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ABSTRACT: An overview of recent work concerning the high-velocity tail in a dilute gas under 

shear flow is presented. In the case of Maxwell molecules, an exact analysis of the hierarchy of 

moment equations of the Boltzmann equation shows that, for any value of the shear rate, all the 

moments beyond a certain degree are divergent. This is consistent with an algebraic tail for the 

distribution function, which is confirmed by Monte Carlo simulations. For non-Maxwell molecules, 

simulation results suggest that the above singular behavior for the velocity moments is also present 

although the phenomenon is less notorious as the interaction becomes harder. On the other hand, 

the transport coefficients are hardly sensitive to the interaction. 

1 INTRODUCTION 

The high-velocity population in a gas plays a crucial role in phenomena with a high 

activation energy, such as chemical reactions or the thermonuclear fusion in a plasma. Nev­
ertheless, it is in general very difficult to get information on the high-velocity tail of the dis­
tribution function from the Boltzmann equation. In the case of homogeneous and isotropic 
situations, a lot of work[l] was stimulated by the discovery of the so-called BKW mode. 

On the other hand, much less is known about the high-velocity tail in inhomogeneous sit­
uations. A rare case that lends itself to a detailed analysis is the uniform shear flow for 
Maxwell molecules. In this state, the only non-zero hydrodynamic gradient is 8ux I oy = a, 

where u is the flow velocity and a is the constant shear rate. In the special case of Maxwell 
molecules, the hierarchy of moment equations derived from the Boltzmann equation can 
be recursively solved for arbitrary shear rate. Forty years ago, Ikenberry and Truesdell[2

] 

obtained explicit expressions for the second degree moments. These qu'antities provide the 
rheological properties of the fluid (nonlinear shear viscosity and viscometric functions), but 
they do not give enough information about the distribution of velocities much larger than 
thermal velocities. In order to obtain this information one needs to consider higher degree 
velocity moments. 

In this paper we offer an overview of recent advances on this subject. The Boltzmann 
equation for uniform shear flow and the corresponding hierarchy of moment equations are 
worked out in Sec. 2 in the particular case of Maxwell molecules. It is shown that all the 
moments of degree k 2': 4 diverge in time if the shear rate is larger than a certain critical 
value a~k), where a~4 ) > a~6 ) > a~8) > ... > 0. This is consistent with an algebraic tail of 
the form f(V) '""'"' v-Cd+2+0"(a)), where dis the dimensionality of the system and cr(a) is a 

decreasing function of the shear rate. This behavior is confirmed by Monte Carlo simulations 
for d = 2. In Sec. 3 we present simulation results for non-Maxwell interaction potentials. 
They suggest that the above singular behavior for the velocity moments is also present, but 
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it becomes less significant as the interaction is harder and seems to disappear in the limit 
of hard spheres. 

2 UNIFORM SHEAR FLOW FOR MAXWELL MOLECULES 

As said in the Introduction, the uniform shear flow is characterized by a uniform 
density n and temperature T, and a linear velocity profile: u(r) = ayx. As a counterpart 
of this simplicity, the temperature grows in time. A detailed description of this state can 
be obtained for a dilute gas of Maxwell molecules[1l, namely particles interacting via a 
repulsive potential of the form r- 2(d-l). In this case, the dominant long-time behavior of 
the temperature is[3 •4J T(t) "" e2a(a)t, where a( a) is the real root of the cubic equation 
da(v + 2a)2 = va 2

, i.e. a(a) = ~vsinh2 [icosh- 1 (1 + 27a2 fdv 2)]. Here, v = n>. 0 is an 
effective collision frequency, where >. 0 is an eigenvalue of the linearized Boltzmann collision 
operator[5 ,6l. It is conveillent to introduce the peculiar velocity relative to the thermal 
velocity: V = [v- u(r))/ J2kBT(t)fm. In terms of this variable, the Boltzmann equation 
for Maxwell molecules reads 

(1) 

where J[f, jJ is the nonlinear Boltzmann collision operator. Henceforth, we will take v = 1, 
what defines the time unit. It is worthwhile to note that the third term on the left-hand 
side of Eq. (1) can be interpreted as arising from a drag force F = -maV that controls 
the viscous heating. Therefore, there exists an exact equivalence between the uniform shear 
flow with and without a thermostat force[7J. Nevertheless, this equivalence does not apply 
for non-Maxwell molecules. 

The solution of Eq. (1) is not known. On the other hand, its hierarchy of moment 
equations can be recursively solved for Maxwell molecules[8]. Let {\Ilk (V)} (k denoting a 
set of d indices) be a complete set of orthonormal polynomials with the inner product 

(2) 

We define the moments 

Mk(t) = J dV \llk(V) f(V, t) . (3) 

Equation ( 1) is invariant under the transformations ( Vx, Vy) --+ (-Vx, - Vy) and Vi --+ 

-Vi (i =/= x, y). Here we focus on solutions consistent with the above invariance proper­
ties. It is then possible to prove that the moments of degree k = odd vanish and the number 
of independent moments of degree k =even is (k + d- 1)(k/2 + d- 2)!/(k/2)!(d- 1)!. For 
the sake of convenience, we choose {\II k (V)} as the set of eigenfunctions of the linearized 
Boltzmann operator and denote by >.k their corresponding eigenvalues. Taking moments in 
Eq. ( 1) we arrive at 

8 t 
at Mk + 2.::= £kk' Mk, = Bk ' 

k/ 
(4) 

where the dagger means that the summation is restricted to the moments of the same degree 
(k) as Mk. The square matrix £kk' is 

£kk' = (>.k + ka)bkk' + a(\llk,IVy O~x I \Ilk)* (5) 
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and Bk is a linear and bilinear combination of moments of order less than k. The time 
evolution of the moments {MkL of a given degree k is governed by the eigenvalues -\k(a) 

of the matrix £kk,. Let us call Ak(a) the eigenvalue of £kk' with the smallest re~l part. A 

necessary condition for the moments of degree k to reach stationary values is Re-\k(a) > 0. 
On the other hand, if Re-\k(a) :S 0 then the moments of degree k diverge in time. 

We have obtained the eigenvalues of £kk' through k = 240 for d = 2 and k = 36 for 

d = 3. It turns out[9- 11l that ~k (a) is a real number that becomes negative if the shear rate 
is larger than a threshold value a~k), which monotonically decreases as k 2: 4 increases. For 
instance, if the scattering is isotropic, a~4) = 5.847 and 7.746 for d = 2 and 3, respectively. 
For shear rates larger than a~4) the only non-diverging moments are those of degree 2. 
Conversely, if a< a~k) all the moments of degree smaller than or equal to k reach stationary 
values. The shear-rate dependence of the steady-state values of the fourth degree moments 
(ford= 3) is given in Ref. [4]. In addition, the results indicate that there is no lower bound 
of a~k) and a~k),....., k- 1 for large k. 

The above results for the velocity moments are consistent with a stationary solution of 
Eq. (1) exhibiting a high-velocity tail of the form f(V),....., v-(d+2+a(a)) for any value of the 

shear rate a. This would imply that the moments of degree k 2: rJ + 2 diverge. Although the 
shear-rate dependence of rJ is unknown, the analysis of the moments shows that rJ = k- 2 at 
a= a~k) and rJ(a),....., a- 1 for small a. In the opposite limit, it is tempting to speculate that 
lima_,. 00 rJ( a) = 0. Since the velocity moments provide only an indirect information about 
the velocity distribution function, we have resorted to the direct simulation Monte Carlo 
(DSMC) method[12l to analyze the behavior of f(V) in the case of d = 2. At a = a~k) we 
have confirmed[ll] that vk+2 f(V) reaches a stationary value that is independent of V, for 

sufficiently large velocities. Furthermore, the relaxation time increases as V increases. 

3 MONTE CARLO SIMULATION FOR NON-MAXWELL MOLECULES 

So far, the results have been restricted to the special case of Maxwell molecules. A nat­
ural question is whether the above high-velocity behavior is also present in other interaction 
potentials. For non-Maxwell molecules the moment hierarchy c'annot be solved recursively, 
so that no analytical results are known. Although the exact solution of the BGK kinetic 
model for uniform shear flow with a general interaction is known[13•14l, it is not reliable for 
velocities beyond the thermal domain. Therefore, we have studied the problem by means 
of the DSMC method[12l. In particular, we have considered repulsive potentials of the form 

r-JJ. with (a) J-l = 4, (b) J-l = 6, (c) J-l = 8, (d) J-t = 12, and (e) J-l = oo, ford= 3. Now 
the thermostat coefficient a in Eq. (1) is unknown and is determined by requiring that the 
temperature remains constant. 

The second degree moments are mainly related to the distribution of thermal velocities 
(V '""' 1) and do not provide much information about the high-velocity tail. However, they 
are worth to study since they give the rheological properties. Figures 1-3 show the time 
evolution of the reduced shear viscosity ry* = -Pxy/(nksTa) and the reduced viscornetric 
functions W! = (Pyy - Pxx)/(nk3 Ta 2 ), \l12 = (Pzz - Pyy)/(nk3 Ta 2 ) at a = 6, where 
Pij = m J dVVi Vj f is the pressure tensor. The dashed lines represent the exact solution 
for Maxwell molecules (p = 4). We observe that the influence of the interaction is quite 
small. The value of 1}* for hard spheres (J-l = oo) is about 1.5% larger than that for Maxwell 
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molecules (Jl = 4). As Jl increases, the difference Pxx- Pyy decreases and the (much smaller) 
difference Pzz - Pyy increases. Non-Newtonian effects are clearly present at a = 6, since 
r/' = 1, ¢t ::::::::: -2 and ¢2 ::::::::: 0.17 (for hard spheres) when a ........j. 0. To assess the distortion 
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Fig. 1 Reduced shear viscosity 'fJ* at a= 6. 

0.0008 

0.0006 

0.0004 

0.0002 

0.0000 

0.06 

(c) (~ 
0.04 

0.02 

s.o o.oo o!---'--~--'--~a-.......... --:3~--'---74-~~s 

R, 

Fig. 2 Reduced first viscometric function 
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Fig. 3 Reduced second viscometric func­
tion W ~ at a = 6. 
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Fig. 4 Reduced velocity distribution func­
tion Ry(Vy) at a= 7.33. 

from local equilibrium, we have computed Ry(Vy) (the number of particles moving with 

Vx > 0 and a given value of Vy, relative to the number at local equilibrium). Figure 4 shows 

Ry(Vy) at a = 7.33 for (a) Jl = 4, (c) Jl = 8, and (e) Jl = oo. The exact solution of the 
BGK kinetic equation[131 has also been included (dotted line). It is interesting to note that, 
despite of the similarity of the second degree moments for different interactions ( cf. Figs. 
1-3), the velocity distribution is clearly influenced by the interaction. 

While the rheological properties are hardly sensitive to the interaction potential con­
sidered, the moments of degree four and higher are influenced by the value of J1.[151. On 

the one hand, the simulation results indicate that the divergence of moments at sufficiently 
large shear rates can be extended to potentials harder than the Maxwell one. On the other 
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hand, the strength of this phenomenon diminishes as the repulsion becomes harder. In 
fact, it seems to disappear in the limit of hard spheres (J-L --+ oo). A possible explanation 
is as follows. Although the thermostat controls the average kinetic energy per particle, 
the relatively small high-velocity population may increase in time due to viscous heating. 
This increase is partly inhibited if those particles collide frequently, this effect being more 
notorious for harder repulsions. This picture is consistent with an asymptotic distribution 
f(V) "' v-(d+2+a(a,l')), where u(a, p) depends on the shear rate in a similar way as for 
Maxwell molecules [J-L = 2( d- 1 )] and is an increasing function of J-L, so that lim~-'....,. 00 u = ex:>. 
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