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The main ai~ of this paper is to obtain the velocity 
distribution function of a dilute gas far from equilibrium. 
Two shear flows with the same geometry are considered: 
stationary couette flow and uniform shear flow. Explicit 
expressions for the normal solution to the nonlinear 
Bhatnagar-Gross-Krook kinetic equation are derived. In the 
stationary couette flow, the distribution function is a 
universal nonanalytic function of the reduced shear rate and 
thermal gradient. In the uniform shear flow, the dependence 
on the shear rate is analytic only in the case of Maxwell 
molecules. 

1. INTRODUCTION 

While the statistical-mechanical description of t~ansport 
phenomena in states near equilibrium is sufficiently well-posed, the 
situation is much more complicated far from equilibrium. A great deal 
of the studies about rhls states come from nonequilibrium molecu!a~ 
dynamics simulations, some of them lacking a deep justification. ' 
on the other hand, theoretical advances are not yet significant enough 
to allow for a complete understanding of the problems involved. 

All of this prompts the consideration of a monatomic, dilute gas 
with a short-range interaction as a prototype system for the study of 
transport properties. Rather than a detailed description in terms of 
the phase-space probability density, it is preferable to use kinetic 
theory and characterize the state of the system by m~ans of the 
one-particle velocity distribution function (VDF) l(~,t;t). Tgis 
function is obtained as the solution to the Boltzmann equation (BE) 
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subject to appropriate initial and boundary conditions. From a 
hydrodynamic point of view, one is mainly interested in the so-called 
normal solution, that is expected to apply for times much longer than 
the mean free time gnd for distances from the walls much larger than 
the mean free path. The normal solution is characterized by the fact 
that all tpe space and time dependence enters through a functional 
dependence on the hydrodynamic fields, namely the local particle 
density 
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n.('/., t) = Jd~ I I ( 2) 

the local velocity 

(3) 

and the local temperature 

T('/.,t) = ~~ fd~ (~-~)e f. ( 4) 

In Eq. (4), m is the mass of a particle and ~ is the Boltzmann 
constant. The standard method to construct 7the normal solution is 
given by the Chapman-Enskog (C-E) theory, whi~h consists of an 
expansion of the VDF in powers of gradients of n, u, and T: 

( 5) 

Here, ~ is called the uniformity parameter and is defined as the ratio 
between the mean free pa~h and the hydrodynamig length scale over 
which the quantit}es n, u, or T change in space. Thus, ~ is of first 
order in the gradients of those quantities. The c-E method leads to 
the Navier-stokes equations (first order in ~) and provides 
expressiong ;or the transport coefficients in terms of the interaction 
potential. ' Beyond the scope of the Navier-stokes order, however, 
the usefulness of the C-E method is not free of problems. 

In an attempt to clarify some of these points, the following 
questions will be addressed in this paper: (i) Does the c-E expansion 
converge? (ii) Does there exist a normal solution beyond the range of 
applicability of the C-E expansion? (iii) Which are the qualitative 
features of the VDF far from equilibrium? (iv) Does the interaction 
law play a relevant role in the answers to the above questions? Among 
the wide diversity of possible nonequilibrium situations, we shall 
restrict ourselves here to two different states: stationary couette 
flow (SCF) and uniform shear flow (USF). In both cases the system is 
sheared in such a way that it moves along the x-direction with a flow 
velocity depending on y. otherwise, they are quite different. In the 
first case, the system is driven to a nonequilibrium steady state by 
walls in relative motion, so that the existence of boundary layers is 
in principle expected. Also, the velocity gradient induces a nonlinear 
temperature profile. In the case of USF, however, the velocity is the 
only inhomogeneous field. The state is time-dependent, but no boundary 
effects exist. 

In problems directly related to transport processes, the only 
exact solutions to th§ ~E we are aware of are those obtained by means 
of the moment method. ' Since we are mainly interested in obtaining 
explicit expressions for the VDF, we shall use the well-knoYB 
Bhatnagar-Gross-Krook (BGK) kinetic equation as a model of the BE. 
In this model, the Boltzmann collision term is approximated by a 
single-time relaxation towards the local equilibrium distribution: 

8 -t it I+ v.9f = - v (I- ILE ), ( 6) 

where 

( 7) 

is the local equilibrium VDF and v('/.,t) is the collision frequency. 
The latter is proportional to the density n and depends on the 
temperature T according to the interac.roion law. For instance, for 
repulsive potentials of the form V(r-)-r- , the collision frequency is 
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v <X n T'\ 01 = ~- ~ (8) 

The BGK equation retains the main physical properties of the 
verifict0ion of an H-theorem and conservation of mass, momentum, 
energy. Moreover, some transport properties predicteg 1~y the 
equation agree reasonably well with simulation results. ' 

BE: 
and 
BGK 

In the next section, an exact normal solution to the BGK equation 
is derived for the SCF. First, a formal solution is obtained for 
boundary conditions such that the Knudsen number vanishes near the 
walls, eliminating the boundary layer. Next, the symmetry of the 
problem is used to "guess" the appropriate hydrodynamic fields and the 
consistency of the resulting VDF is verified. In section 3, the 
solution of the BGK equation for the USF is addressed. In this case, 
the temperature increases in time, so that the collision frequency is 
not a constant, except for Maxwell molecules. As a consequence, a 
normal state in a strong sense is restricted to local equilibrium. 
However, a far from equilibrium normal state can be identified if a 
weaker condition is adopted. Finally, the conclusions are summarized 
in Section 4. 

2. STATIONARY COUETTE FLOW (SCF) 
r· . 

In the SCF, a·· gas enclosed between two infinite, parallel plates 
(orthogonal to the y-axis) reaches a steady state. The plates are kept 
in relative motion ;nd, generally, at different temperatures, so that 
a velocity profile u=u(y)~ and a temperature profile T(y) exist. A 
qualitative picture of the · expected profiles i~ 2 provided by the 
Navier-Stokes equations, yielding p=n~T=const. and 

( 9) 

= - ( 
8u )

2 
(r, /H ) - ' 

0 0 8l 
(10) 

where r, and H are the shear viscosity and the thermal conductivity, 
respect~vely, %nd l is a new length scale defined by 

dl = v(y) dy . ( 11) 

Thus, in the Navier-stokes order u is linear in l and T is a parabola. 
In the case of SCF, Eq. (6) becomes 

" -vy 8l I - - ( I - ILE >. (12) 

Equation (12) must be supplemented with appropriate boundary 
conditions. In the special case of diffuse boundary conditions, the 
half distributions for velocities directed off the walls are expressed 
in terms of3moments of the corresponding distributions .directed; int-o 
the walls. Since we are interested here in the normal state, a 
different approach will be taken. The formal solution to Eq. (12) is 

l -(l-l' )/V 

,/ J dl' e Y hE(l' , ~b , 
Y lo 

-(l-l )/V 

1a.'tJ> = e 
0 

Y la
0

.'tJ> + (13) 

~~:~e t~0e ~~s~~n~~b~~~~~:~~~t ~1~~:~ ~~ ~~e~a~~e ~~~~ t~~e te=~=~=i~;~~ 
at the walls are negligible as compared to the temperature in the bulk 
of the system .. More· explicitly, we choose l. as the point where T=O . 0 
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and impose the boundary condition 
.., 

f+(l
0

,v) = 0, 

where we have introduced the half distributions f+=9(±v )f. 
- :Y 

(14) 

In order to have an explicit expression for the VDF, one needs to 
insert the space dependence of the fields n(l), u(l), and T(l) into 
the right side of Eq. (13). The form of the profiles in Navier-stokes 
order, Eqs. (9) and (10), suggests to guess that 

p = const. , 

:~=a= const., 

In Eq. (17), y(a) is a dimensionless function of the shear rate a 
be determined by consistency. After some algebra, i¥~ertion into 
(13) of the profiles given by Eqs. (15)-(17) yields . 

3/2 2 t 
I If = 2@<t+@) e~ J dt C2t-(f-~)t2J-5'2 

+ LE & ~:Y O 

is the peculiar velocity relative to the thermal speed, 

(15) 

(16) 

(17) 

to 
Eq. 

(19) 

(20) 

is the (reduced) local thermal gradient, and ~/(&2+8y) 1 '2 . Both a 
and & play the role of independent uniformity parameters, 
quantitatively measuring the separation from equilibrium. 

Ihe other half distribution f_ is obtained by making the changes 
t--;-(, &--;-&, ~--;-~in the right side of Eq. (18). The VDF obtained in 
this way represents the normal solution to the BGK equation, valid in 
the bulk limit of the SCF state. It remains to verify the consistency 
of the assumptions (15)-(17). Equations (2) and (3) are identically 
satisfied with independence of the relationship between a and y. 
However, 1~q14 (4) only holds if y(a) is given by the implicit 
equation ' 

(21) 

where 

F(y) = ~ i:tJdw w e-w~J<o(2wtr2,rt'4), 
r o 

(22) 

J< being the zeroth-order modified Bessel function. 15 With the VDF 
k~own, all properties of interest can be calculated by quadratures. In 
particular, the fluxes of momentum, · 
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(23) 

and kinetic energy, 

are easily obtained. If one defines generalized shear viscosity n and 
thermal conductivity H by 

Pxy = - n ~JW~, (25) 

qy = - H 8Tr~, (26) 

then one gets 

(27) 

(28) 
r-

In the limit d~o. y~e/5 and F~t, so that the Navier-stokes 
transport coefficients are recovered. Howeve·r, Eqs. ( 21) and ( 22) show 
that F andy are nonanalytic at a=O. Therefore, the VDF is nonanalytic 
at asO and also at &=0. Consequently, a series expansion of 1 in 
powers of a and & (C-E expansion) is only asymptotic. Yet, it is worth 
mentioning that no dependence with & occurs in Eq. (28). This means 
that the heat flux is exactly linear in & (generalized Fourier's law), 
although with an a-dependent conductivity coefficient. 

3. UNIFORM SHEAR FLOW (USF) 

In contrast to the SCF, the USF is characterized by only one 
nonzero gradient: 

n = const., 7T = 0, 8ur~ = w = const. (29) 

Nevertheless, the total energy cannot be kept fixed, so that the 
temperature monotonically increases in time (viscous heating). 
Although external drag forces have1been proposed to account for this 
effect and get a stationary state, they will not be considered here. 
This state can be generated in the computer by applying generalized 
periodic boundary conditions, without any reference to rigid walls in 
relative motion. Thus, there are no boundary layers, but an initial 
layer is present. 

In the USF, the VDF becomes sp~t~a~ly uniform when it is expressed 
in terms of the peculiar velocity ~=v-~. Thus, the BGK equation reads 

8 8 
8s I + a Vy 8V I = - (I - ILE ), (30) 

X 

where s is a new time scale given by 

ds = v(t) dt. (31) 

and the shear rate a is defined as in Eq. (16): 

a = wv. (32) 

This is now the only uniformity parameter in the problem. As a 
consequence of the time-dependence of temperature, the reduced shear 
rate a also changes in t!~e. In the c~se of repulsive potentials for 
which Eq. (8) holds, ~ . Here, we shall restrict ourselves to this 
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type of interaction, with ~ ranging from 0 (Maxwell molecules) to t/e 
(hard spheres). Taking moments in Eq. (30), one gets a closed set of 
equations for the pressure tensor: 

8 
8s Ptj +a (pty0 jx + PJ'/'tx) = -(pij - p6t/· <33 ) 

In the case of Maxwell molecules, a is independent of s and 
becomi~ ltnear. In the long time limit (normal state), 
where ' 

The normal solution to Eq. (30) is then17 

Eq. (33) 
pcmxp(.,.,s), 

(34) 

I/ILE = e~e foods e-s e3.,.,(a:Js/e eas~Y8/8~x exp{-e.,.,_(a)s ~el. (35) 
0 

The generalized shear viscosity defined by Eq. (24) turns out to be16 

3 e nino = e .,.,_(a)/a (36) 

The VDF (35) is an analytic function at a=O. consequently, the C-E 
expansion in this case is convergent (for lal<~/3). However, the 
shape of 1 is greatly dist_2rted1;ar from equiiibrium. In particular, 
if a2B/3, 1 diverges when ~~0. 

In the more general case (O<~~t/e) the uniformity parameter a goes 
to zero in the long time limit s~oo. According to this, the normal 
solution is, strictly speaking, restricted to local equilibrium (a=O>. 
However, we shall adopt a weaker criterion and a normal state will be 
obtained in the limit of t~oo, but s (and a) finite. This can be 
accomplished by taking an' initial condition corresponding to 
(formallyi7a zero temperature. The technical steps are described 
elsewhere and here we only quote the final result: 

~ 3/e~ 
J0d~' e-(~-~·)/~ (~') 

't'-T' ~ 8/8~ f/ 
xe ~ Y x exp [- (~') ~ ~ e] , ( 3 7 ) 

where ~ and 't' are functions of a given by the differential equations 

8a e 3 
8~ = -:g a VJ( a> , ( 3 8 ) 

8't' 
8~ = a, (39) 

and VJ(a>=.n/n
0 

is the solution to a second order nonlinear differential 

equation16 with the boundary condition VJ(aj~q 8 when a~oo. This 
function is nonanalytic at a=O as long as ~>0. ' In consequence, 
the C-E expansion of the VDF given by Eq. .(37) is only asymptotic. 
Despite this fact, the shear viscosity VJ(a) for hard spheres (~=t/e) 
is quantitatively very close to the one for Maxwell molecules, Eqs. 
(36) and (34). 

The main qualitative difference between the VDF of Maxwell 
molecules, Eq. (35) and that of more general potentials, Eq. (37), is 
the presence of the delta term in the latter. It represents the 
contribution to the VDF of those particles that have not collided yet 
after a time equivalent to s=~/~ colli·sions per particle. In order . to 
show up the main features of Eq. (37) and see how it reduces to Eq. 
(35) in the limit ~~0, it is convenient to construct a caricatured 



Velocity Distribution Function of a Gas under Shear Flow 107 

model of Eq. (37). Fo~lowing17 steps inspired in the saddle-point 
method, one finally arr1ves to 

fr/LE = e-~/~ n3re o(t) + e~e J~/~ds e-s e3~(a)sre 
0 

(40) 

where estre~+tn(f+f/~) The dependence on both a and ~ is now made 
explicit. Since ~/4ae for small a, it is evident that the VDF given 
by Eq. (40) has an essential singularity at a=O. As a function of ~, 
it also has an essential singularity at ~=0. Both singularities are 
cqupled and in the limit ~--.0 Eq. ( 40) becomes Eq. ( 35) , which is 
regular at .a=O. 

4. CONCLUDING REMARKS 

The two cases of a gas under shear that we have considered 
complement each other. In the stationary couette flow (SCF), the 
system reaches a steady state, but the hydrodynamic profiles are not 
simple. on the otb~r·hand, the hydrodynamic fields are either constant 
(n, T) or linear (~) in the uniform shear flow (USF), which otherwise 
is a time-dependent state. In both cases, normal solutions to the BGK 
equation arbitrarily far from equilibrium have been obtained by 
imposing idealized boundary (SCF: zero wall temperature) or initial 
(USF: zero initial temperature) conditions. The velocity profiles are 
in both cases linear in the variable l given by Eq. (11), but the 
transformation from l to y is not the same, since the collision 
frequency v depends on y and t for SCF and USF, respectively. 

The normal solution corresponding to the SCF is a universal 
nonanalytic function of the two independent uniformity parameters: 
reduced shear rate (a) and thermal gradient (&). In the USF, the 
detailed dependence of the normal VDF on the only uniformity parameter 
(a) is different for each interaction potential. In the case of 
repulsive power-law potentials, that dependence is nonanalytic, except 
for Maxwell molecules. This shows that the Chapman-Enskog (C-E) 
expansion has generally an asymptotic character, except for special 
interactions in special states. 

Far from equilibrium, the VDF is quite different from what one 
could anticipate on the basis of the first terms of the C-E expansion. 
Even when such an expansion converges (Maxwell molecules, USF), highly 
nonlinear effects, such as the divergence of the VDF at zero velocity, 
emerge for sufficiently large shear rates. 

Although the analysis has been carried out on the BGK kinetic 
model, it is reasonable to expect that the above remarks essentially 
hold in the case of the Boltzmann equation (BE). This is supported by 
several facts. The ~hear viscosity obtained from the BE for Maxwell 
molecules under USF is identical to that of the BG~ 19quation. A 
similar connection exists in the steady Fourier flow. ' Moreover, 
Monte carlo ~u~Irical simulations of the BE agree fairly well with BGK 
predictions. ' 
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