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Abstract. Normal solutions of the Boltzmann equation for a single-species monatomic gas in Fourier flow (uniform
heat flux) or Couette flow (uniform shear stress) are found in terms of the heat-flux and shear-stress Knudsen numbers.
Analytical solutions for Maxwell molecules at finite Knudsen numbers are found using a moment-hierarchy (MH)
method, and corresponding numerical solutions are obtained using the Direct Simulation Monte Carlo (DSMC) method
of Bird. The MH and DSMC results both indicate that the effective thermal conductivity and the effective viscosity for
Maxwell molecules are independent of the heat-flux Knudsen number but decrease as the shear-stress Knudsen number
is increased. Additional DSMC simulations indicate that these transport properties for hard-sphere molecules decrease
as either the heat-flux Knudsen number or the shear-stress Knudsen number is increased.

INTRODUCTION

In a “normal” solution of the Boltzmann equation (BE) [1], temporal and spatial variations occur entirely
through a functional dependence on the hydrodynamic fields (number density, temperature, and velocity). In
continuum situations, departure from equilibrium is small, so the velocity distribution function can be represented as
an expansion about the equilibrium distribution in terms of the local heat-flux and shear-stress Knudsen numbers.
Chapman-Enskog (CE) theory [1] provides such a representation but is limited to small local Knudsen numbers.

In the case of Maxwell molecules [1], moments of the collision term can be determined directly from moments
of the velocity distribution function without detailed knowledge of this function. This property allows a hierarchy of
moment equations to be derived from the BE, and this system of equations can be solved recursively to obtain
normal solutions at arbitrary Knudsen numbers. Several exact solutions for uniform heat flux and uniform shear
stress based on this moment-hierarchy (MH) method have been derived, and efficient algorithms for computing
these moments symbolically and numerically have been reported [2-6].

The Direct Simulation Monte Carlo (DSMC) method of Bird [7] is a numerical method for simulating
nonequilibrium gas behavior. In brief, computational molecules statistically mimic the behavior of real molecules.
Wagner [8] provides a rigorous proof that DSMC produces a solution to the Boltzmann equation in the limit of
vanishing discretization and stochastic errors. DSMC can simulate Maxwell and other molecules at small and finite
local Knudsen numbers and therefore can determine normal solutions numerically [9-13].

Herein, Fourier flow and Couette flow at nonequilibrium conditions are investigated. In Fourier flow, the gas
experiences a uniform heat flux, whereas in Couette flow, the gas experiences a uniform shear stress. These flows
are produced in DSMC simulations by confining the gas between two parallel, solid walls at fixed, uniform
conditions. To ensure that a normal solution is obtained in the central region of the domain, the walls are separated
by ~40 mean free paths. For Maxwell molecules, MH analytical solutions and DSMC numerical solutions are
compared. For hard-sphere molecules, only DSMC numerical solutions are presented since no analytical results are
available. The thermal conductivity, the viscosity, and the Sonine-polynomial coefficients of the velocity
distribution function are determined as functions of the heat-flux and shear-stress Knudsen numbers.

251
Rarefied Gas Dynamics: 25-th International Symposium, edited by M.S.Ivanov and A.K.Rebrov. Novosibirsk 2007



MOMENT-HIERARCHY METHOD

Chapman-Enskog (CE) theory provides the normal solution of the BE as an expansion in the heat- ﬂux (g)and
shear-stress (7 ) Knudsen numbers [1] Kn, = q/(mnc ) and Kn, = T/(mnc ), where ¢, = (2k T/m) . Table 1
contains Maxwell and hard-sphere CE values for the infinite-to- ﬁrst -approximation ratlos of viscosity, thermal
conductivity, and self-diffusion coefficient (4, /4 , K, /K, , and D, /D, , respectively) and for the heat-flux and
shear-stress Sonine-polynomial-coefficient ratios (a, /a, and b, /b, ) in the limit of small Knudsen numbers [11-13].

The Moment-Hierarchy (MH) method is able to extend CE theory to finite Knudsen numbers for Maxwell
molecules because their collision rate is independent of relative speed. This property allows the BE to be represented
as an infinite hierarchy of moment equations [4-5]. Moments of the BE relate moments of the distribution function
f to moments of the collision operator J[c¢| f, f], where their nondimensional forms are given below:

My, =[eberes flade=(cierel ), Jy, =[eberebie| f e, E=¢fe,. f=for/n. (D)

For Maxwell molecules, the J,, , can be expressed as bilinear combinations of the M, , [4-5]. This property
enables a normal solution to be obtained recursively [2-5]. In this solution, the pressure p =nk,T is uniform, the
moments M, are polynomials in Kn,  of degree k +k, +k; =220, and the coefficients ,u,ﬁfk) ,, can be
represented by infinite expansions in powers of Kn,:
ky +hy +hy =2 ) )
Mk1k2k3 [Icnq ’ IQIT] = Z /Lll(qjk)zk3 [Knr ]Kntj] N (2)
Jj=0
An effective thermal conductivity and viscosity are defined by ¢ =-K, (0T/0x) and 7=, (9V/dx),
respectively. The MH method indicates that K, and (£ are independent of Kn_ [2] but depend on Kn, [3-5]:

/K =F[Kn,]=1-c,Kn; +O[Kn;], f/p=F,[Kn ]=1-c,Kn;+O[Kn;]. 3)

ctt

In the limit that Kn, — 0, the a, /a, and b, /b, for k 22 are even polynomials of degree 2(k —1) [4-5]:
a4 _ k18 2j b _ k1% 2j
=(-1) ZIA,V.an, 5 =D ZIB,V.an : (4)
1 J= 1 J=

The MH method can be used to evaluate the coefficients in the above expressions [6]. Table 2 contains values
of ¢, ¢,, the nonzero 4,;, and the nonzero B, for the IPL-Maxwell, VSS-Maxwell (w=1, a =2.13986) [14],
and VHS-Maxwell (w=1, a =1) [7] interactions, where @ is the viscosity-temperature exponent and & is the
angular-scattering exponent. In general, 4, =0 when j<(k-1)/3.

DSMC METHOD

The Direct Simulation Monte Carlo (DSMC) method of Bird [7] provides an additional method for determining
the normal solution [9-13]. DSMC uses computational molecules that move, reflect from walls, and collide with
each other to simulate gas behavior. Here, the variable-soft-sphere (VSS) [14] and the variable-hard-sphere (VHS)
[7] interactions are used. These interactions exactly represent the hard-sphere interaction and approximate the
Maxwell interaction when suitable values are selected for w and @ (see Table 1).

The domain is shown in Figure 1. Table 3 shows the physical and numerical parameters used in the simulations.
The gas has the molecular mass and the reference viscosity of argon [11-13]. With a mean free path of
A =~muc, / 2p , the walls are about 42 mean free paths apart, so the normal solution occupies a large fraction of
the domain. The effective thermal conductivity and the effective viscosity are determined in each mesh cell:

K _ KOoT  u _uov K_,u_[T]w

K, T,

ref

, , )
q ax Iueff r ax Kref luref

The a, /a, and b, /b, are determined from higher-order velocity moments [11-13]:

a_k:i( (=)kI(5/2)! j(ﬁz‘@ b i( (=D (k=D5/2)! j(fz“'”fxl-f (6)

a, (k—i)lili+3/2)! b S\ -0-0i+3/2)) (28,

(#e) b 5
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Fourier Flow Couette Flow
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FIGURE 1. Schematic diagrams of Fourier flow (left) and Couette flow (right).

TABLE 1. Chapman-Enskog (CE) results.

Symbol | Hard- Maxwell Symbol | Hard- Maxwell Symbol | Hard- Maxwell
Sphere Sphere Sphere

w 12 1 a/a, 1 1 b,/b, 1 1

a 1 2.13986 a,/a, 0.0954284 0 b,/b, 0.0617421 0

Yy 1.016034 1 a,/a, 0.0217503 0 b, /b, 0.0103303 0

K, /K, 1.025218 1 a,/a, 0.0068579 0 b,/b, 0.0025919 0

D, /D, 1.018954 1 a,/a 0.0025926 0 by /b, 0.0008207 0

TABLE 2. Moment-hierarchy (MH) results.

Symbol | IPL- VSS- VHS- Symbol | IPL- VSS- VHS-
Maxwell Maxwell Maxwell Maxwell Maxwell Maxwell

A,, 21.1786 21.3155 21.3190 B,, 16.3894 16.5355 16.5392

4, 30.8947 32.4522 32.4917 B, 22.4570 24.1045 24.1472

A, 1455.17 1584.61 1588.02 B, 908.683 1007.93 1010.59

A, 11.1479 12.0749 12.0990 B, 6.61697 7.33624 7.35514

A, 4539.44 5272.08 5291.97 B, 2685.43 3210.81 3225.37

A, 222458. 288112. 290023. B, 115761. 154863. 156027.

A, 5514.96 6805.30 6841.24 cy 29.0383 29.0418 29.0419

A, 1102750. 1553840. 1567410. c, 596/45 596/45 596/45

A, 62913200. 106469000. 107906000. ~ 13.2444 ~ 13.2444 ~ 13.2444

TABLE 3. DSMC simulation parameters. Boltzmann constant is k, =1.380658 %107 J/K .

Quantity Symbol | Value Quantity Symbol | Value

Molecular mass m 66.3x10™" kg Ref. viscosity U 2.117x107 Pal3

Ref. temperature T 273.15K Ref. pressure Pret 266.644 Pa

Init. temperature 7. T Init. pressure P Pret

Left wall temp. T, T,.-AT/2 Left wall velocity 14 -AV /2

Right wall temp. 7, T +AT/2 Right wall velocity v, AV /2

Temperature diff. AT Up to 400 K Velocity diff. AV Up to 800 m/s

Domain length L 1 mm Molecules/cell N 120

Cell size Ax 0.0025 mm Time step JAYs 7 ns
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RESULTS

Figure 2 shows a,/a, and b, /b profiles for Maxwell molecules at Kn, values of 0.006 and 0.017 (i.e.,
AT =70 K and 200 K, with AV =100 m/s ). Actually, Kn,_ is not uniform but decreases from left to right because
Kn, = q/2pc, , g and p are uniform, and ¢, increases from left to right. At Kn , =0.006, the DSMC and CE
values are in good agreement in the central region, indicating that the normal solution is obtained in this region. At
Kn, =0.017, the DSMC values differ increasingly from the CE values from right to left (i.e., as Kn, increases).
Within the central region, the variations of the a, /a, and the b, /b, with Kn, represent the normal solution. Thus,
a single DSMC simulation provides the normal solution for the Kn, values in the central region. The same
approach is used to determine the dependence of K, /K and /¢ on Kn_. However, these quantities remain so
close to unity that their values are averaged over the central region to reduce stochastic errors.

Figure 3 shows the a, /a, and b, /b values for Maxwell molecules as functions of Kn_. The four clusters of
points correspond to four DSMC simulations with AV =100 m/s and AT =70, 200, 300, and 400 K , and the
curves are MH results (Equation (4) and Table 2). In all cases, Kn, <0.005, which is small. The DSMC VSS-
Maxwell and MH VSS-Maxwell values agree closely except for a,/a, and ag/a, at AT =400 K (the largest
value), whereas the DSMC VSS-Maxwell and MH IPL-Maxwell values differ increasingly as k increases. While
not shown, the DSMC and MH VHS-Maxwell results are nearly identical to their VSS-Maxwell counterparts. The
former slight difference between the DSMC and MH values has two causes. First, discretization errors account for
about half of this difference based on additional DSMC simulations in which Ax and Ar are halved while N is
doubled. Second, the finite value of Kn, also accounts for about half of this difference based on additional
simulations at twice the value (i.e., at AV =200 m/s ). This figure also shows the a, /a, and b, /b, values for hard-
sphere molecules as functions of Kn, . The dependence on Kn, is similar: coefficient ratios with even values of &
decrease with increasing Kn, , whereas coefficient ratios with odd values of & increase with increasing Kn, .
However, the rate of change is more gradual for hard-sphere molecules than it is for Maxwell molecules.

Figure 4 shows the K ; /K and g /u values for Maxwell molecules as functions of Kn_ at several values of
Kn, . The four symbols along each curve in the thermal-conductivity plots are values from simulations identical to
those in the previous figure except with AV =0, 100, and 200 m/s. Since the shear stress must be nonzero to
determine [/, , only values from the latter two simulations are present in the viscosity plots. In distinction to
Figure 3, the DSMC values in Figure 4 are averaged over the central region, with error bars corresponding to the
95% confidence intervals. As Kn, — 0, the DSMC values increase upward toward the MH values. The DSMC
values exhibit a slight but consistent increase with increasing Kn, . However, the net increase over the entire range
of Kn, is comparable to the stochastic and discretization errors for these simulations, which are each about +0.002 .
Thus, to within numerical uncertainty, the Maxwell-molecule transport coefficients are independent of heat flux, in
agreement with theory [2-5]. This figure also shows the K /K and 4 /u values for hard-sphere molecules as
functions of Kn, . No exact theoretical results are available for comparison. As for Maxwell molecules, the hard-
sphere values increase upward as Kn, — 0, and this variation is nearly linear. However, the CE values are not
obtained except for small values of Kn, . Instead, K /K and p /u decrease approximately quadratically with
increasing Kn_ . The differences observed at the largest Kn, are slightly larger than the combined effect of
discretization and stochastic errors (about +0.002 each) and thus appear to be real.

Figure 5 shows the K, /K and p; /i values for Maxwell molecules as functions of Kn,. The points are
from DSMC simulations with AV =0-800 m/s in increments of 100 m/s and AT =0 K , and the curves are MH
results (Equation (3) and Table 2). As above, the error bars represent the 95% confidence intervals. In the thermal-
conductivity plot, the error bars increase as Kn, is decreased. This phenomenon results from the fact that the
temperature gradients and the heat flux produced by viscous heating are approximately proportional to Kn, >,
whereas the stochastic noise does not depend strongly on Kn_ . In the viscosity plot, the error bars do not depend
strongly on Kn, because the shear stress is essentially proportional to the velocity gradient. The offset MH results
are in excellent agreement with the DSMC results. The small negative offsets (—0.002 for both transport
coefficients) presumably represent the DSMC discretization errors (#0.002 ). This figure also shows the K, /K
and gl /¢ values for hard-sphere molecules as functions of Kn, . Since no exact theoretical results are available,
curves of the form ¢, +¢,Kn? are fit through the DSMC values. The intercepts of these curves lie between 0.001
and 0.002 and presumably represent the discretization errors (+0.002 ). Hard-sphere molecules exhibit a weaker
dependence on Kn, than Maxwell molecules. Nevertheless, the departures of these quantities from unity at large
Kn, values are significantly larger than the discretization error, the stochastic error, and their combined effect.

254
Rarefied Gas Dynamics: 25-th International Symposium, edited by M.S.Ivanov and A.K.Rebrov. Novosibirsk 2007



0.20 0.20 0.20 0.20

c| Maxwell Maxwell - Maxwell
- £
0.15 0.15 0.15
k=2 —
0.10 0.10 0.10
= = = k=2 —
@ Q @
> ) k=2 ——d T
I Qo I
0.05 k=3 0.05 . 0.05
k=4
k=5 k=3 k=3 k=3
0.00 k A 0.00 k bt 7 00 =S 0.00 % ——
K=7 k=2 k=2
|« Central Region 4| |« Central Region 4| |« Central Region 4| |« Central Region 4|
-0.05 -0.05 -0.05 -0.05
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
x/L x/L x/L x/L

FIGURE 2. Maxwell Sonine-polynomial-coefficient profiles at small (left) and finite (right) Kn, values.
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CONCLUSIONS

The state of a single-species monatomic gas experiencing a large heat flux or a large shear stress is investigated
using the moment-hierarchy (MH) method for Maxwell molecules and the Direct Simulation Monte Carlo (DSMC)
method of Bird for Maxwell and hard-sphere molecules. Normal solutions of the Boltzmann equation are found for
Fourier flow (uniform heat flux) and Couette flow (uniform shear stress) at finite heat-flux and shear-stress Knudsen
numbers. The thermal conductivity, the viscosity, and the Sonine-polynomial coefficients from the MH and DSMC
methods agree with Chapman-Enskog (CE) theory at small Knudsen numbers. Additionally, these quantities are in
agreement at finite Knudsen numbers for VSS-Maxwell and VHS-Maxwell molecules. The MH and DSMC
methods both indicate that the effective thermal conductivity and the effective viscosity for Maxwell molecules are
independent of the heat-flux Knudsen number but decrease slightly as the shear-stress Knudsen number is increased.
Additional DSMC simulations indicate that these transport properties for hard-sphere molecules decrease slightly as
the shear-stress Knudsen number or the heat-flux Knudsen number is increased. In all cases examined, these
decreases are small, which indicates that the CE values for the thermal conductivity and the viscosity can be used
under highly nonequilibrium conditions with small errors so long as the system Knudsen number is small.
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