Phase separation in negatively non-additive hard-sphere mixtures

Andrés Santos

Departamento de Física, Universidad de Extremadura, Badajoz, Spain

Mariano López de Haro Centro de Investigación en Energía, U.N.A.M., Temixco, Mexico

Entropy-driven phase transitions

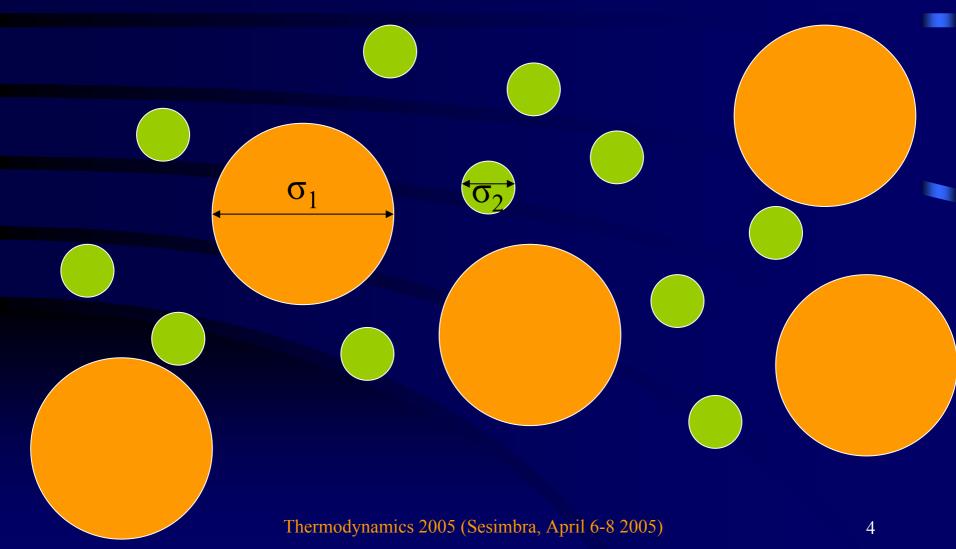
• In hard-sphere systems the internal energy is independent of density.

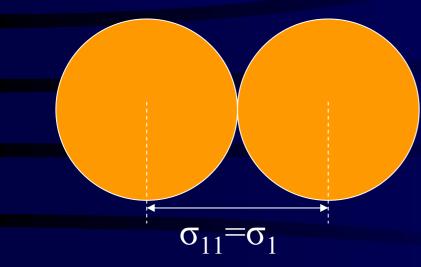
• Therefore, phase transitions are entropydriven and the relevant thermodynamic parameter is not temperature but density.

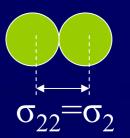
Examples

- Fluid → crystal freezing transition in hard spheres. The loss in entropy associated with nonuniformity is compensated at sufficiently large densities (η>0.49) by the gain associated with a larger free-volume per particle.
- Isotropic → nematic transition in a system of thin hard rods. The loss in orientational entropy can be compensated (at large enough densities) by the gain in translational entropy.

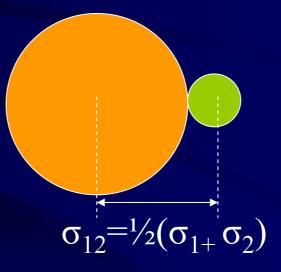
Binary mixture of hard spheres







Additive spheres



Non-additive hard spheres

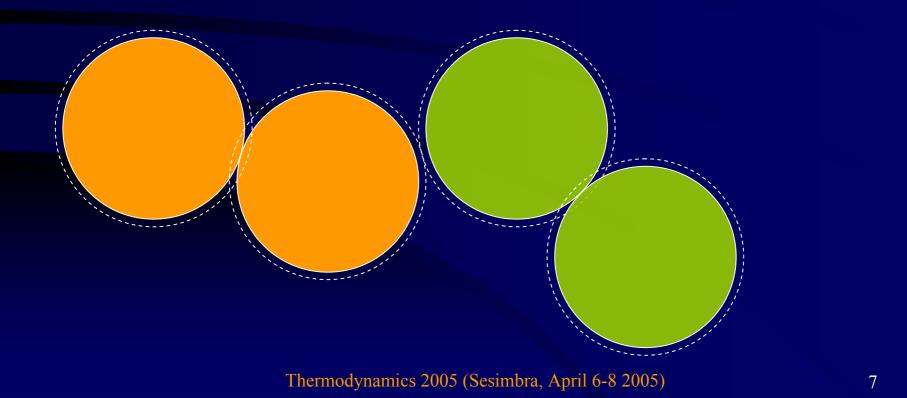
Positive non-additivity

Negative non-additivity

 $\sigma_{12} < \frac{1}{2} (\sigma_1 + \sigma_2)$

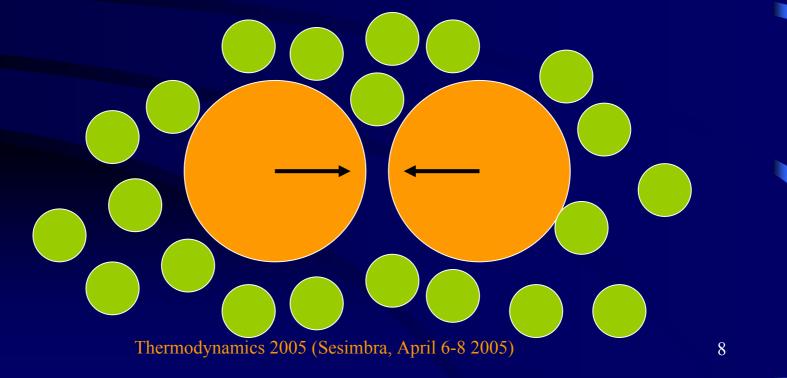
Demixing transition in *positively non-additive* mixtures

• Even in symmetric mixtures ($\sigma_1 = \sigma_2$), phase separation can occur due to entropic effects (*homo-coordination*).



Demixing transition in *additive* mixtures

• Osmotic depletion: If the size ratio $\gamma \equiv \sigma_2/\sigma_1$ is small enough, the small spheres can induce an effective *attraction* between the large spheres.



• Demixing in *additive* mixtures is a very elusive effect.

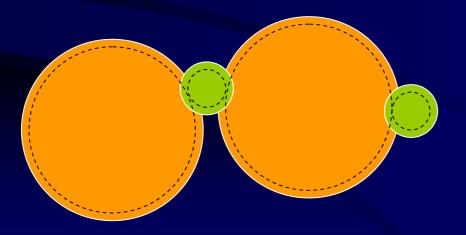
• If demixing exists, it is possibly metastable with respect to the freezing transition.

Can demixing occur in *asymmetric* mixtures with *negative* non-additivity?

- Two competing effects:
- 1. Size asymmetry $(\gamma \equiv \sigma_2 / \sigma_1 \ll 1)$ favors phase separation (osmotic depletion).

Can demixing occur in *asymmetric* mixtures with *negative* nonadditivity?

- Two competing effects:
- 2. Negative non-additivity $[\sigma_{12} < \frac{1}{2}(\sigma_1 + \sigma_2)]$ favors mixing (hetero-coordination).



Our strategy: infinitely many dimensions $(d \rightarrow \infty)$

 H. L. Frisch and J. Percus, *High dimensionality as* an organizing device for classical fluids, Phys. Rev. E 60, 2942 (1999):

"[In high spatial dimensionality], fluctuations are reduced by high effective coordination number, so, e.g., interfaces tend to be even sharper, and *one* generally expects clean caricatures of any thermodynamic phenomenology that indeed extends to higher dimensionality."

Relevant quantities

Geometrical

$$\begin{cases} \sigma_1, \sigma_2, \sigma_{12}: \text{ diameters} \\ \gamma = \sigma_2/\sigma_1 < 1: \text{ size ratio} \\ \tilde{\gamma} = \sigma_2^d/\sigma_1^d = \gamma^d < 1: \text{ volume ratio} \\ \sigma_{12} = \frac{1}{2}(\sigma_1 + \sigma_2)(1 + \Delta), \quad \Delta: \text{ non-additivity parameter} \end{cases}$$

Thermodynamic

 $\begin{aligned} x_i &= N_i/N: \text{ mole fractions} \\ \rho &= N/V: \text{ number density } \\ \eta &= \rho(x_1\sigma_1^d + x_2\sigma_2^d) \underbrace{o_d}: \text{ packing fraction} \\ p: \text{ pressure } (k_BT = 1) \\ g: \text{ Gibbs free energy per particle} \end{aligned}$

High-dimensionality limit $(d \rightarrow \infty)$

The second virial approximation becomes exact [Frisch, Rivier, and D. Wyler, PRL **54**, 2061 (1985); Carmesin, Frisch, and Percus, JSP **63**, 791 (1991)]

$$p \rightarrow \rho + B_2 \rho^2$$
, $g \rightarrow g^{\text{ideal}} + 2B_2 \rho$

 $B_2 = v_d 2^{d-1} \left(x_1^2 \sigma_1^d + x_2^2 \sigma_2^d + 2x_1 x_2 \sigma_{12}^d \right)$

Scaling

volume ratio: $\tilde{\gamma} = \sigma_2^d / \sigma_1^d = \gamma^d < 1 = \text{finite}$ scaled non-additivity parameter: $\widetilde{\Delta} = d^2 \Delta = \text{finite}$ scaled packing fraction: $\tilde{\eta} = (d^{-1}2^d)\eta = \text{finite}$ $\Rightarrow \eta \rightarrow 0$ scaled pressure: $\tilde{p} = (v_d d^{-2} 2^{d-1}) p \sigma_1^d = \text{finite}$ $\Rightarrow p\sigma_1^d \rightarrow \infty$

Simple algebra yields the critical point

irrelevant essential

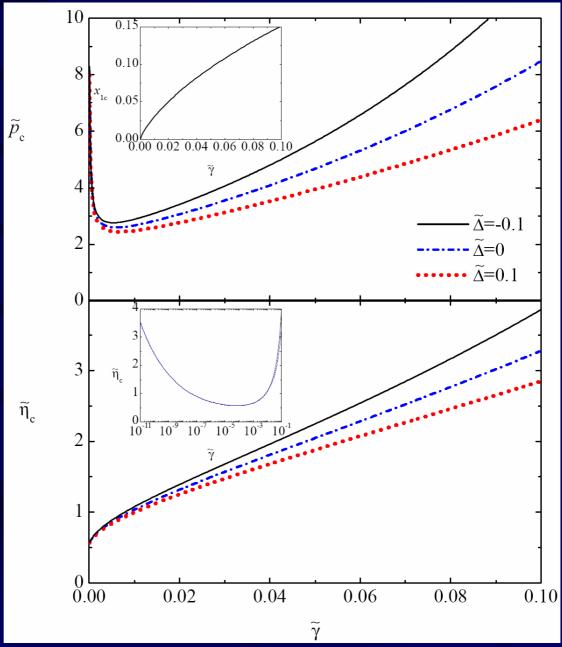
$$g = d \left[g^{(0)} + g^{(1)} d^{-1} + \cdots \right]$$

Critical point:
$$\left(\frac{\partial^2 g}{\partial x_1^2}\right)_p = \left(\frac{\partial^3 g}{\partial x_1^3}\right)_p = 0$$

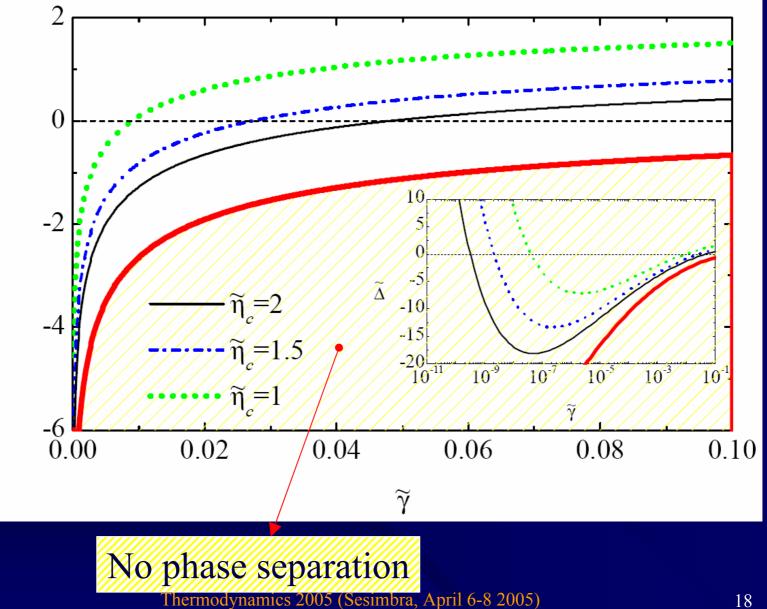
$$x_{1c} = \frac{\tilde{\gamma}^{3/4}}{1 + \tilde{\gamma}^{3/4}}, \quad \tilde{\eta}_c = \frac{\left(\tilde{\gamma}^{1/8} + \tilde{\gamma}^{-1/8}\right)^2}{K}, \quad \tilde{p}_c = \frac{\left(1 + \tilde{\gamma}^{1/4}\right)^4}{4\tilde{\gamma}K^2}$$

$$K \equiv \frac{1}{4} (\ln \tilde{\gamma})^2 + 2\widetilde{\Delta} = d^2 \left[\frac{1}{4} (\ln \gamma)^2 + 2\Delta \right] > 0 \Rightarrow \left[\Delta > -\frac{1}{8} (\ln \gamma)^2 \right]$$

Critical point as a function of the (scaled) size asymmetry and non-additivity parameters



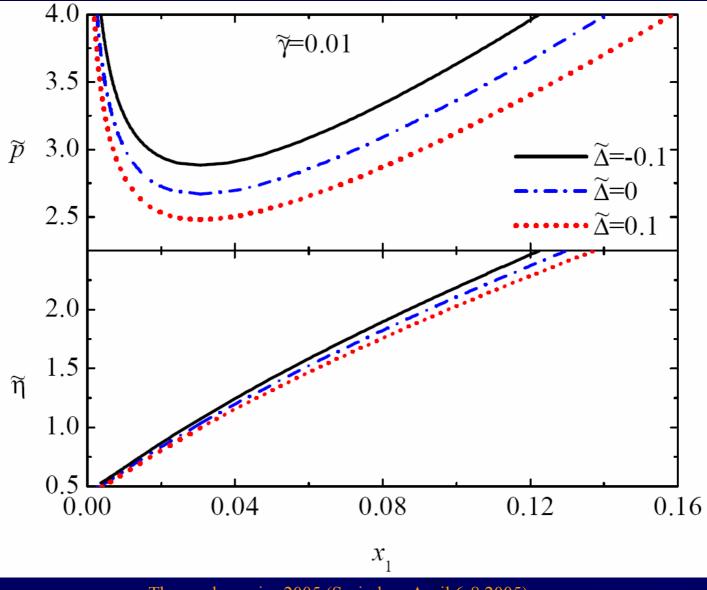
Threshold curve and loci $\tilde{\eta}_c = \text{const}$



 $\widetilde{\Delta}$

18

Coexistence curves (binodals)



Are the densities consistent with the second-virial approximation?

• Yes:

$\widetilde{\eta} = \mathcal{O}(1) \Rightarrow \lim_{d \to \infty} \frac{B_3 \rho}{B_2} = 0$

Does demixing occur within the stable fluid region?

• Possibly yes:

✓ Colot & Baus's conjecture (1986)

 $(\eta_{\rm f}/\eta_{\rm CP})^{1/d}
ightarrow d$ -independent

 ✓ Simple free volume theory for the solid

$\widetilde{\eta}_{ m f}\sim 1-2$

Conclusions (I)

- In the high-dimensionality limit, a binary hard-sphere mixture can phase separate, even for negative non-additivities, provided the non-additivity parameter Δ and the size ratio γ are such that $\Delta > -\frac{1}{8} (\ln \gamma)^2$
- In the demixing region, the density and pressure scale as $\eta \sim 2^{-d}d, p/\rho \sim d$

Conclusions (II)

- It is plausible that the phase separation preempts the freezing transition.
- The main effects at work (competition between osmotic depletion and hetero-coordination) are also present in three-dimensional systems.
- The limit d → ∞ allows one to derive exact results and get a caricature or toy model to highlight features already present in real systems.

Theory of asymmetric nonadditive binary hard-sphere mixtures

R. Roth* and R. Evans A. A. Louis

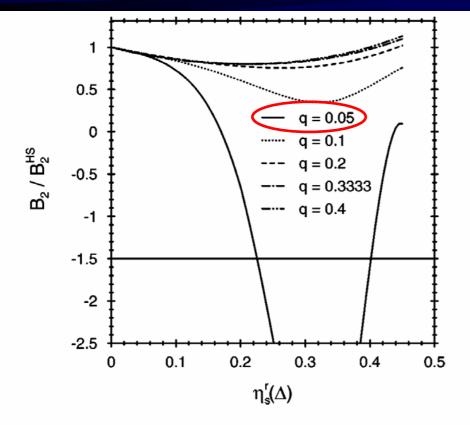


FIG. 10. The reduced second virial coefficient of the big spheres in hard-sphere mixtures with a small *negative* nonadditivity $\Delta = -q/20$ for various size ratios q versus $\eta_s^r(\Delta)$, the packing fraction of small spheres in the reservoir. Note that B_2/B_2^{HS} falls below -1.5 only for the smallest ratio, q = 0.05, considered here.

Effective onecomponent fluid

Only for very small q can the depletion potential in nonadditive mixtures with negative Δ generate sufficient net attraction to drive B_2 negative.

Thanks!

