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ABSTRACT: We have recently proposed a simulation Monte Carlo method to solve the Enskog 
equation. The method is inspired on and extends the DSMC method to solve the Boltzmann 
equation. In this paper we show that our method reproduces the density dependence of the thermal 
conductivity derived from the Enskog equation. Moreover, the velocity distribution function is seen 

to agree with the theoretical expression near equilibrium. 

1 INTRODUCTION 

As is well known, the mathematical complexity of the nonlinear Boltzmann equation 
has limited to a few cases the number of exact solutionsl11. To overcome this problem, two 
approaches have proved to be especially useful. On the one harid, the detailed Boltzmann 
collision operator can be modeled with much simpler termsl21, that nonetheless yield realistic 
resultsl31. On the other hand, the Boltzmann equation can be numerically solved in a very 
efficient way by means of the direct simulation Monte Carlo (DSMC) methodl41~ 

While the Boltzmann equation plays a fundamental role in the description of the dy­
namics of rarefied gases, its scope cannot be extended to fluids at moderate or high densities. 
This excludes those phenomena with a characteristic length of the order of or smaller than 
the range of the interaction potential. As a consequence, dense fluid transport, short wave­
length dynamics, kinetics of freezing, crystal elasticity and transport, kinetics of metastable 
states, or dynamics of amorphous solid states are some of the interesting problems whose 

-' 
solutions lie outside the domain of applicability of the Boltzmann equation. This limitation, 
however, does not hold for the Enskog equationl5,6l. The Enskog equation can be viewed 
as an extension of the Boltzmann equation to a dense fluid of hard spheres of diameter 
u. It introduces two crucial changes in the Boltzmann collision integral: the difference in 
position ~r = u between the centers of a colliding pair of molecules is taken into account, 
and the collision frequency is increased by a factor x that accounts for the spatial correla­
tions between the two colliding molecules. The Chapman-Enskog expansionl21 of the Enskog 
equation yields fluid transport coefficients that are in good agreement with both experimen­
tal and simulation values over a wide range of densities. Furthermore, the so-called revised 
Enskog theoryl71 admits the crystal equilibrium state as a stationary solutionl81. 

Of course, the mathematical intricacy of the Enskog equation is even harder than that 
of the Boltzmann equation. This explains the fact that only recently the two approaches 
mentioned above in the context of the Boltzmann equation have succeeded in being ex­
tended to the Enskog equation as well. On the one hand, 'simple kinetic models have been 
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proposedl9 •10l that, while preserving the main physical features of the Enskog equation, re­
duce to the familiar Bhatnagar-Gross-Krook kinetic modell2l in the low density limit. On 
the other hand, a simulation Monte Carlo algorithm based on the DSMC method has been 
proposedl11l to numerically solve the Enskog'equation. The method is applied to shear flow 
in Ref. [12] and is seen to reproduce the shear viscosity of the Enskog theory, as well as 
the nonlinear Burnett coefficients associated with normal stresses, over the whole range of 
fluid densities. A previous attemptl13l is consistent with the equilibrium equation' of state 
for hard spheres but not with the Enskog transport properties. 

The objective of this paper is the application of our simulation method to measure the 
thermal conductivity of a dense system of hard spheres and compare it with the theoretical 
value derived from the Enskog equationl5•6l. In order to avoid boundary effects, we have 
considered the homogeneous heat flow statel14l, introduced by Evans and Gillan in 1982. In 
this state, heat flux is induced in a homogeneous system by the action of a non-conservative 
force proportional to a const[r}t vector that mimics the action of a thermal gradient. The 
paper is organized as follows. In Sec. 2 the Enskog simulation Monte Carlo (ESMC) method 
is briefly described. The particularization of the Enskog equation and the ESMC method to 
the homogeneous heat flow state is carried out in Sec. 3. Finally, the results are presented 
and discussed in Sec. 4. 

2 THE ESMC METHOD 

The Enskog equationl5"""7] reads 

(:t + v · :r + :v · !) f(r, v,t) = u2 j dv1 j du8(u. g)(u. g) 

x[x(r,r-u)f(r,v',t)f(r-u,v~,t)-x(r,r+u)f(r,v,t)f(r+u,vl,t)], (1) 

where f(r, v, t) is the one-particle distribution function, m is the mass of a particle, F 
is an external force (possibly non-conservative), u is a unit vector, u = uu, 8( x) is the 
Heaviside function, g = v - Vt is the relative velocity, and the primes on the velocities 
denote post-collision values: v' = v - ( u · g)u, v~ = v1 + ( u · g)u. In the standard Enskog 
theory[5•6l, x(r,r + u) = X (n(r+ ~u)), where x(n) is the equilibrium pair correlation 
function at contact corresponding to a uniform density n. In the revised Enskog theoryl7l, 
x(r, r+u) is the local equilibrium pair correlation function in a nonuniform state. Equation 
(1) reduces to the Boltzmann equation (for hard spheres) in the low density limit (i.e., u = 0, 
x = 1). In general, the momentum and heat fluxes have both kinetic and collisional transfer 
contributions. In particular, the Chapman-Enskog method gives q = -Ke(n, T)VT for the 
heat flux, where the thermal conductivity coefficient is 'given by[6] 

(2) 

where KB(T) = 1.0415 x ~~(k1Tfm7r) 1 1 2u- 2 is the Boltzmann thermal conductivity. 
The ESMC method to solve Eq. (1) proceeds as follows[11l. A system of N particles in 

a volume V is split into cells of a size bt..L much smaller than both the mean free path and 
the hydrodynamic length. The physical number density of cell I is n1 = n(NJ/V1 )(V / N), 
where n is the average density, and N1 and V1 are the number of particles and volume, 
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respectively, of cell I. To update the positions and velocities, a free-streamirtg stage and a 
collision stage are decoupled over a time-step ~t much smaller than both the mean free time 
and the hydrodynamic time. As in the DSMC method[41, in the first stage the particles move 
independently (under the possible action of an external force) and the boundary conditions 
are applied. In the collision stage, the following steps are taken for every particle i = 
1, ... , N: (a) a given direction Ui is chosen at random with equal probability; (b) the cell J 
that contains the point r i + uu i is identified and a test particle j belonging to J is chosen at 
random with equal probability; (c) the collision between particles i and j is accepted with 
a probability equal to the collision rate times the time-step, 

(3) 

where gij =Vi- Vj; (d) if the collision is accepted, the velocity of particle i is changed to 
I (~ )~ vi=vi- Ui·gij Ui. 

If the density is sufficiently small, the size ~L of the cells can be taken much larger 
than u. Consequently, particle j in step (b) belongs to the same cell as particle i (i.e. J = I). 
In addition, x---+ 1, so that the ESMC method becomes equivalent to Nanbu's scheme[15l of 
the DSMC method. 

3 HOMOGENEOUS HEAT FLOW STATE 

As said in the Introduction, the ESMC method described in the previous Section has 
been validated in the case of shear fiow[ll,l 2l. The aim of this paper is to carry out a similar 
validation in the case of heat flow. In principle, one should place the fluid in a slab and 
establish a thermal gradient by keeping the two walls at different temperatures[! G):· Never­
theless, boundary effects would be unavoidable and could mask the comparison between the 
measured thermal conductivity and the theoretical value, Eq. (2). Consequently, we have 
considered a homogeneous method for simulating heat fiow[14l. In this method, a fictitious 

velocity-dependent external field F 1 = -~(mv2 -3kBT)E, where E = fX is a constant vector, 
is applied. Those particles with a kinetic energy smaller th,an the average value are acceler­
ated along the x-direction, while the opposite happens to the most energetic particles. As 
a consequence, a heat flux vector q = qxx is generated in the system, even in the absence 
of any gradient. Linear response theory proves that the ratio -qx/Tt in the zero-field limit 
( f ---+ 0) is equal to the thermal conductivity coefficient. Thus, E mimics the action of a 
thermal gradient \JT fT. The price to be paid is that outside the linear regime close to 
equilibrium, no physical meaning[171 can be ascribed to the field-dependent nonlinear trans­
port coefficient -qx / c The action of the force F 1 produces the absence of conservation of 
momentum and energy. To compensate for this effect, a force F2 = m(f3 - av) is added, 
where the parameters {3 and a are adjusted as to keep the total momentum and energy 
constant. 

A non-trivial problem is how to especialize the Enskog collision term, given by the right­
hand side of Eq. (1), to the homogeneous heat flow state. To do so, we exploit the analogy 
E <--+ \JT /T and imagine a "virtual" system with a temperature field T(r) = ToeE-r, 7(J being 
the homogeneous temperature of our "real" system. The distribution function fo(v) of the 
real system would be equal to the distribution function f(O, v) at the reference point r = 0 
of the virtual system. Since in the latter all the space dependence must appear through 
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the temperature, so that the choice of the reference point is completely arbitrary, one has 
f(r, v) = [T0 /T(r)J31 2 /o(vo), vo = [To/T(r)]ll2v. Thus, insertion into the right-hand side 
of Eq. (1) with r = 0 yields 

{:t- :v · [~€(v2 - 3k~T) -{3+av]}!(v,t)=u2x(n) j dv1 j du0(u·g)(u·g) 

x [!(v',t)e~€·l7'f(v~et€·0',t)-f(v,t)e-~€·l7'f(v1 e-t€·l7',t)], (4) 

where the subscript 0 has been removed. Imposing the conservation of momentum and 
energy, one gets {3 = ( mn )- 1 pc · €, where pc is the collisional part of the pressure tensor, 
and a= -(3nkBT)- 1 €·q. Notice that {3"' €, but a"' t: 2 . Thus, the "thermostat" parameter 
a does not play any role in the linear regime and its inclusion obeys only to computational 
reasons[14l . 

It is easy to prove th~ the solution of Eq. ( 4) to first order in t: coincides with the one 
obtained from the conve~tional Chapman-Enskog expansion[5 ,6l. Let us write 

f(v) = /eq(v) [1 + A(v) · €] + O(t:2
) , (5) 

where /eq{v) is the equilibrium distribution function. Substituting into Eq. (4) and neglect­
ing terms of order higher than t:, one gets 

u 2x(n) j dv1 j du 8(u · g)(u · g)/eq(vl) 

x [A(v) + A(vt)- A(v')- A(vDJ 

The solution to this integral equation is given approximately by[5] 

157r ( 27r ) ( mv
2 

5) A(v) = 1.0415 x 16r 1 + 5 nu3 x 2kBT- 2 v , 

where r = (m/kBT) 112 j21rnu2 x is the mean free time. 

(6) 

(7) 

The ESMC method is easily adapted to solve Eq. (4). Since the problem is homoge­
neous, there is no need to store the positions of the particles. In the free-streaming stage, 
the particles change their velocities under the action of the forces F1 and F 2 . The collision 
stage proceeds as described in Sec. 2, except that there are no cells and the relative velocity 
is now gij =Vi- Vjet€·0';. This accounts for the fact that particle j in the virtual system 
is a distance O'i = uui apart from particle i, so that its velocity is Vjet€·0';. The heat flux 
is obtained as 

(8) 

The first term on the right side is the kinetic contribution, while the second term is the 
collisional contribution. 

4 RESULTS AND DISCUSSION 

In the simulations, t: must be chosen sufficiently small to remain in the linear regime 
and sufficiently large to provide a good signal-to-noise ratio. We have chosen the value 
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c: = 0.177u- 1 . The values of the technical parameters are N = 104 , tl.t = 0.014r, and 
the quantities have been averaged over 20 different realizations. The initial condition has 
been that of equilibrium. Figure 1 shows the time evolution of the heat flux (divided by the 
stationary Enskog prediction) for nu3 x = 2 (which corresponds to a density nu3 ~ 0.67). We 
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Fig. 1 Time evolution of the heat flux for 
n0"3X = 2. 
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Fig. 2 Density dependence of the thermal 

conductivity. 

observe that after a few collisions per particle, the heat flux reaches a stationary value that 
agrees with the theoretical one. We have performed similar simulations for other densities 
and have measured the thermal conductivity K. as a time average of the ratio -qxfTc:, once 
the steady state has been reached (t > 9r). The results are represented in Fig. 2, where 
K./(X- 1"-B) is plotted versus nu3x. The circles correspond to the total thermal conductivity, 
while the triangles correspond to its kinetic part. The agreement with the theoretical Enskog 
predictions (represented by lines) is excellent. 

To make a more stringent test, we have 
also computed the velocity distribu­
tion function. Figure 3 shows the re­

duced marginal distribution Rx(~x) = 
[f dvy I dvzf(v)]/[f dvy I dvzfeq(v)], 
where ~x (m/2kBT) 112vx, for 
nu3 x = 2. The solid line represents 
the simulation results (with a grid size 
6-~x = 0.02) and the dashed line is 
the theoretical prediction, according to 
Eqs. (5) and (7). Again, the agreement 
is extremely good. 
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Fig. 3 Marginal velocity distribution func-
tion R:z:((,) for n0"

3 X = 2. 
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In summary, the results presented in this pap.er represent an important validation of 
our generalization of the DSMC method to deal with the Enskog equation for dense fluids. 
It opens the possibility to explore many interesting phenomena left out by the Boltzmann 
equation and that so far were prohibitively difficult to attack with the Enskog equation. 
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