (0)3A,1 + t (0)3A,2 = 1.5163860 · · · , (D.37a)

b1 =
1
2

+ 3r (0)2B + r (1)3B + t (1)3A,2 = −1.354709757(1), (D.37b)

b3 = −
1
2

+ 3r (2)2B + r (3)3B + t (3)3A,1 = 0.2574(1). (D.37c)

Note that a rather compact expression for b0 is

b0 =
3

2π2

∫ π

0
dx2

∫ π

0
dx1F0(x1, x2)

=
6
π2

∫ π/2

0

dx
1 + sin2 x

K
(

1
(1 + sin2 x)2

)
, (D.38)

where K (x) is the complete elliptic integral of the first kind [cf. Eq. (22)]. It is worth noticing that the nonempirical
contribution to the coefficient b1 (i.e, without ϵ) accounts for 99.74% of its numerical value.

Appendix E. Integral representation of Pd(z)

By using the identity∫
∞

0
dζ exp

[
−ζ

(
d
z

−

d∑
i=1

Ci

)]
=

(
d
z

−

d∑
i=1

Ci

)−1

, (E.1)

Eq. (12) can be rewritten as

Pd(z) =
d
zLd

∫
∞

0
dζ e−ζd/z

L−1∑
k1=0

eζC1
L−1∑
k2=0

eζC2 · · ·

L−1∑
kd=0

eζCd
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=
d
z

∫
∞

0
dζ e−ζd/z

(
1
L

L−1∑
k=0

eζ cos(2πk/L)

)d

. (E.2)

The last term is precisely the representation (51).
It is instructive to rederive Eq. (51) in a different way, which illustrates how results for a periodic lattice can be obtained

fromknown results for the infinite lattice. The starting point is the generating functionP (∞)(
−→
ℓ , z) for the sojourn probability

at site
−→
ℓ = (ℓ1, . . . , ℓd) on an infinite hypercubic lattice. This lattice Green function is known to have the exact integral

form [2, p. 146]

P (∞)(
−→
ℓ , z) =

d
z

∫
∞

0
dζ e−ζd/z

d∏
j=1

Iℓj (ζ ), (E.3)

where In(·) stands for the nth-order modified Bessel function of the second kind. Clearly, a hypertorus of linear size L can
be thought of as an infinite lattice that has been wrapped onto itself an infinite number of times. Thus, the probability of
return to the origin of a Pólya walker on a hypertorus can be computed as a infinite sum of contributions stemming from
walker trajectories on an infinite lattice, whereby thewalker advances amultiple of the linear lattice size L along every spatial
direction. In other words,

Pd(z) ≡ P(
−→
0 , z) =

∑
−→
ℓ

P (∞)(
−→
ℓ L, z)

=

∞∑
ℓ1=−∞

∞∑
ℓ2=−∞

· · ·

∞∑
ℓd−1=−∞

∞∑
ℓd=−∞

P (∞)(ℓ1L, ℓ2L, . . . , ℓd−1L, ℓdL, z). (E.4)

(In this case, the sum includes the origin ℓ⃗ = 0.) Now, using the well known identity [42, p. 695 ]
∞∑
k=0

IkL(z) =
I0(z)
2

+
1
2L

L−1∑
k=0

ez cos(2πk/L) (E.5)

in Eq. (E.3), and switching to our short hand notation, we arrive at the result (51). Making the replacement z = 1− s in (51)
and inserting the result into Eq. (5), one finds a general expression for the walklength of a mortal walker in the presence of a
deep trap and background trapping. The above integral does not seem expressible in a closed form except in the case d = 1,
leading to the well-known result [cf. Eq. (14)]:

P1(z) =
1

√
1 − z2

1 + [X(z)]N

1 − [X(z)]N
. (E.6)
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