Energy production rates in fluid mixtures of inelastic rough hard spheres

Andrés Santos,¹ Gilberto M. Kremer,² and Vicente Garzó¹

¹Universidad de Extremadura, Badajoz (Spain) ²Universidade Federal do Paraná, Curitiba (Brazil)

Minimal model of a granular gas: A gas of *identical smooth inelastic* hard spheres

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

This minimal model ignores ...

Interstitial fluid

Caltech Granular Flows Group (http://www.its.caltech.edu/~granflow/)

Non-constant coefficient of restitution

www.oxfordcroquet.com/tech/

Non-spherical shape

Polydispersity

http://www.cmt.york.ac.uk/~ajm143/nuts.html

Model of a granular gas: A *mixture* of *inelastic rough* hard spheres

This model unveils an inherent breakdown of energy equipartition in granular fluids, even in homogeneous and isotropic states

Several circles (Kandinsky, 1926)

Galatea of the Spheres (Dalí, 1952)

Our aim

To derive <u>manageable</u> expressions for the (partial) *energy* production rates associated with each degree of freedom and each *binary collision*

Scheme of the derivation (arXiv:0910.5614)

Material parameters:

- Masses m_i
- Diameters σ_i
- Moments of inertia I_i
- Coefficients of normal restitution α_{ii}
- Coefficients of tangential restitution β_{ij}
- $\alpha_{ij} = 1$ for perfectly elastic particles
- β_{ij} =-1 for perfectly smooth particles
- β_{ij} =+1 for perfectly rough particles

Collision rules

Notation:
$$\widetilde{\alpha}_{ij} \equiv m_{ij} (1 + \alpha_{ij}), \quad \widetilde{\beta}_{ij} \equiv \frac{m_{ij}\kappa_{ij}}{1 + \kappa_{ij}} (1 + \beta_{ij})$$

 $m_{ij} \equiv \frac{m_i m_j}{m_i + m_j}, \quad \kappa_{ij} \equiv \kappa_i \kappa_j \frac{m_i + m_j}{\kappa_i m_i + \kappa_j m_j}, \quad \kappa_i \equiv \frac{I_i}{m_i (\sigma_i/2)^2}$

Energy collisional loss

$$E_{ij} = \frac{1}{2}m_i v_i^2 + \frac{1}{2}m_j v_j^2 + \frac{1}{2}I_i \omega_i^2 + \frac{1}{2}I_j \omega_j^2$$
$$E'_{ij} - E_{ij} = -(1 - \alpha_{ij}^2) \times \cdots$$
$$-(1 - \beta_{ii}^2) \times \cdots$$

Energy is conserved *only* if the spheres are • elastic ($\alpha_{ij}=1$) and

• either

- perfectly smooth (β_{ij} =-1) or
- perfectly rough ($\beta_{ij} = +1$)

Partial (granular) temperatures

Translational temperatures: $T_i^{\text{tr}} = \frac{m_i}{3} \langle (\mathbf{v}_i - \mathbf{u})^2 \rangle$

Rotational temperatures: $T_i^{\text{rot}} = \frac{I_i}{3} \langle \omega_i^2 \rangle = \frac{m_i \kappa_i}{12} \sigma_i^2 \langle \omega_i^2 \rangle$

Total temperature: $T = \sum_{i} \frac{n_i}{2n} \left(T_i^{\text{tr}} + T_i^{\text{rot}} \right)$

Collisional rates of change for temperatures

Energy production rates: $\xi_{i}^{\mathrm{tr}} = -\frac{1}{T_{i}^{\mathrm{tr}}} \left(\frac{\partial T_{i}^{\mathrm{tr}}}{\partial t}\right)_{\mathrm{coll}}, \quad \xi_{i}^{\mathrm{tr}} = \sum_{j} \xi_{ij}^{\mathrm{tr}}$ **Binary collisions** $\xi_i^{\rm rot} = -\frac{1}{T_i^{\rm rot}} \left(\frac{\partial T_i^{\rm rot}}{\partial t}\right) , \quad \xi_i^{\rm rot} = \sum_{i=1}^{n} \xi_i^{$ Net *cooling* rate: $\zeta = -\frac{1}{T} \left(\frac{\partial T}{\partial t} \right)_{\text{coll}}, \quad \zeta = \sum_{i} \frac{\overline{n_i}}{2nT} \left(\xi_i^{\text{tr}} T_i^{\text{tr}} + \xi_i^{\text{rot}} T_i^{\text{rot}} \right)$

$$\begin{aligned} \xi_{ij}^{\mathrm{tr}} &= -\frac{m_i \sigma_{ij}^2}{3n_i T_i^{\mathrm{tr}}} \int d\mathbf{v}_i \int d\omega_i \int d\mathbf{v}_j \int d\omega_j \int d\widehat{\sigma} \,\Theta(\mathbf{v}_{ij} \cdot \widehat{\sigma})(\mathbf{v}_{ij} \cdot \widehat{\sigma}) \\ &\times \left[f_{ij}^{(2)}(\mathbf{r}_i, \mathbf{v}_i, \omega_i; \mathbf{r}_i + \sigma_{ij}\widehat{\sigma}, \mathbf{v}_j, \omega_j) \right] \left[(\mathbf{v}_i' - \mathbf{u})^2 - (\mathbf{v}_i - \mathbf{u})^2 \right] \\ \xi_{ij}^{\mathrm{rot}} &= -\frac{I_i \sigma_{ij}^2}{3n_i T_i^{\mathrm{rot}}} \int d\mathbf{v}_i \int d\omega_i \int d\mathbf{v}_j \int d\omega_j \int d\widehat{\sigma} \,\Theta(\mathbf{v}_{ij} \cdot \widehat{\sigma})(\mathbf{v}_{ij} \cdot \widehat{\sigma}) \\ &\times \left[f_{ij}^{(2)}(\mathbf{r}_i, \mathbf{v}_i, \omega_i; \mathbf{r}_i + \sigma_{ij}\widehat{\sigma}, \mathbf{v}_j, \omega_j) \right] \left[(\omega_i'^2 - \omega_i^2) \right] \\ \end{aligned}$$

Pre-collisional two-body correlation function (at contact)

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} 2. \ Approximation \\ (\text{weak inhomogeneities and/or low density}) \end{array} \\ \hline f_{ij}^{(2)}(\mathbf{r}_{i},\mathbf{v}_{i},\omega_{i};\mathbf{r}_{i}+\sigma_{ij}\widehat{\sigma},\mathbf{v}_{j},\omega_{j}) \rightarrow \overline{f}_{ij}^{(2)}(\mathbf{r}_{i},\mathbf{v}_{i},\omega_{i};\mathbf{v}_{j},\omega_{j}) \end{array} \\ \hline f_{ij}^{(2)}(\mathbf{r}_{i},\mathbf{v}_{i},\omega_{i};\mathbf{v}_{j},\omega_{j}) \equiv \frac{\int d\widehat{\sigma} \ \Theta(\mathbf{v}_{ij} \cdot \widehat{\sigma})(\mathbf{v}_{ij} \cdot \widehat{\sigma}) f_{ij}^{(2)}(\mathbf{r}_{i},\mathbf{v}_{i},\omega_{i};\mathbf{r}_{i}+\sigma_{ij}\widehat{\sigma},\mathbf{v}_{j},\omega_{j})}{\int d\widehat{\sigma} \ \Theta(\mathbf{v}_{ij} \cdot \widehat{\sigma})(\mathbf{v}_{ij} \cdot \widehat{\sigma})(\mathbf{v}_{ij} \cdot \widehat{\sigma})} \end{array} \\ \hline \\ \xi_{ij}^{\text{tr}},\xi_{ij}^{\text{rot}} = \text{L.C.} \begin{cases} \langle v_{ij}\mathbf{v}_{i} \cdot \mathbf{v}_{ij} \rangle \\ \langle (\sigma_{i}\omega_{i}+\sigma_{j}\omega_{j})^{2} \rangle \\ \cdots \end{cases} \end{array} \end{array}$$
 Two-body averages (at contact) \\ \end{array}

3. Information-theory estimates

Pair correlation function (at contact)

$$\overline{f}_{ij}^{(2)}(\mathbf{v}_i, \boldsymbol{\omega}_i; \mathbf{v}_j, \boldsymbol{\omega}_j) \rightarrow \underbrace{\chi_{ij}}_{\chi_{ij}} \left(\frac{m_i m_j}{4\pi^2 T_i^{\text{tr}} T_j^{\text{tr}}} \right)^{3/2} e^{-m_i \frac{(\mathbf{v}_i - \mathbf{u})^2}{2T_i^{\text{tr}}} - m_j \frac{(\mathbf{v}_j - \mathbf{u})^2}{2T_j^{\text{tr}}}} \times f_i^{\text{rot}}(\boldsymbol{\omega}_i) f_j^{\text{rot}}(\boldsymbol{\omega}_j)$$

Final results.
Energy production rates

$$\xi_{ij}^{tr} = \frac{\nu_{ij}}{m_i T_i^{tr}} \left[2\left(\tilde{\alpha}_{ij} + \tilde{\beta}_{ij}\right) T_i^{tr} - \left(\tilde{\alpha}_{ij}^2 + \tilde{\beta}_{ij}^2\right) \left(\frac{T_i^{tr}}{m_i} + \frac{T_j^{tr}}{m_j}\right) \right. \\ \left. - \tilde{\beta}_{ij}^2 \left(\frac{T_i^{rot}}{m_i \kappa_i} + \frac{T_j^{rot}}{m_j \kappa_j}\right) \right]$$

$$^t = \frac{\nu_{ij}}{m_i \kappa_i T_i^{rot}} \tilde{\beta}_{ij} \left[2T_i^{rot} - \tilde{\beta}_{ij} \left(\frac{T_i^{tr}}{m_i} + \frac{T_j^{tr}}{m_j} + \frac{T_i^{rot}}{m_j \kappa_i} + \frac{T_j^{rot}}{m_j \kappa_j}\right) \right]$$

$$\nu_{ij} \equiv \frac{4\sqrt{2\pi}}{3} \chi_{ij} n_j \sigma_{ij}^2 \sqrt{\frac{T_i^{\rm tr}}{m_i} + \frac{T_j^{\rm tr}}{m_j}}$$

 $\xi_{ij}^{
m rc}$

Effective collision frequencies

Southern Workshop on Granular Materials 2009, Viña del Mar (Chile), Dec. 2009

L

Final results. Net cooling rate

$$\zeta = \sum_{i} \frac{n_i}{2nT} \left(\xi_i^{\rm tr} T_i^{\rm tr} + \xi_i^{\rm rot} T_i^{\rm rot} \right)$$

$$\zeta = \sum_{ij} \frac{n_i \nu_{ij}}{4nT} \frac{m_i m_j}{m_i + m_j} \left[\left(1 - \alpha_{ij}^2\right) \left(\frac{T_i^{\text{tr}}}{m_i} + \frac{T_j^{\text{tr}}}{m_j}\right) + \frac{\kappa_{ij}}{1 + \kappa_{ij}} \left(1 - \beta_{ij}^2\right) \left(\frac{T_i^{\text{tr}}}{m_i} + \frac{T_j^{\text{tr}}}{m_j} + \frac{T_i^{\text{rot}}}{m_i \kappa_i} + \frac{T_j^{\text{rot}}}{m_j \kappa_j}\right) \right]$$

Decomposition

Energy production rates = Equipartition rates + Cooling rates

Net cooling rate = Σ Cooling rates

Simple application: Homogeneous Cooling State (HCS)

The HCS is

- Spatially homogeneous
- Isotropic
- Undriven
- Freely cooling

$$\frac{\partial T}{\partial t} = -\zeta T$$

$$\frac{\partial}{\partial t} \frac{T_i^{\text{tr}}}{T} = -\left(\xi_i^{\text{tr}} - \zeta\right) \frac{T_i^{\text{tr}}}{T}, \quad \frac{\partial}{\partial t} \frac{T_i^{\text{rot}}}{T} = -\left(\xi_i^{\text{rot}} - \zeta\right) \frac{T_i^{\text{rot}}}{T}$$
$$\to \infty \Rightarrow \xi_1^{\text{tr}} = \xi_2^{\text{tr}} = \dots = \xi_1^{\text{rot}} = \xi_2^{\text{rot}} = \dots$$

Translational/Rotational

Rotational/Rotational

Translational/Translational

"Ghost" effect: A tiny amount of roughness has dramatic effects on the temperature ratio (enhancement of non-equipartition)

Conclusions and outlook

- Collisional energy production rates obtained for mixtures of inelastic rough hard spheres.
- Interesting non-equipartition phenomena in the HCS ("ghost" effect).
- Simulations planned to test the theoretical predictions.
- Proposal of a simple model kinetic equation for the single-component case.
- Solution of the above model in the uniform shear flow. Simulations planned.
- Derivation of the Navier-Stokes constitutive equations.

Thanks for your attention!

\approx Viña del Mar

Translational/Translational

"Ghost" effect: A tiny amount of roughness has dramatic effects on the temperature ratio

Simple application: White-noise heating (steady state)

$$T_1^{\mathrm{tr}}\xi_1^{\mathrm{tr}} = T_2^{\mathrm{tr}}\xi_2^{\mathrm{tr}} = \cdots$$

$$\xi_1^{\rm rot} = \xi_2^{\rm rot} = \dots = 0$$

Translational/Rotational

Weak influence of inelasticity

Rotational/Rotational

Same qualitative behavior for different inelasticities

Translational/Translational

Locus of equipartition: Under which conditions does equipartition hold?

• Coefficients of normal restitution $\alpha_{11} = \alpha_{12} = \alpha_{22} = \alpha$

• Coefficients of tangential restitution $\beta_{11} = \beta_{12} = \beta_{22} = \beta$

• Inertia-moment parameters $\kappa_1 = \kappa_2 = \kappa$

- Size ratio $\sigma_1/\sigma_2 = \text{free}$
- Mass ratio $m_1/m_2 = \text{free}$
- Mole fraction $n_1/(n_1 + n_2) =$ free

Southern Workshop on Granular Materials 2009, Viña del Mar (Chile), Dec. 2009

Simple kinetic model for monodisperse inelastic rough hard spheres

Three key ingredients we want to keep:

1.
$$(\partial_t T^{\mathrm{tr}})_{\mathrm{coll}} = -\xi^{\mathrm{tr}} T^{\mathrm{tr}}$$

2.
$$(\partial_t T^{\rm rot})_{\rm coll} = -\xi^{\rm rot} T^{\rm rot}$$

3.
$$\int d\mathbf{v}_{i} \int d\boldsymbol{\omega}_{i} \, \mathbf{v}_{i} J_{ij}[\mathbf{v}_{i}, \boldsymbol{\omega}_{i} | f_{i}, f_{j}] = \frac{1 + \alpha_{ij} + \beta_{ij} \kappa_{ij} / (1 + \kappa_{ij})}{2} \\ \times \int d\mathbf{v}_{i} \int d\boldsymbol{\omega}_{i} \, \mathbf{v}_{i} J_{ij}[\mathbf{v}_{i}, \boldsymbol{\omega}_{i} | f_{i}, f_{j}] \Big|_{\substack{\alpha_{ij} = 1 \\ \beta_{ij} = -1}} \\ \text{Elastic smooth spheres}}$$

$$\partial_t f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) = J[\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t|f, f]$$

$$egin{aligned} J[f,f] &
ightarrow & -\lambda
u_0 \left(f-f_0
ight) \ & +rac{\xi^{ ext{tr}}}{2}rac{\partial}{\partial \mathbf{v}} \cdot \left[(\mathbf{v}-\mathbf{u})f
ight] +rac{\xi^{ ext{rot}}}{2}rac{\partial}{\partial oldsymbol{\omega}} \cdot \left(oldsymbol{\omega} f
ight) \end{aligned}$$

$$\lambda \equiv \frac{1+\alpha}{2} + \frac{\kappa}{1+\kappa} \frac{1+\beta}{2}, \quad \nu_0 = \frac{16\sqrt{\pi}}{5} n\sigma^2 \sqrt{T^{\rm tr}/m}$$

$$f_0 = n \left(\frac{mI}{4\pi^2 T^{\rm tr} T^{\rm rot}}\right)^{3/2} \exp\left[-\frac{m(\mathbf{v}-\mathbf{u})^2}{2T^{\rm tr}} - \frac{I\omega^2}{2T^{\rm rot}}\right]$$

An even simpler version ...

$$\partial_t f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) = -\lambda \nu_0 \left[f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) - f_0^{\rm tr}(\mathbf{r}, \mathbf{v}, t) \right] \\ + \frac{\xi^{\rm tr}}{2} \frac{\partial}{\partial \mathbf{v}} \cdot \left[(\mathbf{v} - \mathbf{u}) f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) \right]$$

 $\partial_t T^{\mathrm{rot}} + \nabla \cdot \left(\mathbf{u} \, T^{\mathrm{rot}}\right) = -\xi^{\mathrm{rot}} T^{\mathrm{rot}}$

Application to simple shear flow

Application to simple shear flow Shear stress

Application to simple shear flow Anisotropic translational temperatures

Southern Workshop on Granular Materials 2009, Viña del Mar (Chile), Dec. 2009

 T_x^{tr}

 T^{tr}

 T^{tr}

 T^{tr}

 $T_y^{
m tr}$

 T^{tr}