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Abstract 
A survey is given of some special problems for which the transport 
properties can be exactly evaluated from the Boltzmann equation for 
Maxwell molecules. The solutions refer to the planar Fourier flow 
and the uniform shear flow for a single gas and the color conducti­
vity problem and the uniform shear flow for a binary mixture. The 
relevant transport coefficients are obtained in each case by solving 
the moment equations associated to the Boltzmann equation. They 
are in general highly non-linear functions of the respective nonequi­
librium parameters, namely the thermal gradient, the shear rat.~ and 
the color field strength. The relevance of exact solutions in far from 
equilibrium states is discussed. 

1 Introduction 
The Boltzmann equation [1] represents the starting point for the study 
of physical phenomena taking place not only in classical dilute gases but 
also in a wide variety of systems, such as electrons and phonons in solids 
and elementary excitations in quantum fluids and plasmas. However, the 
mathematical complexity of its collision term has made difficult the task 
of finding exact solutions. The knowledge of examples of exact solutions 
is useful to understand the physical behavior of systems in far from equi­
librium states. They are also important as test cases for approximation 
methods. In this context, the exact solution discovered by Bobylev, Krook 
and Wu has played a relevant role in the analysis of the relaxation towards 
equilibrium of spatially homogeneous states [2]. 

In this pap~r we offer a brief survey of some examples of nonequilibrium 
situations for which the transport properties can be exactly derived. These 
properties are obtained by solving the infinite hierarchy for the moments of 
the velocity distribution function, in the special case of Maxwell molecules 
(i.e., particles interacting via a potential V(r) = ~~:r- 4 ). For this interaction 
model, the collision rate is independent of the velocity and, consequently, a 
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moment of order k of the collision operator involves only moments of order 
equal to or less than k. It is worthwhile to remark that we are interested 
in non-linear transport, namely transport taking place beyond the scope 
of the linear (or Navier-Stokes) regime. 

The solutions reviewed here belong to the class of so-called "normal" 
solutions. This means that the space and time dependence of the velocity 
distribution function f(r, v; t) occurs entirely through a functional depen­
dence on the local conserved densities: 

f(r, v; t) = :F[v; n(r + ·, t), u(r + ·, t), T(r + ·, t)), (1.1) 

where n, u and T are the local density, velocity and temperature, res­
pectively. They are defined as the first five moments of f. Solutions to 
the Boltzmann equation are expected to adopt a normal form in regions 
far away from tile boundaries and in the long-time limit. The well-known 
Chapman-Enskog method [1,3) provides the normal solution in situations 
near equilibrium. However, the existence of normal solutions in states arbi­
trarily far from equilibrium is not well-established. 

In standard notation, the Boltzmann equation reads 

a 1 a 
- f + v · V' f + -- · (F f) at mav 

j dv1 j dD.gu(g, 8)(!' f{ - f h) 

J[f, f]. (1.2) 

Here, F is the external force, which in general can be velocity-dependent. 
This equation is formally equivalent to an infinite hierarchy of equations 
for the velocity moments of f. For the sake of convenience, we introduce 
the moments [3) 

Mrtm = ~ j dvii!rtm({)f, (1.3) 

where 

The polynomials {ii!k({), k = (r,£, m)} constitute a complete set of ortho­

normal functions with the scalar product (<I>Ix) = 1r-3 / 2 J d{e-E' <I>*({)x({). 
The hierarchy of moment equations has the form 

In general, the operator Lkk' couples moments of order k = 2r + £ with 
moments of order k' = 2r' + £1 > k, so that the above hierarchy is not 
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closed. The collision term complicates the coupling further, except in the 
special case of Maxwell molecules. In this case, the collision rate gu(g, 8) is 
only a function ofthe scattering angle 8 and, consequently, Jkk'k" vanishes 
if k' + k" =f; k [3). In particular, Jkok = JkkO = -tArt, where Art are 
the eigenvalues of the linearized collision operator [4). This property is not 
sufficient to make the hierarchy (1.5) solvable, due to the free-streaming 
term. Nevertheless, there exist several particular situations for which the 
hierarchy can be recursively solved. Some of them are reviewed in the next 
Sections. 

2 Planar Fourier flow 
This state corresponds to a single gas enclosed between two parallel infi­
nite plates kept at different temperatures. We are interested in the normal 
solution, namely a stationary solution which applies far from the plates. 
Asmolov, Makashev and Nosik [5) found such a solution for the case of 
Maxwell molecules. It is characterized by a constant pressure, a zero flow 
velocity and a temperature gradient along the direction, say z, perpendi­
cular to the plates of the form 

a 
T(z) azT(z) = const. (2.1) 

In this problem, the relevant dimensionless parameter is 

() __ 1_ (2kBT(z))
1

/
2 
i_l T() fZ-() !:In z, v z m uz 

(2.2) 

where v(z) tX n(z) is an effective collision frequency. The parameter f is the 
relative variation of temperature over a mean free path and measures the 
departure from equilibrium. In the spirit of a normal solution, all the space 
dependence of the (dimensionless) moments Mrt = Mrto appears entirely 
through L 

In this problem the hierarchy (1.5) becomes [6] 

1 a 
2f[€ a€ - (2r + £- l)][ArtMr,l+1 + Ar,t-1Mr,l-1 

-Br+1,t-1Mr+1,l-1- BrtMr-1,l+1] 

+fJr(r + £ + ~)[Ar-1,tMr-1,l+1 + Ar-1,t-1Mr-1,l-1 

-Br,t-1Mr,t-1- Br-1,tMr-2,l+1] 

1 "" t = ~(ArtMrt- LJ Jkk•kuMk,Mku), 
11 kt,kll 

(2.3) 

where the dagger in the summation denotes the restrictions k' + k" = k 
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and k', k" > 0. Here, Art and Brt are numerical constants given by 

- r+t-+2 B =A r 0 3 ] 1/2 ( ) 1/2 
Art-(£+1)[(2£+ 1)(2£+ 3) , rl rl r+£+~ (2.4) 

Notice that eqn. (2.3) still couples moments of order k with moments of 
order k + 1. However, it is straightforward to verify that the hierarchy 
admits a solution in which the moment Mrt is a polynomial in f of degree 
2( r- 1) + £ and parity £. Moreover, the first non-zero coefficient in the po­
lynomial corresponds to a power equal to max{£, (2r+£)/3}. In particular, 
the non-zero moments through fourth order are 

v'5 7VW 2 4v'42 2 
Moo= 1, Mn = 2<, M2o = 12< ,M12 = -~f • (2.5) 

The result for M11 implies that the heat flux verifies the Fourier law exactly 
for arbitrary values of the thermal gradient and not only in the Navier­
Stokes limit ( f -«: 1). 

3 Uniform shear flow 
This state is macroscopically characterized by a constant density, a spatially 
homogeneous temperature and a linear profile along the y-direction of the 
x-component of the velocity, namely 

(3.1) 

In this problem the (constant) shear rate a is the nonequilibrium para­
meter measuring the distance from equilibrium. In the context of normal 
solutions, we look for solutions that are spatially homogeneous when one 
refers the velocities to a Lagrangian frame moving with the velocity field 
u(r), i.e. solutions of the form f(r, v; t) = /(V, t), where V = v- u. In 
this frame, the Boltzmann equation becomes 

(3.2) 

In contrast to what happens in the previous example, the free-streaming 
term does not couple moments of order k to moments of higher order. If, 
in addition, one considers the case of Maxwell molecules, the associated 
moment hierarchy can be recursively solved. 

About forty years ago, Ikenberry and Truesdell [7,8] obtained the time 
evolution of the second order moments, i.e. the pressure tensor P;i, for 
Maxwell molecules. In the long-time limit they behave as P;j(t) ~ e2avt, 

li 
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where v is again an effective collision frequency and 

(3.3) 

From a rheological point of view, the most relevant transport properties 
are the (reduced) non-linear shear viscosity 1J and viscometric functions <I>1 
and <1> 2. They are given by [7,8,9] 

. 1 Pxy 1 
1J =- t~~ a* p = (1+2a-)2' (3.4) 

""" 1. 1 Pyy - Pxx 
"'1 = 1m-

t-+oo a* 2 p 

2 
(3.5) 

(1 + 2a)3 ' 

<1>2 = lim 1 Pzz - Pyy = 0. 
t-+oo a* 2 p 

(3.6) 

The parameter a is a monotonically increasing function of a*. For small 
shear rates, a :::::J ~a* 2 , while a :::::J 12-113a* 2/3 for large shear rates. Thus, 
according to eqn. (3.4), the non-Newtonian shear viscosity decreases as the 
shear rate increases. This phenomenon is usually known in the rheological 
literature as "shear thinning." On the other hand, the expansion of the 
transport properties in powers of a* (Chapman-Enskog expansion) happens 
to be convergent for ja*l < -./2/3. 

Recently, the time evolution of higher order moments has been ana­
lyzed [9,10,11]. According to the concept of normal solution, one would 
expect that in the long-time limit the reduced moments tend to stationary 
values dependent on the shear rat~. In the uniform shear flow problem, the 
hierarchy of moments adopts the form 

~! Mk +a* L (IJik,I~Y O~x l111k)Mk, 
k',k':9 

+a [ kMk- 2Jr(r + £ + ~)Mr-1,l,m] 
1 t = -(-,\kMk + E Jkk 1k 11 Mk,Mk11 ). 

,\11 k 1 ,k11 

(3.7) 

The evolution of the moments of order k 
eigenvalues of the matrix 

2r + £ is governed by the 
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The moments reach stationary values if all the eigenvalues are positive. 
The explicit shear-rate dependence of the stationary fourth-order moments 
has been derived in Ref. [9]. Quite surprisingly, if the reduced shear rate is 
larger than the critical value a~ ~ 6.845, one of the eigenvalues associated to 
fourth-order moments becomes negative. This implies that those moments 
diverge in time beyond the critical shear rate [10]. The same qualitative 
behavior is found for higher-order moments [11]. The corresponding values 
of a~ decrease as the order increases. In fact, the results suggest that 
a~ --> 0 as k --> oo. 

4 Color conductivity problem 
The previous cases refer to a single gas. In the case of a binary mixture, 
the description is in general much more complicated, since new parame­
ters (such as the molar fractions and the mass ratio) must be taken into 
account. For this reason, it is worthwhile to consider specific tractable si­
tuations. Perhaps, one of the simplest problems where non-linear transport 
takes place in a mixture is the so-called "color" conductivity problem. It 
can be described as follows [12]. In a binary mixture of mechanically diffe­
rent particles

1 
"color charges" are assigned to particles of different species. 

By the action of a constant external field E, particles of each color are 
accelerated along opposite directions. As a consequence, mass fluxes are 
generated across the system in a spatially homogeneous state. In order to 
achieve a steady state, a drag force is introduced. 

In this problem one has to deal with the set of two coupled Boltzmann 
equations: 

(4.1) 

(4.2) 

Here, x, = n,fn is the molar fraction of species s and a is a drag coefficient 
whose dependence on the field E must be determined by consistency. The 
relevant transport coefficient is the so-called color conductivity u, which is 
defined as the ratio between the mass flux and the field strength, namely 

(4.3) 

where p is the total mass density. According to the original motivation of 
the color field method in molecular dynamics simulations [12], u reduces to 
the conventional mutual diffusion coefficient D in the zero-field limit. The 
interesting problem addressed in this Section is to analyze the non-linear 
response of the system as measured by the dependence of u on E. 
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As happened in the two previous Sections, the hierarchy of moments 
can be recursively solved if one restricts oneself to Maxwell molecules. In 
particular, the expression for the color conductivity coefficient is [13] 

(4.4) 

where E* is a reduced field strength. We observe that, in terms of conve­
nient reduced units, the color conductivity exhibits a universal dependence 
on the color field, in the sense that all the influence of the ratios of mass, 
concentration and force constants has been scaled out. The expansion of u 
in powers of E* is convergent for E* 2 < 1/2. The ratio ufD monotonically 
deceases from 1 (zero-field limit) to v'2IE* l-1 (large-field limit). The latter 
result means that the mass fluxes reach saturation values j~a~ in the limit 
of large field strengths. In this limit, the system behaves as 'a collisionless 
gas, so that the velocity distribution functions become delta-distributions 
[13]: 

•sat 

lim II,2(v) = n 1,26(v- JI,2 ). 
IE•I-+oo Pl,2 

(4.5) 

Other physically interesting quantities, such as the pressure tensor, have 
been evaluated exactly as functions of the field strength [13,14]. 

5 Other transport problems in binary mixtures 
In §3 we described the solution of the Boltzmann equation for a single gas 
under uniform shear flow. An interesting problem is to extend the above 
solution to a binary mixture [15]. The solution corresponds to a state 
characterized by constant number densities, a uniform temperature and 
identical linear profiles for the flow velocities of both species. Consequently, 
no mutual diffusion appears. By solving the set of coupled Boltzmann 
equations by means of the moment method one gets the momentum fluxes 
of each species and the total pressure tensor. This tensor defines the non­
linear shear viscosity and viscometric functions. In the same way as in the 
case of a single gas, they are functions of the shear rate, but now they also 
depend on the parameters characterizing the mixture, namely the molar 
fractions and the ratios of mass and force constants. Obviously, the results 
discussed in §3 are recovered in the limit of identical particles. Further, 
the expressions previously derived in the tracer limit [16] are reobtained in 
a non-trivial way from the solution found in Ref. [15]. 

Let us assume now that we assign a color charge to the mixture subjec­
ted to uniform shear flow. If a color field is applied in an analogous way as 
in §4, mutual diffusion is generated. Thus, momentum and mass fluxes are 
coupled, so that both the shear viscosity and the color conductivity coeffi­
cients are functions of the shear rate and the field strength. This problem 
has been exactly analyzed in the case of mechanically equivalent particles 
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[17]. The results indicate that both transport coefficients are smaller than 
their Navier-Stokes values. Further, competition between the shearing and 
the color field produces inhibition of mass and momentum transport: the 
shear flow gives rise to a decrease of the color conductivity and the color 
field induces a decrease of the shear viscosity. 

6 Discussion 
In this paper we have offered a brief review of some special nonequilibrium 
states for which the transport properties can be exactly evaluated from 
the Boltzmann equation for Maxwell molecules. More specifically, we have 
considered the planar Fourier flow, the uniform shear flow, the color con­
ductivity problem and the coupling between the latter two. In all the cases, 
one can identify a nonequilibrium parameter (or two in the case of the cou­
pling color-shear) which controls the degree of departure from equilibrium. 
The solutions belong to the class of normal solutions, i.e. they apply ou­
tside the boundary layers and for long times. The goal is to get the relevant 
transport coefficients of the problem (thermal conductivity, shear viscosity, 
color conductivity, ... ) as functions of the corresponding nonequilibrium 
parameter. In fact, the expansion in powers of that parameter is equiva­
lent to the Chapman-Enskog expansion and turns out to be convergent 
(usually with a finite radius). In general, the non-linear response of the 
system, as measured by the transport coefficient, is weaker than the one 
corresponding to the linear regime (Navier-Stokes order). An exception 
is the thermal conductivity coefficient, since it exactly coincides with its 
N a vier-Stokes value, even in the non-linear regime. It must be stressed that 
the above analyses do not provide the corresponding velocity distribution 
function. 

The knowledge of exact solutions is of a great interest. Although 
they usually correspond to idealized (non-trivial) situations, exact solutions 
allow one to progress in the understanding of complex transport mechani­
sms taking place in more realistic situations. For instance, the exact veri­
fication of the Fourier law for Maxwell molecules supports the known fact 
that deviations from the Fourier law are hardly observable [18]. In addition, 
the exact shear viscosity derived for a dilute Maxwell gas exhibits shear­
thinning effects also present in many complex fluids (e.g. polymers, dense 
colloidal dispersions and micellar solutions) (19]. On the other hand, some 
caution is needed before extrapolating some features present in particular 
exact solutions. For example, the convergent character of the Chapman­
Enskog expansion is probably not a general property (20] and the Fourier 
law does not apply for non-planar geometries [5]. 

A second reason for which exact solutions are important is as a tool 
to test approximate methods, such as Grad's method and kinetic models 
[1]. In this context, the reliability of the BGK equation to get transport 
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properties is supported by the fact that its solution for the planar Fourier 
flow [21] has the same structure as that of the Boltzmann equation and 
by the fact that it gives the same expression for the pressure tensor as 
the Boltzmann equation in the uniform shear flow [22]. However, the latter 
agreement is not maintained in the case of fourth order moments [23]. More 
information about the relationship between Boltzmann and BGK solutions 
can be found in Ref. [24]. 

Finally, we think that the search for exact solutions of the Boltzmann 
equation is still an open subject. As a matter of fact, one could explore 
whether some known exact solutions of the BGK equation can also be 
extended to the Boltzmann equation for Maxwell molecules. In particular, 
the combined heat and momentum flow (25] is a good candidate for a new 
exact solution. 
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