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Abstract 

Results obtained from the Direct Simulation Monte Carlo method 
are compared with an exact solution of the Boltzmann equation for 
Maxwell molecules in a far from equilibrium shear flow state. In 
the simulations, Bird's and Nanbu's schemes have been used with 
different values for the number of particles N. It is observed that 
for small values of N (N < 500) both schemes give incorrect results, 
the discrepancies being larger in the case of N anbu's scheme. For 
N = 5 x IO' both schemes agree reasonably well with th~ ·exact 
solution, but Bird's scheme consumes less computer time. 

1 Introduction 
The Direct Simulation Monte Carlo (DSMC) method [1] has proved in 
the last two decades to be an important tool to study a large variety of 
phenomena in rarefied gases. In order to be useful, the DSMC method 
must be efficient (from a computer point of view) and reliable (in the sense 
of capturing as many features of the Boltzmann equation as possible). This 
compromise has led to a number of different versions of the DSMC method, 
the most relevant of which are Bird's scheme [1] and Nanbu's scheme [2]. 

Nanbu has shown [3] that, if the parameters of the simulations are 
chosen properly, both schemes reproduce correctly an exact solution of the 
spatially homogeneous Boltzmann equation for Maxwell molecules. the so­
called BKW-mode [4]. Nevertheless, the BKW-mode is a state relatively 
close to equilibrium that relaxes in a simple way, so that a more stringent 
test of the DSMC method is desirable. 

The aim of this paper is to perform a comparison of the DSMC method 
with an exact solution of the Boltzmann equation which applies for states 
arbitrarily far from equilibrium. Such a solution is briefly described in §2. 
The main differences between Bird's and Nanbu's schemes of the DSMC 
method, as well as some technical details of our simulations, are given in §3. 
The results of the comparison are presented in §4. Finally, §5 summarizes 
the main conclusions. 
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2 Uniform shear flow 
Let us consider a flow characterized by a constant density n, a spatially 
homogeneous temperature T, and a linear profile of the x-component of 
the flow velocity u along the y-axis: 

u=ayx, (2.1) 

a being the (constant) shear rate, which measures the departure from equi­
librium. The above state is usually referred to as uniform shear flow, since 
it can be seen as spatially homogeneous in the Lagrangian frame of refe­
rence. Thus, the Boltzmann equation becomes 

a a a/- av;, av./ = J[f,f], (2.2) 

where V = v - u is the peculiar velocity. The hierarchy of moment equa­
tions associated to eqn. (2.2) can be recursively solved in the case of Max­
well molecules. The time evolution of the second and the third degree 
moments is explicitly given in Ref. [5]. For instance, the temperature evo­
lves according to 

T(t) = To e>.t• 1)
3

>. { (1 + >.)2 + >.e-(l+P)t" 

x [ (1 - >.) cos(wt*)- >.(5~3>.) sin(wt*))} 
(2.3) 

if the initial condition is that of local equilibrium. Here, t• = tjr, where r 
is a convenient mean free time and 

>.(a)=~ sinh2 [~ cosh- 1 (1 +9a2r 2
)], 

w(a) = [>.(1 + ~>.)F/2 
• 

(2.4) 

(2.5) 

The fourth degree moments have also been evaluated recently [6,7]. For 
instance, if a= 6.45-r- 1 , one has [7] 

(V4
} = (2kBT /m) 2 {182.7- 178.2e-0·0215t• + e-5 ·82t•[0.46 cos(2.83t*) 

+3.03sin(2.83t*)]- 0.014e-4·40t•- e-7·48t• [0.012 cos(1.75t*) 
+0.011sin(l.75t*)] + e- 9·521.[0.64cos(4.65t*)- 0.42sin(4.65t*)] 

(2.6) 
if the initial condition is such that the second degree moments grow expo­
nentially in time as e>.t•. 

3 DSMC method 
The DSMC method simulates the stochastic process associated to the 
Boltzmann equation, interpreted as a master equation for the velocity 
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distribution function f [2]. Since the probability per unit of time for a 
transition (r, v) --> (r', v') depends on f itself, one must estimate it by 
considering a system of N particles. Furthermore, the results are averaged 
over an ensemble of M members. In the method, the free motion and the 
collisions are uncoupled over the time step !:l.t. In the collision stage, a 
representative set of collisions is chosen, so that pre-collision velocities are 
replaced by random post-collision velocities. For further details we refer 
the reader to Refs. [1,2]. The main difference between Bird's and Nanbu's 
DSMC schemes appears in the collision stage. This is specially apparent 
in the case of Maxwell molecules, for which the collision rate per particle 
p is constant. In Bird's scheme, the steps in the collision stage can be 
summarized as follows: 

1. Choose at random N' = ~ N p!:l.t collisional pairs. 
2. Assign post-collision velocities to both particles of each pair. 

On the other hand, the steps in Nanbu's scheme are: 

1. Choose at random k colliding particles, where the number k is sam­
pled from the binomial distribution P(k) = (f)pk(1 - p)N-k, with 
p = p!:l.t(N- 1)/N. 

2. Choose at random a collision partner for each colliding particle. 

3. Assign post-collision velocities to the colliding particles (but not to 
their partners) 

We have used both schemes to simulate eqn. (2.2). Since eqn. (2.2) 
is spatially homogeneous (in the Lagragian frame), it is not necessary to 
store the coordinates of the particles. Instead, the free motion stage con­
sisted of applying a nonconservative (inertial) force F = -maVyx on each 
particle of velocity V. The simulations have been performed with a cut­
off value (30 = 3 for the dimensionless impact parameter. The number of 
particles has been N = 15, 25, 50, 500, 5 x 104 • Finally, the time step and 
the number of members in the ensemble have been !:l.t = 0.000294-r and 
M = 1.25 x 106N-1 (in the simulations for the second degree moments) or 
!:l.t = 0.00294-r and M = 3.75 x 106N- 1 (in the simulations for the fourth 
degree moments). 

4 Results 
Figure 1 shows the time dependence of the relative deviation between the 
simulation temperature T, and the exact temperature T., eqn. (2.3), for a 
shear rate a= 6-r- 1 . We observe that the magnitude of the deviations tends 
to increase with time and is significant if N is not sufficiently large. Bird's 
scheme tends to overestimate the temperature, while the opposite happens 
with Nanbu's scheme. On the other hand, the deviations are smaller in the 
case of Bird's scheme. For instance, at t = 5r and N = 50, the error in 
the temperature is about 0.8% in Bird's scheme and about 8% in Nanbu's 
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Figure 1. Time evolution of the relative difference between the temperature 
measured in the simulations, T,, and the exact temperature, T., for several values Figure 2. Same as in Fig. 1 but for the fourth moment {V~). The shear rate is 

of N by using (a) Bird's scheme and (b) Nanbu's scheme. The shear rate is a= 6.45T-1
. 

a= 6T-1 . 
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scheme. 
Figure 2 shows a similar comparison, but for the fourth moment (V4). 

The shear rate is now a = 6.45r- 1 , so that the exact moment, (V4)e, is 
given by eqn. (2.6). Again, the deviations increase with time if N is not 
sufficiently large and are more important in the case of Nanbu's scheme. 
For instance, at t = 5r and N = 50, the error in (V4) is about 12% in Bird's 
scheme and about 20% in Nanbu's scheme. In contrast to what happens 
with the temperature, however, the sign of the deviations is the same in 
both schemes. 

5 Conclusions 
In this paper we have compared the results for the second and fourth de­
gree velocity moments obtained from the DSMC method in the uniform 
shear flow with an exact solution of the Boltzmann equation for Maxwell 
molecules [5,6,7]. By choosing the value of the shear rate, this state can be 
made arbitrarily far from equilibrium. Two schemes of the DSMC method 
have been used: Bird's [1] and Nanbu's [2]. The results show that when 
the simulation parameters (such as the time step and the cut-off in the 
impact parameter) are properly chosen, the DSMC method reproduces co­
rrectly the details of the solution of the Boltzmann equation, provided that 
the number of particles N is sufficiently large. For instance, an excellent 
agreement is found if N = 5 x 104 [8]. 

In contrast to what one could expect [2], the errors associated to small 
values of N are more important in Nanbu's scheme than in Bird's. The two 
main differences between. both schemes in the case of Maxwell molecules 
are: (i) in Bird's scheme the number of particles that change their velocities 
upon collision is fixed, while in Nanbu's scheme that number fluctuates; (ii) 
in Bird's scheme both particles involved in a collision change their velocities, 
while in Nanbu's scheme only one of the two particles modifies its velocity. 
We have checked that it is the latter point which actually has a remarkable 
influence. Results obtained from a hybrid scheme made of Bird's point 
(i) and Nanbu's point (ii) are hardly distinguishable from those obtained 
from Nanbu's scheme, and vice versa. Futhermore, from a practical point 
of view, Bird's scheme is preferable, since it consumes less computer time 
(about one half in our simulations) than Nanbu's scheme. 

This work was supported by the DGICYT (Spain) through Grant 
No. PB91-0316. The research of J. M. M. has been supported by a 
predoctoral fellowship from the MEC (Spain). 
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The Direct Simulation Monte Carlo (DSMC) method has proved to be an 
efficient tool to study a large variety of phenomena in rarefied gases. There are 
essentially two DSMC schemes: Bird's scheme (1) and Nanbu's scheme [2). The 
main differences between both schemes are most apparent in the case of Maxwell 
molecules. In Bird's scheme, the steps in the collision stage are: (i) choose at 
random N' = ~ N ptlt collisional pairs, where N is the number of particles in the 
system, 6.t is the time-step, and pis the collision rate per particle; (ii) assign post­
collision velocities to both particles of each pair. In Nanbu's scheme the steps 
are: (i) choose at random k colliding particles, where the number k is sampled 
from the binomial distribution P(k) = (t')pk(1 - p)N-k, p = ptlt(N- 1)/N; 
(ii) choose at random a collision partner for each colliding particle; (iii) assign 
post-collision velocities to the colliding particles (but not to their partners). It 
is generally believed that both DSMC methods reproduce correctly the solution 
of de Boltzmann equation (BE). In fact, both of them give results in agreement 
with the BKW-mode (2), an exact solution of the spatially homogeneous BE for 
Maxwell molecules. However, the scarcity of exact solutions of the BE for states 
arbitrarily far from equilibrium has prevented a more stringent test of the DSMC 
method. 

In this contribution, we compare Bird's and Nanbu's schemes with an exact 
solution of the BE for Maxwell molecules in a non-homogeneous situation, the 
so-called uniform shear flow (USF); USF is characterized by a linear profile of 
the flow velocity, namely u., = ay, Uy = u, = 0, and uniform density n and 
temperature T (3). The shear rate a measures the distance from equilibrium. In 
the simulations we have taken N = 5 x 104 particles, a cut-off value {30 = 3 for the 
dimensionless impact parameter, and a time-step 6.t = 0.000294 r, r being and 
effective mean free time; as a consequence, ptlt = 0.004. Figure 1 shows the time 
evolution of the reduced temperature T" = e-~1T(t)/T0 where To is the initial 
temperature and>.= ~r- 1 sh2 (~ch- 1 (1 + 9(ar)2

)), for the case a= 6r-1 • The 
dashed line is the exact result (3), the solid line corresponds to results obtained 
from Nanbu's scheme, and the dotted line corresponds to Bird's scheme, in both 
cases by averaging over an ensemble of 15 members. We observe that both DSMC 
schemes describe very well the evolution of T", especially the transient regime. 

The exact fourth-order moments for USF have been recently obtained (4). This 
allows us to perform a stronger comparision with simulation. Figure 2 shows the 
time evolution of M4 =< (v- u)4 > /(2ksT/m) 2 for a= 6.45r-1 • The meaning 
of the lines is as in Fig. 1, except that the number of members of the ensemble 
in the simulation is 75. The agreement of the theory and simulation is excellent. 
The degree of distortion of the state from equilibrium is measured by the fact 
that M 4 = Jf at equilibrium and ~ ~ M 4 ~ ¥ in the BKW-mode. 

We conclude that, when the simulation parameters are properly chosen, the 
DSMC method reproduces correctly the details of the solution of the BE. The 

scheme to be used is mainly a question of taste, although Bird's scheme usually 
consumes less computer time than Nanbu's scheme. 
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