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i





A mi familia

iii



iv



Contents

Agradecimientos ix

Resumen xiii

1 Introducción 1
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Resumen

Esta memoria ha sido dedicada al estudio de modelos de vidrios de esṕın con
interacciones a corto alcance, en concreto el modelo de Potts de vidrios de
esṕın y el de Edwards-Anderson. El objetivo principal de esta Tesis Doctoral
ha sido el estudio de las transiciones de fase que estos modelos presentan aśı
como la caracterización de su fase de vidrio de esṕın a bajas temperaturas.
La complejidad que presentan los vidrios de esṕın exigen el desarrollo de
sofisticadas herramientas para su estudio, las cuales pueden ser aplicadas
en otras ramas de la ciencia como el plegamiento de protéınas. Para el
desarrollo de esta tesis se han utilizado programas propios escritos en lenguaje
C y la máquina dedicada Janus del BIFI, aśı como en menor medida otras
infraestructuras como el Cluster del BIFI.

Un vidrio de esṕın es una colección de momentos magnéticos, espines,
que a baja temperatura presenta un estado congelado desordenado, la fase
de vidrio de esṕın. En esta fase, el sistema posee caracteŕısticas muy intere-
santes. Los tiempos de relajación son extremadamente largos debido a un
paisaje de enerǵıa muy complicado. Una de las principales causas de ello es
la frustración, que consiste en que los espines no son capaces de encontrar
un estado estable debido a que hay competencia entre distintas interacciones
con los espines vecinos.

Los primeros vidrios de esṕın que se estudiaron, en la década de 1970,
fueron los vidrios de esṕın metálicos o canónicos, compuestos por una base
metálica en la que se añaden impurezas magnéticas. Desde entonces se han
dedicado muchos trabajos al estudio tanto experimental como teórico de los
vidrios de esṕın, aunque aún quedan muchas incógnitas abiertas. Esta tesis
intenta realizar una pequeña aportación a este vasto campo de investigación.

El Caṕıtulo 1 es una introducción a los vidrios de esṕın donde se ex-
plican qué son estos materiales, sus caracteŕısticas y se dan algunos ejem-
plos de materiales reales que presentan el comportamiento de un vidrio de
esṕın. Además, se presentan varios modelos realistas de vidrios de esṕın aśı
como aproximaciones que tienen solución anaĺıticas que nos permiten lanzar
hipótesis sobre el comportamiento de los modelos más realistas.

xiii
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En el Caṕıtulo 2 se estudia el comportamiento cŕıtico del modelo de Potts
de vidrios de esṕın en tres dimensiones con 5 y 6 estados. Este modelo
presenta un diagrama de fases muy rico y por eso recibe bastante atención.
En este caso, nosotros caracterizamos la transición a la fase de vidrio de esṕın
y estudiamos su dependencia con el número de estados, aśı como buscamos
la posible existencia de otra transición de fase, esta vez a una ferromagnética.

Uno de los objetivos principales del Caṕıtulo 3 es el estudio de ciertas car-
acteŕısticas de la fase de vidrio de esṕın de sistemas finitos con interacciones
de rango finito, como por ejemplo estabilidad estocástica, Replica Equiva-
lence (equivalencia de réplicas), Overlap Equivalence (equivalencia de over-
lap) y ultrametricidad. Para ello se estudian las fluctuaciones entre muestras
del modelo de Edwards-Anderson en tres dimensiones.

En el Caṕıtulo 4 se investiga, utilizando técnicas fuera del equilibrio, si
existe transición de fase en un vidrio de esṕın en tres dimensiones en presencia
de un campo magnético externo, ya que los dos principales escenarios teóricos
predicen comportamientos antagónicos.

En el Caṕıtulo 5 aplicamos una técnica alternativa para estudiar transi-
ciones de fase en vidrios de esṕın, el análisis de las singularidades complejas
de la función de partición. Esta técnica, fue desarrollada en 1952 por Lee y
Yand y desde entonces se ha aplicado a multitud de sistemas f́ısicos, por lo
que queremos estudiar su aplicación a vidrios de esṕın.

En el Caṕıtulo 6 se estudian los fenómenos de rejuvenecimiento y memo-
ria que presentan los vidrios de esṕın cuando son sometidos a cambios de
temperaturas en su fase de vidrio de esṕın fuera del equilibrio. Se intentará
reproducir el impresionante experimento dip en el que estos fenómenos se
evidencian claramente.

En el Caṕıtulo 7 se recoge un resumen de los trabajos de investigación en
los que he trabajados dentro de la Janus Collaboration pero que no forman
la parte principal de investigación de esta Tesis Doctoral.

Finalmente, el Caṕıtulo 8 está dedicado a las conclusiones.
Como resultado de todo este trabajo han sido realizadas las siguientes

publicaciones

• R. Alvarez Baños, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero, J.
M. Gil-Narvion, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari,
V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro,
G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, B. Seoane, S. F. Schi-
fano, A. Tarancon, R. Tripiccione and D. Yllanes, J. Stat. Mech.
P05002 (2010). “Critical Behavior of Three-Dimensional Disordered
Potts Models with Many States”.

• R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-
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objetivo de permitir su lectura a un grupo más amplio de personas.
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Caṕıtulo 1

Introducción

Los vidrios de esṕın1 son sistemas magnéticos (es decir, una colección de
espines) que presentan una transición de fase a una fase congelada de baja
temperatura desde una paramagnética. Sin embargo, esta fase no exhibe
orden de largo alcance (mientras que los materiales ferromagnéticos y anti-
ferromagnéticos śı), por lo que esta fase es una especie de desorden congelado.
Por tanto, la magnetización localmi es no nula mientras que la magnetización
media

M =

∑
imi

N
(1.1)

donde N es el número total de espines, y la magnetización a momento k

Mk =

∑
i

e−ik·rimi

N
(1.2)

se anulan para todos los momentos k. La ausencia de un orden de largo
alcance (a diferencia de los materiales antiferromagnéticos) se puede com-
probar con experimentos de scattering de neutrones.

Los vidrios de esṕın metálicos o canónicos fueron el primer tipo de vidrios
de esṕın estudiado. Estos materiales son aleaciones metálicas creadas añadiendo
impurezas magnéticas a una base metálica, por ejemplo, CuMn. Es bien
conocido que en un ferromagneto (como Fe), la interacción magnética es
calculada con la interacción de canje, por lo que se obtiene que

H = −JS1S2 (1.3)

donde S1 y S2 son los espines (es decir, los momentos magnéticos) de los
átomos magnéticos. Sin embargo, en un vidrio de esṕın metálico, los átomos

1Se han publicado muchas reviews, nos centraremos en las Refs. [2, 3, 5].

1
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magnéticos son impurezas por lo que se tiene una especie de interacción
de canje indirecta, una impureza magnética interacciona con un electrón de
conducción quien, después, interacciona con otra impureza magnética. Esta
interacción es la llamada interacción RKKY (debido a que fue estudiada por
Runderman y Kittel en 1954 [6], Kasuya en 1956 [7] y Yosida en 1957 [8]) y
la expresión de la interacción es

J(r) = J0
cos(2kF r + φ0)

(kF r)3
(1.4)

donde J0 y φ0 son constantes y kF es el número de ondas de Fermi del metal
anfitrión (en nuestro ejemplo, Cu).

Los tiempos de relajación en la fase congelada de vidrio de esṕın son ex-
tremadamente largos, por lo que el estudio de la dinámica fuera del equilibrio
es muy útil para comparar con experimentos. Además, algunos fenómenos
t́ıpicos de los vidrios de esṕın aparecen en este régimen. El comportamiento
del sistema depende del proceso de enfriamiento y el tiempo, tw, que el sis-
tema haya estado en la fase de vidrio de esṕın, es decir, los vidrios de esṕın
exhiben aging (ver, por ejemplo, Ref. [9]). Si el sistema evoluciona un tiempo
tw en una temperatura fija, T , en la fase de vidrio de esṕın, aparecen dos
ejemplos de fenómenos de aging: la magnetización termorremanente (el sis-
tema evoluciona en presencia de un campo magnético externo que luego se
retira) y la magnetización de un enfriamiento a campo cero, ZFC (el campo
magnético externo se enciende tras haber pasado el sistema un tiempo tw en
la fase de vidrio de esṕın). Un par de ejemplos de este tipo de experimentos
se muestra en las Figuras 1.1 y 1.2. Además, si la temperatura en la fase de
vidrio de esṕın no se mantiene constante aparece otros fenómenos, como el
rejuvenecimiento y la memoria (ver Caṕıtulo 6).

En resumen, las principales caracteŕısticas de un vidrio de esṕın en su
fase de vidrio de esṕın son que los momento magnéticos están congelados,
ausencia de orden de largo alcance (Mk = 0 y M = 0), tiempo de relajación
muy largos y dependencia del protocolo de enfriamiento.

Finalmente, en el resto de este trabajo, ⟨(· · · )⟩ denotará el promedio
termal t́ıpico y (· · · ) denotará el promedio sobre el desorden (congelado).

1.1 Modelos de vidrios de esṕın

Se han desarrollado muchos modelos de vidrios de esṕın para modelizar los
sistemas reales, con diferentes formas de afrontar el problema. Vamos a
describir brevemente aqúı algunos de ellos. El primer tipo de modelo que uno
puede estudiar es un sistema que reproduzca el vidrio de esṕın experimental
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Figure 1.1: Susceptibilidad de dos muestras de CuMn, con un 1.08% y un
2.02% de Mn, respectivamente, al ser recalentadas. Ĺıneas (b) y (d) son los
experimentos de enfriamiento a campo cero, mientras que en las ĺıneas (a)
y (c) el sistema hab́ıa sido enfriado en presencia de un campo magnético de
h = 5.90 Oe. Por encima de la temperatura cŕıtica, Tc, la susceptibilidad de
ambos protocolos coincide pero no por debajo de Tc. Figura de la Ref. [10].

Figure 1.2: Magnetización remanente del (Fe0.15Ni0.85)75P16B6Al3 a una tem-
peratura T con T/Tg = 0.96 (donde Tg es la temperatura cŕıtica) tras quitar
el campo magnético H. TRM significa que el sistema hab́ıa sido enfriado en
un campo magnético H, mientras que IRM significa que el sistema hab́ıa sido
enfriado en ausencia de campo magnético y en la temperatura T se aplicó
un pulso de 30 s del campo magnético H. Las medidas se han realizado un
tiempo t tras retirar el campo H. Figura de la Ref. [11].

descrito en la sección anterior. Por ejemplo, en el modelo RKKY, uno tiene
impurezas que producen una interacción como la de la Ec. (1.4). Este tipo
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de modelos con impurezas son los modelos con aleatoriedad en los sitios. Sin
embargo, se ha desarrollado otro tipo de vidrios de esṕın, los modelos con
enlaces aleatorios. Edwards y Anderson [13] propusieron el primero de este
tipo de modelos

H = −
∑
⟨i,j⟩

JijSiSj −
∑
i

hiSiz (1.5)

donde ⟨i, j⟩ significa que la suma corre sobre los vecinos más próximos, hi es
el campo magnético en el sitio i, Si es un vector unitario de una dimensión
(Ising, que habitualmente se le llama modelo de Edwards-Anderson, EA),
dos dimensiones (modelo XY) o tres dimensiones (modelo de Heisenberg), y,
obviamente, Siz es la componente z del vector Si. A partir de ahora, en el
resto de este trabajo, denotaremos las variables de Ising de una dimensión
como σi. Finalmente, Jij son los acoplamientos, que son variables aleatorias
congeladas: es decir, Si son variables dinámicas (cambian con el tiempo)
mientras que Jij son estáticas (son constantes en el tiempo). El hecho de que
sólo interactúen los vecinos más próximos (dependiendo del modelo primeros,
segundos vecinos, etc.) es una forma de modelar el decaimiento con la dis-
tancia de la interacción en sistemas reales. Sea D la dimensión del espacio en
el que vive el sistema y asumiendo interacción sólo con los primeros vecinos,
cada esṕın interacciona con 6D vecinos. Las dos principales distribuciones
de probabilidad de los acoplamientos son la distribución gaussiana

P (Jij) =
1√

2π∆Jij
exp

[
−
(
Jij − Jij

)
2 (∆Jij)

2

]
(1.6)

y la distribución bimodal ±J

P (Jij) = p1δ(Jij − J) + (1− p1)δ(Jij + J) (1.7)

Otro modelo de enlaces aleatorios es el modelo de Potts de vidrios de
esṕın de p estados [14, 15] definido como

H ≡ −
∑
⟨i,j⟩

Jij δsi,sj (1.8)

donde si puede tomar p valores distintos {0, 1, . . . , p−1}. La distribución de
probabilidad de los acoplamientos puede ser o bien Ec.(1.6) o bien Ec. (1.7).

En este trabajo nos vamos a centrar en el modelo de Potts de vidrios de
esṕın y en el modelo de Edwards-Anderson de vidrios de esṕın de tipo Ising.



CAPÍTULO 1. INTRODUCCIÓN 5

1.2 El método de las réplicas

Para hacer un análisis en f́ısica estad́ıstica primero se ha de calcular la función
de partición en una realización dada del desorden congelado, una muestra
(etiquetada con J)

ZJ =
∑
{σi}

e−βHJ ({σi}) (1.9)

donde la suma corre sobre todas las configuraciones posibles. Un ejemplo
de realización del desorden congelado es un conjunto fijo de acoplamientos
en el modelo de vidrio de esṕın de Edwards-Anderson (ver Sección 1.1). El
observable más importante es la enerǵıa libre, que puede ser calculada como

FJ = −KBT logZJ (1.10)

Sin embargo, hay que promediar sobre todas las muestras, por lo que

F = FJ = −KBT logZJ (1.11)

La desventaja de esta relación es que promedia un logaritmo es bastante
dif́ıcil. La solución es el método de las réplicas, basado en

logZ = lim
n→0

Zn − 1

n
(1.12)

Por tanto, tenemos n réplicas del sistema y el promedio sobre el desorden se
puede calcular como

Zn ≡ Zn
J =

n∏
a=1

Z
(a)
J =

∑
{σa

i }

exp

(
−β

n∑
a=1

HJ({σa
i })

)
(1.13)

En el caso del modelo de Edwards-Anderson esta relación se convierte en

Zn
J =

∑
{σa

i }

exp

(
1

4
β2
∑
ij

J
∑
ab

σa
i σ

b
iσ

a
jσ

b
j

)
(1.14)

por lo que el problema inicial de promediar sobre el desorden se ha convertido
en un problema de calcular n réplicas distintas. Entonces, se debe extender
a valores no enteros de n y tomar el ĺımite cuando n → 0. De la Ec. (1.14) se
deduce que se puede definir un Hamiltoniano efectivo, Heff , que depende de
los espines de dos réplicas distintas. De hecho, todo observable que dependa
de un conjunto de k promedios termales de espines puede ser reescrito usando
k réplicas distintas.
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1.3 Aproximaciones de los modelos de vidrios

de esṕın con solución exacta

En la Sección 1.1, se han presentado algunos modelos realistas de vidrios
de esṕın. Sin embargo, la solución anaĺıtica de estos modeles es bastante
complicada por lo que se deben realizar algunas aproximaciones. En esta
sección presentaremos dos aproximaciones que permiten cálculo anaĺıtico: la
aproximación de campo medio y el modelo de droplet.

1.3.1 El modelo de Sherrington-Kirkpatrick

En 1975, Sherrington y Kirkpatrick [16] propusieron una teoŕıa de campo
medio basada en un modelo con un rango de interacciones infinito. El Hamil-
toniano del modelo de Sherrington-Kirkpatrick (SK) es

H = −1

2

∑
i̸=j

Jijσiσj +
∑
i

hiσi (1.15)

donde la distribución de los acoplamientos, P (Jij), es gaussiana (la misma
para cada pajera de espines) con

Jij = J0 (1.16)

J2
ij =

J2

N
(1.17)

Nótese que, comparando este modelo con el de Edwards-Anderson, Ec. (1.5),
el modelo de SK es una especie de modelo de EA en el que cada esṕın
interacciona con un número infinito de vecinos, por lo que el modelo SK se
suele interpretar a menudo como un modelo de EA con infinitas dimensiones.

Solución simétrica (fase paramagnética)

Utilizando el método de las réplicas explicado en la Sección 1.2, calcularemos
en primer lugar la función de partición

Zn =
∑
[σa]

exp

{
−J0β +

J2β2

2

[
n

2
(N − 1))− n (n− 1)

2

]

+
J0β

2N

∑
a

(∑
i

σa
i

)2

+
J2β2

2N

∑
a<b

(∑
i

σa
i σ

b
i

)2
 (1.18)
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donde los ı́ndices a y b corren sobre las réplicas del sistema. Se necesita
evitar lo términos cuadráticos, lo que se puede lograr usando la identidad de
Hubbard-Stratonovich.

Ahora cambiamos nuestras variables por unas nuevas, Qab y ma, definidas
como

Qab =
1

N

N∑
i

⟨σa
i σ

b
i ⟩ (1.19)

ma =
1

N

N∑
i

⟨σa
i ⟩ (1.20)

Como consecuencia, se puede definir una función de partición efectiva

Zeff ≡
∑
[σa]

exp

[
(Jβ)2

∑
a<b

Q2
abσ

aσb + J0β
∑
a

maσ
a

]
(1.21)

por lo que finalmente se obtiene

Za ∝
∫

[dm] [dQ] exp

[
−1

2
NJ0β

∑
m2

a −
1

2
N (Jβ)2

∑
a<b

Q2
ab +N logZeff

]

≡
∫

[dm] [dQ] exp [−NG(m,Q)] (1.22)

donde

[dm] ≡
∏
a

dma (1.23)

[dQ] ≡
∏
ab

dQab (1.24)

La Ec. (1.22) define una nueva función G(m,Q). Sean (m0
a, Q

0
ab) los puntos

silla y asumamos el Ansatz de la solución simétrica: m0
a ≡ m y Q0

ab ≡ q, es
decir, todas las réplicas tienen los mismos parámetros. Por tanto, uno puede
calcular la enerǵıa libre (por esṕın), f(m, q) que es la función G(m,Q) de la
Ec. (1.22)

f(m, q) = −J2β

4

(
1− q2

)
+

J0
2
m2 (1.25)

− 1

β

∫
dz√
2π

e−
1
2
z2 log [2 cosh (Jβ

√
qz + βh+ J0mβ)]
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y los valores en el equilibrio

m =

∫
dz√
2π

e−
1
2
z2 tanh (Jβ

√
qz + βh+ J0mβ) (1.26)

q =

∫
dz√
2π

e−
1
2
z2 tanh2 (Jβ

√
qz + βh+ J0mβ) (1.27)

Es bastante fácil calcular que si h = 0 cuando T > Tf , la única solución
es q = 0, pero cuando T < Tf , el observable q(T ) ̸= 0 (de hecho cuando
T → 0, q → 1), donde Tf es una temperatura cŕıtica. Por tanto, se tiene
un parámetro de orden. En la Figura 1.3, se representa la distribución de
probabilidad de este parámetro de orden q cuando T > Tf (la fase de alta
temperatura, la fase paramagnética).

Sin embargo, esta solución simétrica no es correcta, al menos a bajas
temperaturas, mientras que se puede asumir que śı lo es en la fase param-
agnética. El fallo de la solución simétrica para T < Tf es identificado por un
valor negativo de la entroṕıa a T = 0 y por la aparición de autovalores nega-
tivos en la matriz Hessiana. Por tanto, se ha de buscar una nueva solución a
bajas temperaturas que evite estos problemas, y esta solución será la Replica
Symmetry Breaking (Rotura de Simetŕıa de las Réplicas) de Parisi (RSB)
[17, 18, 19, 20].

Replica Symmetry Breaking de Parisi

En primer lugar, vamos a expandir el argumento de la exponencial en la Ec.
(1.22), por lo que, asumiendo que J0 = 0, se puede llegar a

G(Q̂) = lim
n→0

1

n

[
−1

2
τtr(Q2)− 1

6
tr(Q3)− 1

12

∑
a,b

Q4
ab +

1

4

∑
a ̸=b̸=c

Q2
abQ

2
ac

− 1

8
tr(Q̂4)

]
+O(Q5) (1.28)

donde τ = (Tc − T )/Tc y θ = −τ . Se pueden despreciar los dos últimos

términos,
1

4

∑
a ̸=b̸=c

Q2
abQ

2
ac y −1

8
tr(Q̂4) porque acaban dando lugar a términos

O(τ 5) o O(τ 6) que pueden ser ignorados.

Una vez que se ha definido la enerǵıa libre en función de la matriz Q̂,
discutiremos ahora el Ansatz que elegiremos para esta matriz. El primer
Ansatz que se puede imaginar es el que usamos en la solución simétrica en
las réplicas, llamémosle la matriz del paso 0 (0-step). Recordemos que la
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q

P(q)

qEA

Figure 1.3: Representación esquemática de la distribución del overlap en la
fase paramagnética.

matriz era de la forma de la Ec. (1.29)

Q̂0−step =

 0 q0
. . .

q0 0

 (1.29)

Sin embargo, vimos que esta solución es incorrecta porque, en concreto, la
entroṕıa era negativa, por lo que debemos proponer un nuevo Anzatz. El
primer paso consiste en crear n/m grupos de m1 réplicas cada uno, y tome
Qab el valor q1 si a y b pertenecen al mismo grupo y q0 si pertenecen a
diferentes grupos. Ahora, la matriz se ha roto en n/m1 × n/m1 bloques,
cada uno de tamaño m1 ×m1. Llamemos a esta matriz la matriz de paso 1
(1-step), y en la Ec. (1.30) se muestra un ejemplo de una Q̂1−step t́ıpica.

Q̂1−step =



m1︷ ︸︸ ︷
0 q1

. . .

q1 0

q0 . . . q0

q0

0 q1
. . .

q1 0

. . . q0

...
...

. . .
...

q0 q0 . . .

0 q1
. . .

q1 0



(1.30)
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Con este Ansatz el resultado es mejor que en la solución simétrica pero
sigue siendo incorrecta (la entroṕıa sigue siendo negativa pero menor), por lo
que se ha de probar un nuevo Ansatz, el segundo paso. Ahora, dividiremos
cada grupo en m1/m2×m1/m2 bloques, cada uno de tamaño m2×m2, donde
m1 y m2 son aún números enteros. Esta matriz de paso 2 (2-steps) tiene la
forma de la Ec. (1.31).

m1︷ ︸︸ ︷
m2︷ ︸︸ ︷

0 q2

.
.
.

q2 0

. . . q1

.

.

.
.
.
.

.

.

.

q1 . . .

0 q2

.
.
.

q2 0

. . . q0

...
. . .

...

q0 . . .

0 q2

. .
.

q2 0

. . . q1

.

.

.
.
.
.

.

.

.

q1 . . .

0 q2

.
.
.

q2 0

1111


(1.31)

pero la solución sigue siendo incorrecta. Sin embargo, cuanto más pasos re-
alizamos mejor es la solución, por lo que si se repite estos pasos infinitas
veces, se hallará la solución correcta. En este caso los números enteros mi se
convierten en una variable continua x ∈ (0, 1) y todos los qm se convierten
en una función continua q(x). Por tanto, una matriz de Parisi se pude es-
cribir como Q = (0, q(x)), donde el primer término es el valor de la diagonal
de la matriz (en los ejemplos anteriores era siempre cero porque estábamos
trabajando en ausencia de campo magnético externo) y el segundo término
es el valor del resto de elementos de la matriz. En presencia de un campo
magnético externo el valor de los sitios de la diagonal deja de ser cero, por
lo que una matriz de Parisi general es Q = (q, q(x)). Antes de calcular la
solución con este Ansatz, vamos a demostrar cómo trabajar con este tipo de
matrices. La traza de la matriz es bastante fácil de calcular

trQ = nq (1.32)

Para calcular las siguientes cantidades, las calcularemos primero en un paso
finito y después en el ĺımite de infinitos pasos (∞-step).

n∑
a,b

Qab = n
[
q +

∑
(mi −mi+1)qi

]
→ nq −

∫ 1

n

q(x)dx (1.33)
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n∑
a,b

Ql
ab = n

[
ql +

∑
(mi −mi+1)q

l
i

]
→ nql −

∫ 1

n

ql(x)dx (1.34)

Finalmente, calcularemos el producto de dos matrices de Parisi, A = (a, a(x))
y B =

(
b, b(x)

)
. El resultado es la matriz AB = C = (c, c(x)) donde

c = ab− ⟨ab⟩ (1.35)

c(x) = na(x)b(x) + [a− ⟨a⟩] b(x) +
[
b− ⟨b⟩

]
a(x)

−
∫ x

n

[a(x)− a(y)] [b(x)− b(y)] dy (1.36)

y con

⟨a⟩ =
∫ 1

n

a(x)dx (1.37)

Ahora, ya podemos calcular los términos relevantes de la enerǵıa libre, Ec.
(1.28), cerca del punto cŕıtico sin campo magnético externo, que se expresa
como G(q).

G(q) = lim
n→0

1

2n

[
θtrQ2 − 1

3
trQ3 − 1

6

∑
a,b

(Qab)
4

]
(1.38)

El término cuadrático se calcula usando las Ecs. (1.35) y (1.32)

trQ2 = −n

∫ 1

n

q2(x)dx (1.39)

El término cuártico se calcula usando la Ec. (1.34)∑
a,b

Q4
ab = −n

∫ 1

n

q4(x)dx (1.40)

Finalmente el término cúbico, que es el más complicado, se calcula utilizando
las Ecs. (1.35), (1.36) y (1.32)

trQ3 = n

[∫ 1

n

xq3(x)dx+ 3

∫ 1

n

dxq(x)

∫ x

n

q2(y)dy

]
(1.41)

Substituyendo las Ecs. (1.39), (1.40) y (1.41) en la Ec. (1.38) y tomando el
ĺımite n → 0, se encuentra que la enerǵıa libre

G(q) =
1

2

∫ 1

0

dx

[
|θ|q2(x) + 1

6
q4(x)− 1

3
xq3(x)− q(x)

∫ x

0

q(y)dy

]
(1.42)
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Ahora, la ecuación de punto silla se puede escribir como

δG

δq(x)
= 0 (1.43)

y haciendo la derivada funciona, se halla

2|θ|q(x) + 2

3
q3(x)− xq(x)− 2q

∫ 1

x

q(y)dy −
∫ x

0

xq(x)dx (1.44)

y derivando con respecto a x se encuentra

|θ|+ q2(x)− xq(x)−
∫ 1

x

q(y)dy = 0 (1.45)

y derivando de nuevo se obtiene finalmente

q(x) =
x

2
or

dq

dx
= 0 (1.46)

La solución es q(x) = x/2 para valores pequeños de x y q(x) = qmax constante
para valores grandes de x (nótese que si la solución fuera q(x) = q0 en todo
el rango de x ∈ (0, 1), se recobraŕıa la solución simétrica en las réplicas).
Sea x1 el punto en el que cambia el comportamiento de la solución. Como la
solución tiene que ser continua, 2qmax = x1 y substituyendo en la Ec. (1.45)
se halla que

qmax = |θ|+O(θ2) (1.47)

En la Figura 1.4 se puede observar esta solución. Nótese que si existe un
campo magnético externo no nulo, de acuerdo a la Ref. [21], existe otra zona
plana para valores pequeños de x con valor

qmin(h) =
3

4

[
h2

J2

] 2
3

(1.48)

Estudiaremos ahora la función de distribución del overlap. En general, se
puede escribir que

P (q) =
1

n(n− 1)

∑
a ̸=b

δ(Qab − q) (1.49)

Substituyendo Qab con una matriz de Parisi, se halla que

P (q) =
1

n(n− 1)
n [(n−m1)δ(q − q0) + (m1 −m2)δ(q − q2) + . . . ]

→ −1

n− 1

∫ 1

n

δ[q − q(x)]dx (1.50)



CAPÍTULO 1. INTRODUCCIÓN 13

x

q

x1

qmax

qmin(h)

Figure 1.4: Representación esquemática de la solución hallada para RSB. La
ĺınea de puntos es la zona plana a bajas temperaturas en presencia de un
campo magnético externo.

Finalmente, tomando el ĺımite se llega a

P (q) =
dx(q)

dq
(1.51)

donde x(q) es la función inversa de q(x). Nótese que en esta solución, P (q)
tiene una función delta de Dirac en q = qmax y no es nula en (0, qmax).
En la Figura 1.5, se puede observar una representación esquemática de este
resultado.

q

P(q)

qEA

Figure 1.5: Representación esquemática de la distribución del overlap de la
solución RSB.

Finalmente, como corolario, si se calcula la distribución del overlap de
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tres réplicas, se halla que

P (q1, q2, q3) =
1

2
P (q1)x(q1)δ(q1 − q2)δ(q1 − q3)

+
1

2
[P (q1)P (q2)θ(q1 − q2)δ(q2 − q3)

+ P (q1)P (q3)θ(q3 − q1)δ(q1 − q2)

+ P (q2)P (q3)θ(q2 − q3)δ(q3 − q1)] (1.52)

P (q1, q2, q3) únicamente no se anula cuando los tres overlaps son iguales o
cuando lo son dos y el tercero es mayor que ambos. Por tanto, los overlaps
se organizan siguiendo las normas de un espacio ultramétrico.

1.3.2 Modelo de droplet

La teoŕıa de los droplets fue desarrollada por Bray y Moore [22, 23] usando el
grupo de renormalización de Migdal-Kadanoff [24, 25], y desde un punto de
vista fenomenológico por Fisher y Huse [26, 27, 28]. En este caso se trabaja
con un Hamiltoniano con interacciones de corto alcance. Un droplet es una
región compacta en la que los espines están invertidos. La distribución de
probabilidad de la enerǵıa libre de un droplet es

P [∆F (L)] =
1

Ly
f

(
∆F

Ly

)
(1.53)

Calculemos ahora la función de correlación [28]

G(rij) = [⟨σiσj⟩ − ⟨σi⟩⟨σj⟩]2 (1.54)

A T = 0, esta función de correlación tiende a cero. Sin embargo, a temper-
atura T ≪ 1

G(rij) ∝ P [∆F (rij] ≃ P [0] (1.55)

por lo que

G(rij) ∝
1

ry
and ξ → ∞ (1.56)

Ahora, si se elige una función de correlación un poco diferente, se puede
calcular que

G1(rij) = ⟨σiσj⟩2 − ⟨σi⟩2 − ⟨σj⟩2 ∼ (q2 − q2) ∼ 1

ry
→ 0 (1.57)

por lo que la distribución del overlap es bastante simple, como se muestra en
la Figura 1.6.
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q

P(q)

qEA-qEA

Figure 1.6: Representación esquemática de la distribución del overlap en un
droplet.

Finalmente, estudiaremos el comportamiento de un droplet en presencia
de un campo magnético externo, comparando cómo escalan la enerǵıa de la
pared de un droplet y el campo [2]. En primer lugar, la enerǵıa de la pared
de un dominio escala como Ly, donde y debe satisfacer la desigualdad

y ≤ D − 1

2
(1.58)

donde D es la dimensión del sistema. Por otra parte, el campo externo
escala como LD/2. De acuerdo con la Ec. (1.58), y < D/2 para todas las
dimensiones, por lo que el campo crece más rápidamente que la enerǵıa de
la pared del dominio, por lo que el orden magnético no es estable a largas
distancias.

1.3.3 Consecuencias

La solución RSB en campo medio (interpretándolo como un modelo con in-
teracciones de corto alcance en dimensión infinita) es la solución exacta por
encima y en la dimensión cŕıtica superior, DU = 6, mientras que el modelo
droplet es la solución exacta en bajas dimensiones. Sin embargo, no se conoce
el comportamiento de un sistema realista en tres dimensiones. Afortunada-
mente, como hemos comprobado en esta sección, el comportamiento esperado
en cada escenario es completamente diferente. RSB predice una transición de
fase a un fase de vidrio de esṕın en presencia de campo magnético mientras
que el modelo droplet no. Además, la distribución de probabilidad del overlap
es bastante diferente en estos escenarios: en RSB, hemos hallado una función
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delta de Dirac en qEA y una probabilidad no nula P (q) > 0 para 0 < q < qEA,
Figura 1.5; mientras que en el modelo droplet hemos hallado sólo una función
delta de Dirac en qEA, Figura 1.6. Esta diferencia en P (q) será bastante útil
para distinguir si el escenario RSB o el droplet es el correcto. De hecho, hay
otro escenario intermedio, TNT (trivial-no trivial) pero nos centraremos en
los dos primeros.

1.4 Caracteŕısticas de la fase de vidrio de esṕın

En las secciones anteriores hemos explicado varios modelos de vidrios de esṕın
y la transición de fase de algunos de ellos. Ahora, presentaremos algunas
caracteŕısticas de los vidrios de esṕın, especialmente de su fase de vidrio
de esṕın. La frustración es una de las principales causas de los tiempos de
relajación largos que exhiben estos sistemas en su fase de vidrio de esṕın, y
como consecuencia, la hipótesis de ergodicidad deja de cumplirse. Además,
una herramienta útil para detectar transiciones de fase, el parámetro de orden
de los vidrios de esṕın, será presentado.

1.4.1 Broken ergodicity

Si se quiere medir un observable en un experimento, se debeŕıa probar con un
tiempo de observación mayor que el tiempo de relajación más largo del sis-
tema. De esta forma, el sistema puede explorar todo el espacio de fase, y esta
medida es equivalente a un promedio estad́ıstico en equilibrio. Este fenómeno
se conoce como ergodicidad. Sin embargo, en algunos sistemas, estos no ocur-
ren, por ejemplo si el tiempo de relajación diverge en el ĺımite termodinámico
(N → ∞). Estos sistemas se suelen conocer como no ergódicos.

De acuerdo con la solución RSB de Parisi del modelo SK (Sección 1.3.1
y Refs. [17, 18, 19, 20]), éste es el caso de los vidrios de esṕın y su fase
de vidrio de esṕın en la que existen varios estados puros (fases). En el
ĺımite termodinámico, estos estados (también llamados valles porque son los
mı́nimos de la enerǵıa libre) tienden a tener la misma enerǵıa libre, pero las
barreras entre ellos tienden a infinito. Por tanto, el sistema no puede explorar
todo el rango de microestados y el sistema se convierte en no ergódico. Sin
embargo, no está claro si este es el comportamiento de un vidrio de esṕın con
interacciones de alcance finito.
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1.4.2 Parámetro de orden

Un parámetro de orden, si existe, es una herramienta común y útil para estu-
diar las transiciones de fase. Se trata de un observable cuyo comportamiento
en cada fase es diferente. Un ejemplo de parámetro de orden es el overlap
definido en la Sección 1.3. Su distribución de probabilidad tiene sólo una
delta de Dirac en q = 0 en la fase paramagnética (Figura 1.3), pero en la fase
de vidrio de esṕın tiene dos deltas de Dirac en el escenario droplet (Figura
1.6) o dos deltas de Dirac y una parte continua en el escenario RSB de Parisi
(Figura 1.5).

Respecto a los vidrios de esṕın, el primer parámetro de orden fue prop-
uesto por Edwards y Anderson [13], definido como

qEA = lim
t→∞

lim
N→∞

⟨σi(t0)σit0 + t)⟩ (1.59)

donde el promedio térmico corre sobre un conjunto de distintos valores de t0.
Como comentamos más arriba, en el ĺımite termodinámico, las barreras entre
las diferentes fases tienden a infinito, por lo que el sistema no es capaz de
cambiarse del valle en el que está. Como consecuencia, esta cantidad es una
medida de la magnetización local media, promediada sobre todos los valles.
Puede también escribirse como

qEA =
∑
a

Pa⟨σi⟩2a (1.60)

donde el ı́ndice a corre sobre todas las fases y Pa es la probabilidad térmica

Pa =
e−βFa∑
b

e−βFb

(1.61)

Definamos ahora la magnetización cuadrática local media en equilibrio

q = ⟨σi⟩2 (1.62)

Calculándola sólo sobre una muestra, se puede escribir como

qJ =
1

N

∑
i

⟨σi⟩2 =
1

N

∑
i

∑
ab

PaPb⟨σi⟩a⟨σi⟩b (1.63)

Es también bastante útil calcular la correlación entre distintas fases, por lo
que definimos el overlap para una sola muestra como

qab =
1

N

∑
i

⟨σa
i ⟩⟨σb

i ⟩ (1.64)
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que tiene la propiedad de |qab| ≤ 1. Estudiando la distribución de probabili-
dad de esta cantidad [29], se halla que

P (q) = ⟨δ(q − qab)⟩ =
∑
ab

PaPbδ(q − qab) (1.65)

Si solo hay dos fases, como en el modelo droplet, P (q) seŕıa la suma de dos
funciones delta de Dirac (una en −qEA y la otra en qEA), como encontramos
antes (Figura 1.6). Por otra parte, si el sistema presenta una rotura de
ergodicidad no trivial, como RSB, P (q) tendŕıa también una parte continua,
como encontramos anteriormente (Figura 1.5).

Finalmente, vamos a aplicar el método de las réplicas (Sección 1.2) para
calcular estas cantidades en el contexto en el que trabajaremos en esta tesis.
De acuerdo con Ref. [2], se puede definir

qαβ = ⟨σα
i σ

β
i ⟩ (1.66)

donde los ı́ndices α y β indican un par de réplicas distintas (α ̸= β). Por
tanto, se puede identificar

q = lim
n→0

1

n(n− 1)

∑
α ̸=β

qαβ (1.67)

donde n indica el número de réplicas. Finalmente, también se puede identi-
ficar el parámetro de orden de Edwards-Anderson como

qEA = max
αβ

qαβ (1.68)

1.4.3 Frustración

La Frustración es una de las mayores contribuciones al tremendamente com-
plicado paisaje de enerǵıa libre que provoca la t́ıpica lenta dinámica de los
vidrios de esṕın. Como ejemplo, vamos a trabajar con un vidrio de esṕın
de tipo Ising de Edwards-Anderson sin campo magnético externo. Como
se puede observar en la Figura 1.7, como los acoplamientos son aleatorios,
ciertas configuraciones de ellos provocan que algunos espines (en la figura el
de la esquina inferior derecha) no sean capaces de encontrar la posición más
estable. En nuestro ejemplo, el esṕın de la esquina inferior derecha tiende a
estar apuntando hacia arriba para estar en paralelo con el esṕın de la esquina
inferior izquierda, debido al acoplamiento que hay entre ellos. Sin embargo,
también tiende a estar apuntando hacia abajo para estar antiparalelo al esṕın
de la esquina superior derecha, debido al acoplamiento entre ambos.
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J=+1

J=+1

J=+1

J=-1

?

Figure 1.7: Un ejemplo de una plaqueta 2 × 2 frustrada. El esṕın de la
esquina inferior derecha no tiene un estado estable.

En el modelo de Edwards-Anderson (como demuestra este ejemplo) y en
el modelo de Potts, los dos principales modelos en este trabajo, la frustración
es una consecuencia del desorden. Sin embargo, en general, la frustración es
un fenómeno independiente y ciertos modelos la presentan sin tener desorden.
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Chapter 1

Introduction

Spin glasses1 are magnetic systems (that is, a collection of spins) which show
a phase transition to a low temperature frozen phase from a paramagnetic
one. However, this phase does not exhibit long range order (whereas fer-
romagnetic and antiferromagnetic materials do), so this phase is a kind of
frozen disordered. Therefore, the local magnetization mi is not zero whereas
the mean magnetization

M =

∑
imi

N
(1.1)

where N is the number of total spins, and the magnetization at moment k

Mk =

∑
i

e−ik·rimi

N
(1.2)

do vanish for all moments k. The absence of long range order (unlike antifer-
romagnetic materials) can be checked with neutron scattering experiments.

The metallic or canonical spin glasses were the first type of spin glasses
studied. These materials are metallic alloys created by adding magnetic
impurities to a metallic base, for example, CuMn. It is well known that in a
ferromagnet (like Fe), the magnetic interaction is calculated by the exchange
interaction, so one gets that

H = −JS1S2 (1.3)

where S1 and S2 are the spins (that is, the magnetic moments) of the mag-
netic atoms. However, in a metallic spin glass, magnetic atoms are impurities
so one has a kind of indirect exchange interaction, a magnetic impurity inter-
acts with a conduction electron which, later, interacts with another magnetic

1Many reviews have been published, we will focus on Refs. [2, 3, 5].

21



22 CHAPTER 1. INTRODUCTION

impurity. This interaction is the so-called RKKY interaction (due to the fact
that it was studied by Runderman and Kittel in 1954 [6], Kasuya in 1956 [7]
and Yosida in 1957 [8]) and the coupling expression is

J(r) = J0
cos(2kF r + φ0)

(kF r)3
(1.4)

where J0 and φ0 are constants and kF is the Fermi wave number of the host
metal (in our example, Cu).

The relaxation times in the frozen spin glass phase are extremely long, so
the study of the dynamic out of the equilibrium is quite useful to compare
with experiments. Moreover, several phenomena arise in this regime. The
behaviour of the system depends on the process of cooling and the time,
tw, spent in the spin glass phase, that is, spin glasses exhibit aging (see for
example Ref. [9]). If the system evolves a time tw at a fixed temperature, T ,
in the spin glass phase, two examples of aging phenomena emerge: the ther-
moremanent magnetization (the system evolves in presence of an external
magnetic field and then it is switched off) and the zero-field cooled magne-
tization (the external magnetic field is switched on after the system spent
a time tw in the spin glass phase). Examples of this kind of experiments is
shown in Figures 1.1 and 1.2. Besides, if the temperature in the spin glass
phase is not constant, more phenomena arise, like rejuvenation and memory
(see Chapter 6).

To sum up, the main characteristics of a spin glass in its spin glass phase
are that the magnetic moments are frozen, absence of long range order (Mk =
0 and M = 0), long relaxation times and the dependence on the cooling
protocol.

Finally, in the rest of this work, ⟨(· · · )⟩ will denote the usual thermal
average and (· · · ) will denote the average over the (quench) disorder.

1.1 Models of spin glasses

Many spin glass models have been developed to modelize real systems, with
different ways to deal with the problem. We will describe here some of them
briefly. The first kind of models one can study is a system that reproduces
the experimental spin glass described in the previous section. For example,
in the RKKY model one has impurities that produce an interaction like Eq.
(1.4). This kind of models with impurities are random-site models. However,
another kind of spin glass models have been developed, the random-bond
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Figure 1.1: Susceptibility of two different samples of CuMn, with 1.08% and
2.02% of Mn, when they are reheated. Lines (b) and (d) are the zero field
cooled experiment, whereas in lines (a) and (c) the system had been cooled in
presence of a magnetic field h = 5.90 Oe. Above the critical temperature. Tc,
the susceptibility of both protocols coincides but it do not below Tc. Figure
from Ref. [10].

Figure 1.2: Remanent magnetization of (Fe0.15Ni0.85)75P16B6Al3 at a temper-
ature T with T/Tg = 0.96 where Tg is the critical temperature after removing
the magnetic field H. TRM means that the system was cooled in a magnetic
field H, whereas IRM means that the system was cooled in absence of a
magnetic field and at temperature T a pulse of 30 s of a magnetic field H
was applied. The measurements were performed at a time t after removing
the field H. Figure from Ref. [11].

models. Edwards and Anderson [13] proposed the first of this kind of models

H = −
∑
⟨i,j⟩

JijSiSj −
∑
i

hiSiz (1.5)
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where ⟨i, j⟩ means the sum runs over the nearest neighbours, hi is the mag-
netic field in the site i, Si is a unitary vector of one dimension (Ising, which
is the usual so-called Edwards-Anderson, EA, model), two dimensions (XY
model) or three dimensions (Heisenberg model), and, obviously, Siz is the z
component of the vector Si. Following, in the rest of this work, we will de-
note the Ising one dimensional variable as σi. Finally, Jij are the couplings,
which are random quench variables: that is, Si are dynamical variables (that
changes with the time) whereas Jij are static ones (they are constant in
time). The fact that only nearest neighbours (first, second or so on nearest
neighbours, depending on the model) interact is way of modelize the decay
with space of the interaction in real systems. Let D be the dimensionality
of the space where the system lives and assuming only interaction with first
nearest neighbours, every spin interacts with 6D neighbours.The two main
probability distribution of the couplings are the Gaussian distribution

P (Jij) =
1√

2π∆Jij
exp

[
−
(
Jij − Jij

)
2 (∆Jij)

2

]
(1.6)

and the ±J bimodal distribution

P (Jij) = p1δ(Jij − J) + (1− p1)δ(Jij + J) (1.7)

Another random-bond model is the p-states Potts spin glass model [14, 15]
defined as

H ≡ −
∑
⟨i,j⟩

Jij δsi,sj (1.8)

where si can take p different values {0, 1, . . . , p− 1}. The probability distri-
bution of the couplings could be either Eqs. (1.6) or (1.7).

In this work, we will focus on Potts spin glass model and Edwards-
Anderson Ising spin glass model.

1.2 The replica method

To perform an analysis in statistical physics, one must firstly compute the
partition function in a given realization of the quench disorder, a sample,
(labeled by J)

ZJ =
∑
{σi}

e−βHJ ({σi}) (1.9)

where the sum runs over all the possible configurations. An example of real-
ization of the quench disorder is a fixed set of couplings Edwards-Anderson
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spin glass model (see Section 1.1). The main quantity is the free energy, that
can be computed as

FJ = −KBT logZJ (1.10)

However, one must average over the samples, so

F = FJ = −KBT logZJ (1.11)

The disadvantage of this relation is that averaging a logarithm is quite diffi-
cult. The solution is the replica method, based on

logZ = lim
n→0

Zn − 1

n
(1.12)

Therefore, we have n replicas of the system and the average over the disorder
can be computed as

Zn ≡ Zn
J =

n∏
a=1

Z
(a)
J =

∑
{σa

i }

exp

(
−β

n∑
a=1

HJ({σa
i })

)
(1.13)

In the case of the Edwards-Anderson model this relation becomes in

Zn
J =

∑
{σa

i }

exp

(
1

4
β2
∑
ij

J
∑
ab

σa
i σ

b
iσ

a
jσ

b
j

)
(1.14)

so the initial problem of averaging over the disorder have become in a problem
of computing n different replicas. Then, one must extend it to a non-integer
value of n and take the limit when n → 0. From Eq. (1.14) one notices that
an effective Hamiltonian, Heff , which depends on the spins of two different
replicas can be defined. In fact, every observable that depends on a set of k
thermal averages of spins, this observable can be rewritten using k different
replicas.

1.3 Approximations of spin glass models with

exact solution

In Section 1.1, several realistic spin glasses models have been presented. How-
ever, the analytic solution of these models is quite difficult, so some approxi-
mation should be performed. In this section, we will present two approaches
which allow us an analytical computation: the mean field approximation and
the droplet model.
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1.3.1 Sherrington-Kirkpatrick model

In 1975, Sherrington and Kirkpatrick [16] propounded a mean field the-
ory based on a model with infinite range interactions. The Hamiltonian
of Sherrington-Kirkpatrick (SK) model is

H = −1

2

∑
i̸=j

Jijσiσj +
∑
i

hiσi (1.15)

where the distribution of the couplings, P (Jij) is Gaussian (the same for
every pair of spins) with

Jij = J0 (1.16)

J2
ij =

J2

N
(1.17)

Notice that, comparing this model with the Edwards-Anderson one, Eq.
(1.5), SK model is a kind of EA model where every spin interacts with an
infinite number of neighbours, thus SK model is usually interpreted as an
EA model in infinite dimensions.

Symmetric solution (paramagnetic phase)

Using the replica method explained in Section 1.2, we will firstly compute
the partition function

Zn =
∑
[σa]

exp

{
−J0β +

J2β2

2

[
n

2
(N − 1))− n (n− 1)

2

]

+
J0β

2N

∑
a

(∑
i

σa
i

)2

+
J2β2

2N

∑
a<b

(∑
i

σa
i σ

b
i

)2
 (1.18)

where the indices a and b runs over the replicas of the system. One needs
to avoid quadratic terms, which can be achieved by using the Hubbard-
Stratonovich identity.

Now, we will change our variables to new ones, Qab and ma, defined as

Qab =
1

N

N∑
i

⟨σa
i σ

b
i ⟩ (1.19)

ma =
1

N

N∑
i

⟨σa
i ⟩ (1.20)
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As a consequence, an effective partition function can be defined

Zeff ≡
∑
[σa]

exp

[
(Jβ)2

∑
a<b

Q2
abσ

aσb + J0β
∑
a

maσ
a

]
(1.21)

thus one finally gets

Za ∝
∫

[dm] [dQ] exp

[
−1

2
NJ0β

∑
m2

a −
1

2
N (Jβ)2

∑
a<b

Q2
ab +N logZeff

]

≡
∫

[dm] [dQ] exp [−NG(m,Q)] (1.22)

where

[dm] ≡
∏
a

dma (1.23)

[dQ] ≡
∏
ab

dQab (1.24)

Eq. (1.22) defines a new function G(m,Q). Let (m0
a, Q

0
ab) be the saddle point

and let us assume the symmetric solution Ansatz: m0
a ≡ m and Q0

ab ≡ q, that
is, all the replicas have the same parameters. Therefore, one can compute the
free energy (per spin), f(m, q) which is the function G(m,Q) in the previous
Eq. (1.22)

f(m, q) = −J2β

4

(
1− q2

)
+

J0
2
m2 (1.25)

− 1

β

∫
dz√
2π

e−
1
2
z2 log [2 cosh (Jβ

√
qz + βh+ J0mβ)]

and the equilibrium values

m =

∫
dz√
2π

e−
1
2
z2 tanh (Jβ

√
qz + βh+ J0mβ) (1.26)

q =

∫
dz√
2π

e−
1
2
z2 tanh2 (Jβ

√
qz + βh+ J0mβ) (1.27)

It is quite easy to compute that if h = 0, when T > Tf the only solution
is q = 0, but when T < Tf , the observable q(T ) ̸= 0 (in fact when T → 0,
q → 1), where Tf is a critical temperature. Thus one has an order param-
eter. In Figure 1.3, the probability distribution of this order parameter q
is represented when T > Tf (the high temperature phase, the paramagnetic
one).
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q

P(q)

qEA

Figure 1.3: Schematic representation of the distribution of the overlap in
the paramagnetic phase.

However, this symmetric solution is not correct, at least at low tempera-
tures, whereas one can assume that it does hold in the paramagnetic phase.
The breakdown of the symmetric solution for T < Tf is signaled by a negative
value of the entropy at T = 0 and for the appearance of negative eigenvalues
in the Hessian matrix. Therefore, one has to compute a new solution at
low temperatures that avoids these problems, and this solution will be the
Parisi’s Replica Symmetry Breaking (RSB) [17, 18, 19, 20].

Parisi’s Replica Symmetry Breaking

Firstly, we will expand the argument of the exponential in Eq. (1.22), so,
assuming J0 = 0, we can get that

G(Q̂) = lim
n→0

1

n

[
−1

2
τtr(Q2)− 1

6
tr(Q3)− 1

12

∑
a,b

Q4
ab +

1

4

∑
a ̸=b̸=c

Q2
abQ

2
ac

− 1

8
tr(Q̂4)

]
+O(Q5) (1.28)

where τ = (Tc − T )/Tc and θ = −τ . One can ignore the two last terms,
1

4

∑
a ̸=b̸=c

Q2
abQ

2
ac and −1

8
tr(Q̂4) because they finally get terms O(τ 5) or O(τ 6)

which can be ignored.
Once one has defined the free energy in function of the matrix Q̂, we will

now discuss the Ansatz for this matrix. The first Ansatz one could imagine
is the one that we have used in the replica symmetric solution, let us name
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it the 0-step matrix. Remind that the matrix was like in Eq. (1.29)

Q̂0−step =

 0 q0
. . .

q0 0

 (1.29)

However, we saw that this solution is incorrect because, in particular, the
entropy was negative, so one can deal with a new Ansatz. The first step
consists of creating n/m groups of m1 replicas every one, and let Qab be q1 if
a and b belong to the same group and q0 if they belong to different groups.
Now, the matrix has been broken into n/m1×n/m1 blocks, every one of size
m1 ×m1. Let us name it the 1-step matrix and in Eq. (1.30), an example of
a typical Q̂1−step is shown.

Q̂1−step =



m1︷ ︸︸ ︷
0 q1

. . .

q1 0

q0 . . . q0

q0

0 q1
. . .

q1 0

. . . q0

...
...

. . .
...

q0 q0 . . .

0 q1
. . .

q1 0



(1.30)

With this Ansatz the result is better than in the replica symmetric solu-
tion but it is still incorrect (the entropy is also negative but smaller), so a
new Ansatz can be tested, the second step. Now one divide every group in
m1/m2 × m1/m2 blocks, every one of size m2 × m2, where m1 and m2 are
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still integers. This 2-steps matrix reads like in Eq. (1.31).

m1︷ ︸︸ ︷
m2︷ ︸︸ ︷

0 q2

.
. .

q2 0

. . . q1

.

.

.
.
.
.

.

.

.

q1 . . .

0 q2

.
.
.

q2 0

. . . q0

...
. . .

...

q0 . . .

0 q2

.
.
.

q2 0

. . . q1

.

.

.
.
.
.

.

.

.

q1 . . .

0 q2

.
.
.

q2 0

1111


(1.31)

but the solution is also incorrect. However, the more steps one makes, the
better the solution is, so if one repeats these steps infinitely times, one will
find a correct solution. Then, the integers mi tend to a continuous variable
x ∈ (0, 1) and all the qm become in the continuous function q(x). Therefore,
a Parisi’s matrix can be written as Q = (0, q(x)), where the first term is
the value in the diagonal of the matrix (in the previous examples it was
always zero because we were working in no external magnetic field) and the
second term is the value of the rest of the matrix elements. In presence of
an external magnetic field, the value of the diagonal sites is not zero, so the
general Parisi’s matrix is Q = (q, q(x)). Before computing the solution with
this Ansatz, we will show how to work with this kind of matrices. The trace
of the matrix is quite easy to compute

trQ = nq (1.32)

In order to compute the following quantities, we will firstly calculate them
in a finite step and later in the limit ∞-step.

n∑
a,b

Qab = n
[
q +

∑
(mi −mi+1)qi

]
→ nq −

∫ 1

n

q(x)dx (1.33)

n∑
a,b

Ql
ab = n

[
ql +

∑
(mi −mi+1)q

l
i

]
→ nql −

∫ 1

n

ql(x)dx (1.34)
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Finally, we will compute the product of two Parisi’s matrices, A = (a, a(x))
and B =

(
b, b(x)

)
. The result is the matrix AB = C = (c, c(x)) where

c = ab− ⟨ab⟩ (1.35)

c(x) = na(x)b(x) + [a− ⟨a⟩] b(x) +
[
b− ⟨b⟩

]
a(x)

−
∫ x

n

[a(x)− a(y)] [b(x)− b(y)] dy (1.36)

and with

⟨a⟩ =
∫ 1

n

a(x)dx (1.37)

Now, we can compute the relevant terms of the free energy, Eq. (1.28), near
the critical point without an external magnetic field, which is denoted as
G(q).

G(q) = lim
n→0

1

2n

[
θtrQ2 − 1

3
trQ3 − 1

6

∑
a,b

(Qab)
4

]
(1.38)

The quadratic term is computed using Eqs. (1.35) and (1.32)

trQ2 = −n

∫ 1

n

q2(x)dx (1.39)

The quartic term is computed using Eq. (1.34)∑
a,b

Q4
ab = −n

∫ 1

n

q4(x)dx (1.40)

Finally the cubic term, which is the most complicated one, is computed using
Eqs. (1.35), (1.36) and (1.32)

trQ3 = n

[∫ 1

n

xq3(x)dx+ 3

∫ 1

n

dxq(x)

∫ x

n

q2(y)dy

]
(1.41)

Substituting Eqs. (1.39), (1.40) and (1.41) in Eq. (1.38) and evaluating the
limit n → 0, the free energy reads

G(q) =
1

2

∫ 1

0

dx

[
|θ|q2(x) + 1

6
q4(x)− 1

3
xq3(x)− q(x)

∫ x

0

q(y)dy

]
(1.42)

Now, the saddle point equation can be written as

δG

δq(x)
= 0 (1.43)
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and performing the functional derivative, one obtains

2|θ|q(x) + 2

3
q3(x)− xq(x)− 2q

∫ 1

x

q(y)dy −
∫ x

0

xq(x)dx (1.44)

and differentiating it with respect to x one finds

|θ|+ q2(x)− xq(x)−
∫ 1

x

q(y)dy = 0 (1.45)

and differentiating again one finally obtains

q(x) =
x

2
or

dq

dx
= 0 (1.46)

The solution is q(x) = x/2 for small x and q(x) = qmax constant for large x
(notice that if the solution was q(x) = q0 in the whole range of x ∈ (0, 1), the
replica symmetric solution would be recovered). Let x1 be the point where
the change of the behavior of the solutions takes place. As the solution must
be continuous, 2qmax = x1 and substituting in Eq. (1.45) one finds that

qmax = |θ|+O(θ2) (1.47)

In Figure 1.4 one can see this solution. Notice that if the external magnetic
field does not vanish, according to Ref. [21], there is another plateau at small
values x with value

qmin(h) =
3

4

[
h2

J2

] 2
3

(1.48)

We will now study the overlap distribution function. In general, one can
write that

P (q) =
1

n(n− 1)

∑
a ̸=b

δ(Qab − q) (1.49)

Substituting Qab with a Parisi’s matrix one finds that

P (q) =
1

n(n− 1)
n [(n−m1)δ(q − q0) + (m1 −m2)δ(q − q2) + . . . ]

→ −1

n− 1

∫ 1

n

δ[q − q(x)]dx (1.50)

Finally, evaluating the limit one gets

P (q) =
dx(q)

dq
(1.51)
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x

q

x1

qmax

qmin(h)

Figure 1.4: Schematic representation of the solution found to RSB. Dotted
line is the plateau at low temperatures in presence of an external magnetic
field.

q

P(q)

qEA

Figure 1.5: Schematic representation of the distribution of the overlap the
RSB solution.

where x(q) is the inverse function of q(x). Notice that in this solution, P (q)
has a Dirac’s delta function at q = qmax and it does not vanish in (0, qmax).
In Figure 1.5, one can see a schematic representation of this result.

Finally, as a corollary, if one computes the distribution of the overlap of
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three replicas one finds that

P (q1, q2, q3) =
1

2
P (q1)x(q1)δ(q1 − q2)δ(q1 − q3)

+
1

2
[P (q1)P (q2)θ(q1 − q2)δ(q2 − q3)

+ P (q1)P (q3)θ(q3 − q1)δ(q1 − q2)

+ P (q2)P (q3)θ(q2 − q3)δ(q3 − q1)] (1.52)

P (q1, q2, q3) does not vanish only when the three overlaps are equal or when
two of them are equal and the third one is bigger than them. Hence, the
overlaps organize with the rules of an ultrametric space.

1.3.2 Droplet Model

The theory of the droplets was developed by Bray and Moore [22, 23] using
Migdal-Kadanoff renormalization group [24, 25], and from a phenomenologi-
cal point of view by Fisher and Huse [26, 27, 28]. In this case one works with
a Hamiltonian with short range interactions. A droplet is a compact region
of reversed spins. The probability distribution of the free energy of a droplet
is

P [∆F (L)] =
1

Ly
f

(
∆F

Ly

)
(1.53)

We will now compute the correlation function [28]

G(rij) = [⟨σiσj⟩ − ⟨σi⟩⟨σj⟩]2 (1.54)

At T = 0, this correlation function tends to zero. However at a temperature
T ≪ 1

G(rij) ∝ P [∆F (rij] ≃ P [0] (1.55)

hence,

G(rij) ∝
1

ry
and ξ → ∞ (1.56)

Now, if one chooses a bit different correlation function, one can compute that

G1(rij) = ⟨σiσj⟩2 − ⟨σi⟩2 − ⟨σj⟩2 ∼ (q2 − q2) ∼ 1

ry
→ 0 (1.57)

so the distribution of the overlap is quite simple, as it is shown in Figure 1.6.
Finally, we will study the behaviour of a droplet in presence of an external

magnetic field, comparing how the energy of the wall of a droplet and the
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q

P(q)

qEA-qEA

Figure 1.6: Schematic representation of the distribution of the overlap in a
droplet.

field scale [2]. Firstly, the energy of the wall of a domain scales as Ly, where
y must satisfy the inequality

y ≤ D − 1

2
(1.58)

where D is the dimensionality of the system. Whereas, the external field
scales as LD/2. According to Eq. (1.58), y < D/2 in every dimensionality,
so the field grows faster than the energy of the wall of the domain, so the
magnetic order is not stable at long distances.

1.3.3 Consequences

The RSB solution in mean field (interpreting it as a short range interaction
model in infinite dimensions) is the exact solution above and at the upper
critical dimension, DU = 6, whereas the droplet model is the exact solution
in low dimensions. However it is unknown the behavior one must expect
in a realistic system living in three dimensions. Fortunately, as we have
shown in this section, the behavior expected in each scenario is extremely
different. RSB predicts phase transition to a spin glass phase in presence of
magnetic field whereas droplet model does not. Moreover, the probability
distribution of the overlap is quite different in these scenarios: in RSB, we
found a Dirac’s function at qEA and a P (q) > 0 for 0 < q < qEA, Figure 1.5;
whereas in droplet model we just found a Dirac’s function at qEA, Figure 1.6.
This difference in P (q) will be quite useful to distinguish whether RSB or
droplet scenario holds. In fact, there is another intermediate scenario, TNT
(trivial-not trivial) but we will focus on the two first ones.
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1.4 Characteristics of the spin glass phase

In previous sections, we have explained several models of spin glasses and the
phase transition of some of them. Now, we will present several characteristics
of spin glasses, specially their spin glass phase. Frustration is one of the
main causes of the long relaxation times that these systems exhibit in their
spin glass phase, and as a consequence, ergodicity hypothesis does not hold.
Besides, a useful tool to detect the phase transition, the spin glass order
parameter, will be presented.

1.4.1 Broken ergodicity

If one wants to measure an observable in an experiment, one should try with
an observation time larger than the largest relaxation time of the system.
Then, the system can explore the whole phase space, and this measure is
equivalent to an equilibrium statistical average. This phenomenon is the
so-called ergodicity. However, in some systems, this does not happen, for
example if the relaxation time diverges in the thermodynamic limit (N →
∞). These systems are usually called non-ergodic.

According to the Parisi’s RSB solution of the SK model (Section 1.3.1
and Refs. [17, 18, 19, 20]), this is the case of spin glasses at their spin glass
phase where several pure states (phases) exist. In the thermodynamic limit,
these states (also called valleys because they are minima of the free energy)
tend to have the same free energy, but the energy barriers between them
tend to infinity. Therefore, the system is not able to explore the whole range
of microstates and the system becomes non-ergodic. However, it is not clear
whether this behaviour also holds in a finite range spin glass.

1.4.2 Order parameter

An order parameter, if exists, is a common and useful tool to study phase
transitions. It is an observable whose behavior in each phase is different. An
example of an order parameter is the overlap defined in Section 1.3. Its prob-
ability distribution has only one Dirac’s delta at q = 0 in the paramagnetic
phase (Figure 1.3), but in the spin glass phase it has two Dirac’s deltas in
the droplet scenario (Figure 1.6) or two Dirac’s deltas and a continuous part
in the Parisi’s RSB scenario (Figure 1.5).

Regarding spin glasses, the first order parameter was propound by Ed-
wards and Anderson [13], defined as

qEA = lim
t→∞

lim
N→∞

⟨σi(t0)σit0 + t)⟩ (1.59)
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where the thermal average runs over a set of different t0. As we commented
above, in thermodynamic limit, the barriers between the different phases
tend to infinite, so the system is not able to change the valley where it
stays. As a consequence, this quantity is a measure of the mean square local
magnetization averaged over all the valleys. It can also be written as

qEA =
∑
a

Pa⟨σi⟩2a (1.60)

where the index a runs over all the phases and Pa is the thermal probability

Pa =
e−βFa∑
b

e−βFb

(1.61)

We will now define the mean square local equilibrium magnetization

q = ⟨σi⟩2 (1.62)

Computing it only over one sample, it can be written as

qJ =
1

N

∑
i

⟨σi⟩2 =
1

N

∑
i

∑
ab

PaPb⟨σi⟩a⟨σi⟩b (1.63)

It is also quite useful compute the correlations between different phases,
so we define the overlap for a single sample as

qab =
1

N

∑
i

⟨σa
i ⟩⟨σb

i ⟩ (1.64)

which has the property of |qab| ≤ 1. Studying the probability distribution of
this quantity [29], one finds that

P (q) = ⟨δ(q − qab)⟩ =
∑
ab

PaPbδ(q − qab) (1.65)

In case there are only two phases, like in the droplet model, P (q) would be
the sum of two Dirac’s delta functions (one in −qEA and another in qEA), as
we found above (Figure 1.6). Whereas, if the system exhibits a nontrivial
broken ergodicity, like RSB, P (q) would also have a continuous part, as we
also found above (Figure 1.5).

Finally, we will apply the replica method (Section 1.2) to compute this
quantities in the context we will work in this thesis. According to Ref. [2],
one can define

qαβ = ⟨σα
i σ

β
i ⟩ (1.66)
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where the indices α and β mean a pair of two different replicas (α ̸= β).
Therefore, one can identify

q = lim
n→0

1

n(n− 1)

∑
α ̸=β

qαβ (1.67)

where, as usual, nmeans the number of replicas. Finally, one can also identify
the Edwards-Anderson order parameter as

qEA = max
αβ

qαβ (1.68)

J=+1

J=+1

J=+1

J=-1

?

Figure 1.7: An example of a 2 × 2 frustrated plaquette. The spin at the
bottom right corner does not have a stable state.

1.4.3 Frustration

Frustration is one of the main contribution to the extremely complicated free
energy landscape which produce the typical slow dynamic of spin glasses. As
an example, we will work with Edwards-Anderson Ising spin glass model
without external magnetic field. As one can see in the Figure 1.7, due to the
fact that couplings are random, some configurations of them produce that
some spins (in the figure the one at the bottom right corner) are not able
to find the most stable position. In our example, the spin at the bottom
right corner tends to be up to be parallel with the spin at the bottom left
corner, according to the coupling between them. However, it also tends to
be down to be antiparallel to the spin at the top right corner, according to
the coupling between them.
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In the Edwards-Anderson model (as this examples shows) and in Potts
model, the two main models in this work, frustration is a consequence of the
disorder. However, in general frustration is an independent phenomenon and
several models exhibit it without disorder.
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Chapter 2

Potts

2.1 Preliminary study

The Disordered Potts Glass Model (DPM) has been extremely studied be-
cause of its interesting characteristics. In particular, mean field model ex-
hibits a dynamic phase transition for a given number of states p, which makes
this model quite useful to study supercooled liquids and glasses.

Besides, this model does not have any inversion symmetry (σi → σi)
whereas Ising-like models in absence of a magnetic field do, so DPM has
been used to modelize systems without inversion symmetry, for example ori-
entational (or quadrupolar) glasses [30, 31], like ortho-hydrogen, and mixed
crystals [32, 33], like (KCN)x (KBr)1−x.

Finally, DPM plays a similar role as the pure Potts model does in the
study of ferromagnets, it allows us to study several kinds of phase transitions,
a first and second order thermodynamic phase transition and a dynamic one,
just varying the value of the number of states (p) in our simulations.

2.1.1 Mean field analysis

In 1985, Gross, Kanter and Sompolinsky [34] studied the mean field theory
of the DPM (see also Refs. [2, 35, 36] for a more detailed explanation). The
mean field Hamiltonian of DPM is

H = −1

2

∑
i̸=j

Jijδσiσj
(2.1)

where p is the number of states that a given Potts spin σi can take. The
(quenched) couplings, Jij, are Gaussian-distributed random variables with

41
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mean J0/N . The order parameter can be defined as

qrr′ =

(
⟨δσir⟩ −

1

p

)(
⟨δσir′⟩ −

1

p

)
(2.2)

which has the symmetry [2]

qrr′ = q

(
δrr′ −

1

p

)
(2.3)

In the replica method (Section 1.2), q becomes a matrix and can be expressed
as

Qαβ = ⟨δσασβ
⟩ − 1

p
(2.4)

where α and β are replica indices and the thermal average is computed with
the replicated Hamiltonian. Now, we can compute the free energy (similarly
to what we did in Section 1.3.1) near the critical temperature

f(Q) = lim
n→0

p− 1

2n

[
θtr
(
Q2
)
− 1

3
tr
(
Q3
)
− p− 2

6

∑
αβ

Q3
αβ

+
y (p)

6

∑
αβ

Q4
αβ

]
(2.5)

where, remind, θ = (T−Tc)/Tc. If we compare this result with the analogous
Eq. (1.38) found in Section 1.3.1 to the Sherrington-Kirkpatrick (SK) model,
we notice two main differences. In Eq. (2.5) we have two cubic terms instead

only one:
∑
αβ

Q3
αβ does not vanish because in DPM the symmetry under

inversion of the spins does not hold. The other main difference is that in Eq.
(2.5) the coefficient of the quartic term is not constant but depends on p.
Let p∗ the value of p where y(p) changes its sign. It is negative for p < p∗

and positive for p > p∗ with p∗ ∼ 2.8 (see Ref. [34]). In fact y(2) = −1, so if
p = 2, the SK model is recovered.

Firstly, we will study this model in the region p < p∗ where y(p) is
negative. If we assume that a continuous Parisi’s solution q(x) holds, the
solution would be

q(x) = − 1

4y(p)
[2x− (p− 2)] or

dq

dx
= 0 (2.6)

Due to the fact that 0 ≤ q(x) ≤ 1, the solution presents two plateaus joint by
a straight line of slope 1/[2y(p)] (see Figure 2.1a). Therefore, the probability
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distribution of the order parameter q has two Dirac’s deltas, one at q0 = 0
and the another one at q1, and it does not vanish in the (0, q1) region (see
Figure 2.1b for more details). Notice that if p = 2, we have the same solution
as in the SK model. Since q(x) must also be a non-decreasing function, this
solution is only correct if y(p) < 0, which agrees with our assumption, and
it is incorrect for p > p∗.

x

q

(a) q(x)

q

P(q)

(b) P (q)

Figure 2.1: Schematic representation of the solution found for p < p∗.

Secondly, we will study the region where p > p∗. We will use the one step
Replica Symmetry Breaking (RSB) Ansatz, Eq. (1.30), which is enough to
solve the system. Let n be the total number of replicas and m1 the number
of replicas of every of the n/m1 groups. The expression of the Eq. (1.34) in
the one step Ansatz becomes (we assume that the terms of the diagonal of
the matrix Q̂ are 0)

∑
α,β

Ql
α,β = n

[
(m1 − 1) ql1 + (n−m1) q

l
0

]
(2.7)

Computing tr (Q3) is a bit more tricky, but after some algebra, it can be
expressed as

tr
(
Q3
)

= n

{
(m1 − 1) (m1 − 2) q31 +

(
n

m1

− 1

)[
3m1 (m1 − 1) q20q1

+

(
n

m1

− 2

)
m2

1q
3
0

]}
(2.8)

Substituting Eqs. (2.7) and (2.8) in Eq. (2.5) and evaluating the limit, one
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gets

f(q) =
p− 1

2

{
θ
[
(m1 − 1) q21 −m1q

2
0

]
− 1

3

[
(m1 − 1) (m1 − 2) q31

− 3m1 (m1 − 1) q20q1 + 2m2
1q

3
0

]
− p− 2

6

[
(m1 − 1) q31 −m1q

3
0

]
+

y(p)

6

[
(m1 − 1) q41 −m1q

4
0

]}
(2.9)

The saddle point equations can be expressed as

0 =
∂f

∂q0
=

p− 1

2

{
−2θm1q0 + 2m1 (m1 − 1) q0q1 − 2m2

1q
2
0 (2.10)

+
p− 2

2
m1q

2
0 −

2y(p)

3
m1q

3
0

}

0 =
∂f

∂q1
=

p− 1

2

{
2θ (m1 − 1) q1 − (m1 − 1) (m1 − 2) q21 (2.11)

+ m1 (m1 − 1) q20 −
p− 2

2
(m1 − 1) q21 +

2y(p)

3
(m1 − 1) q31

}

0 =
∂f

∂m1

=
p− 1

2

{
θ
(
q21 − q20

)
− 1

3

[
(m1 − 1) (m1 − 2) q31 − 3m1q

2
0q1 (2.12)

− 3m1 (m1 − 1) q20q1 + 2m1q
3
0

]
− p− 2

6

(
q31 − q30

)
+

y(p)

6

(
q41 − q40

)}
Taken into account that q0 ≤ q1 and neglecting the quartic term, the solution
of these equations, q, is a step function

q =

{
0 if x < x0
2θ
p−4

if x > x0
(2.13)

where x0 is the parameter m

x0 ≡ m1 =
p− 2

2
(2.14)

In Figure 2.2a one can see a schematic representation of this function. The
probability distribution of the order parameter q can be observed in Figure
2.2b.

Nevertheless, this solution also becomes incorrect in the region p > 4,
where a discontinuous transitions appears. Therefore, the approximation
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(a) q(x)

q

P(q)

(b) P (q)

Figure 2.2: Schematic representation of the solution found for p > p∗ and
T2 < T < Tc.

used to compute Eq. (2.5) is not valid and the previous demonstration does
not hold. However, Eq. (2.5) can still be used in the limit ϵ ≡ p − 4 → 0
because the discontinuity is small enough. In this situation one finds that
at the critical temperature, Tc, the value of the order parameter above the
discontinuous jump is q(1) ∝ p− 4 and the position of the jump as temper-
ature tends to the critical one is x0 (T → T−

c ) → 1. Whereas, if one solves
the full problem when p → ∞, the value of q above the discontinuous jump
is q(1) = 1 and the position of the jump is x0 = T/Tc.

Finally, Gross, Kanter and Sompolinsky [34] also demonstrated that the
system undergoes a second phase transition at a temperature T2 < Tc, be-
cause the previous solution has a negative entropy at T = 0 for every finite
p > p∗. Using an expansion of the free energy up to fifth order terms in
Q̂, they demonstrated that this phase transition is a continuous one, so q(x)
has a continuous part in a range of x, as can be observed in Figure 2.3a. In
Figure 2.3b the probability distribution of the order parameter is plotted.

2.1.2 Glass phase transition

The glass phase transition was firstly studied in the framework of the su-
percooled liquids. This area deal with amorphous solids like the glass of
windows. Many reviews of this topic have been written, but we will focused
on Refs. [37, 38].

If one cools fast enough a liquid, it would not become solid at its melting
temperature, Tm, and it would remain liquid even at temperatures below
that temperature Tm: this is a supercooled liquid. However, the lower the
temperature, the slower the dynamic of the system, that is, the relaxation
time exhibits an extremely growth (several orders of magnitude) in a short
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Figure 2.3: Schematic representation of the solution found for p > p∗ and
T < T2 < Tc.

range of temperature. In fact, at a temperature low enough the relaxation
time is so long that the system is not able to explore the whole phase space in
the time that a typical experiment spend, so the system becomes non-ergodic.
This behavior defines a kind of dynamical phase transition, where the phase
at low temperature is the so-called glass phase. To compute the temperature
at which the phase transition takes place, Tg, one needs to establish a criterion
to determine whether an experimental time is long enough to characterize a
glass phase. This maximum experimental time is usually fixed at 102−103 s.
With this definition, the viscosity where the glass phase transition happens
can be computed [38]:

η (Tg) = 1013 Poise. (2.15)

Different liquids have not the same evolution of the viscosity. Some of them,
strong liquids, have a fast evolution, linear versus Tg/T , for example SiO2.
Other liquids, fragile liquids, have a far slower evolution at high temperatures,
for example o-terphenyl. In Figure 2.4, this behaviour can be observed.
Notice that, where Tg/T = 1, all liquids have the same evolution due to the
definition of Tg, Eq. (2.15).

This definition of the phase transition and Tg seems to be a mathematical
trick without any physical meaning. In fact Tg depends (weakly) on the
cooling protocol of the experiment. However, this is not the case thanks to
some characteristics of these systems, like the so-called two steps relaxation.
Let C(t1, t2) be a general defined two times correlation function

C(t1, t2) =
1

N

∑
i

⟨ϕi(t1)ϕi(t2)⟩ (2.16)

where ϕ is an observable that depends on the particle (in liquids) or on the
spin (in spin glasses) which stays in the position i. An example of this kind
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Figure 2.4: Evolution of the viscosity of several liquids. Notice that, although
the evolution is different, all of them reach the same value of the viscosity.
This figure is the famous Angell plot, from Ref. [45]

of two times correlation function in spin glasses is the one defined in Eq.
(6.2), where the observable is the spin itself. At equilibrium, the two times
correlation function, Eq. (2.16), does just depend on the difference of these
times t = t2 − t1, so Eq. (2.16) can be rewritten as

C(t) =
1

N

∑
i

⟨ϕi(t)ϕi(0)⟩ (2.17)

At high temperature, C(t) decrease as an exponential function

C(t) = A exp(−t/τ) (2.18)

However, this behaviour does not hold at temperatures near Tg, where a
plateau in the relaxation of C(t) appears, that is, C(t) decreases and reaches
a first plateau and later it resumes the decreasing. The length of this plateau
depends on the temperature and appears continuously as T decreases, so this
phase transition is usually called a continuous transition. Nevertheless, if one
focuses on the value of C(t) on the plateau, one has a discontinuous behaviour
as T decreases.

Some characteristics of these supercooled liquids and their glass tran-
sition seems to be quite similar to properties of spin glasses in their spin
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glass phase, such as the extremely long relaxation time. Besides, spin glasses
without reversal spins symmetry, like DPM or p-spin model [39], undergo
a discontinuous phase transition (in fact, several phase transitions actually
happens, some of them continuous), as it is shown in the previous section
(Section 2.1.1) for DPM. However, this phase transition seems to be a first or-
der one, at least in mean field analysis. Kirkpatrick, Wolynes and Thirumalai
[40, 41, 42, 43, 44] performed an in-depth study of this relation between spin
glasses (they specially worked with Potts glass model) and the glass transition
of the supercooled liquids. For example, they found [41] that the correlation
function exhibit a plateau, a behaviour similar to the two steps relaxation.

2.1.3 Previous results

Brangian, Kob and Binder [46, 47, 48] performed a complete study of the ten-
state infinite range DPM and Gaussian couplings with a negative mean. They
checked whether this model presents the dynamical and static phase transi-
tions that mean field theory predicts in the thermodynamic limit. Therefore
they performed simulations of several system sizes, up to N = 2560 spins.
They simulated 500 samples for the smallest system and between 20 and
50 for the largest one. They found strong finite size effects, although their
simulations suggest the existence of both static and dynamical transition.
Therefore a finite system behaves, at least qualitatively, similarly as in the
thermodynamic limit.

Regarding the more realistic short range models, Brangian, Kob and
Binder [49, 50] also studied the three dimensional ten-state short range
model, although they focused on a bit different model from the one we will
study in this chapter

H = −
∑
⟨i,j⟩

Jij
(
pδσiσj

− 1
)

(2.19)

where Gaussian and bimodal couplings were studied, both with a negative
mean (J0 < 0). Systems sizes up to L = 16 have been simulated, with
up to 100 samples and 108 Monte Carlo steps (MCS). For both probability
distributions of the quenched couplings, they did not find any sign of the
existence neither the static nor the dynamical transition predicted in mean
field theory, so the behavior of the short range systems would be extremely
different to the infinite range ones.

Lee, Katzgraber and Young [55] also studied the short range DPM (in
fact they studied the same model we will study in this chapter). They per-
formed simulations of the four dimensional three-state DPM and the three
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dimensional three- and ten-state DPM, all of them with Gaussian couplings.
Besides, the three dimensional three-state model was also studied with bi-
modal couplings. In all of the three-state models, the probability distribution
of the couplings was chosen with a vanishing mean, J0 = 0, but in the ten-
state model the mean was chosen negative, J0 = −1. They simulated in
the three dimensional three-state systems of size up to L = 12 performing
∼ 107 MCS and 352 samples in the Gaussian probability distribution and
550 samples in the bimodal one (in both cases, more samples were simulated
in smaller lattice sizes). They found a clear phase transition with both prob-
ability distributions. However, in the three dimensional ten-state Gaussian
DPM1, they did not find any sign of phase transition, which supports the
previous result of Brangian, Kob and Binder [49, 50].

Finally, the Janus Collaboration [63] studied the three dimensional four
states DPM with binary quenched couplings (with vanishing mean
J0 = 0). They used a prototype board of Janus (see Section 7.6, Appendix
A and Refs. [224, 225, 226]) to perform their simulations. The simulations
performed were far longer than in previous works. The statistic achieved was
astonishing: the largest lattice size simulated was L = 16 with 1000 samples
and 8 × 109 MCS every one. Therefore, they were more confident that the
system was completely thermalized. They found a clear phase transition to a
spin glass phase. Moreover, no sign of a ferromagnetic phase transition was
found.

Therefore, an in-depth study of the three dimensional DPM with p > 4
states is quite interesting. In this work, we have used the full Janus ma-
chine which allows us to perform long simulations with far more statistic
than previous works, so we are far more confident that our simulations are
completely thermalized. Therefore, it seems that the results obtained in this
study are more reliable, although some of them do not agree with previous
works, which performed shorter simulations. However we did not manage to
thermalize systems of L = 16 lattice size for p ≥ 5 nor even relevant lat-
tice sizes for p = 8. There are several open questions in this model that we
will try to understand better with this work. For example whether a phase
transition to a ferromagnetic transition exists or characterize the spin glass
transition, its order and the behavior of βc with p.

1The largest lattice size simulated was L = 12 with 343 samples and ∼ 104 MCS (in
smaller sizes, 1000 samples were simulated with up to ∼ 105 MCS).
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2.2 Introduction

The three dimensional (3D) disordered Potts model (DPM) is an important
system, that could help in clarifying a number of open and crucial questions.
The first issue that comes to the mind is the possibility of understanding the
glass transition, since this is a very challenging problem. On more general
grounds, it is very interesting to try and qualify the behavior of the system
when the number of states p becomes large: here we should see the paradigm
of a “hard”, first order like transition but, as we will discuss in the following,
only sometimes this turns out to be clear (see for example the set of large
scale, very accurate numerical simulations of Ref. [51], dealing with a model
slightly different from the one defined here).

In such a difficult situation extensive numerical simulations are more than
welcome, and the Janus supercomputer [52, 53], optimized for studying spin
glasses, reaches its peak performances when analyzing lattice regular systems
based on variables that can take a finite, small number of values: disordered
Potts models fit very well these requirements. Using the computational power
of Janus we have been able to consistently thermalize the DPM with p = 5
and 6 on 3D (simple cubic) lattice systems with periodic boundary condi-
tions and size up to L = 12. Bringing these systems to thermal equilibrium
becomes increasingly harder with increasing number of states: it has been
impossible for us, even by using a large amount of time of Janus (that for
these problems performs, as we discuss better in the following, as thousands
of PC processors), to get a significant, unbiased number of samples thermal-
ized, and reliable measurements of physical quantities, for p ≥ 5 on a L = 16
lattice.

Our results lead us to the claim that the critical behavior of the DPM
with a large number of states p is very subtle, and if p is larger than, say,
5, numerical simulations could easily give misleading hints. The numerical
results that we will discuss in the following lead us to believe that the spin
glass transition gets stronger with increasing number of states p: a theoretical
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analysis of these results suggests that the transition could eventually become
of first order for p large enough. We do not observe, for both p = 5 and
p = 6, any sign of the presence of a spontaneous magnetization.

2.3 Model and observables

We have performed numerical simulations of the DPM on a simple cubic
lattice of linear size L with periodic boundary conditions. The Hamiltonian
of the DPM is

H ≡ −
∑
⟨i,j⟩

Jij δsi,sj , (2.20)

where the sum is taken over all pairs of first neighboring sites. In the p-
states model spins si can take p different values {0, 1, . . . , p − 1}. In this
work we analyze the p = 5 and 6 cases. The couplings Jij are independent
random variables taken from a bimodal probability distribution (Jij = ±1
with probability 1

2
). For a different definition of a disordered Potts model

see Ref. [54].
It is convenient to rewrite the variables of the Potts model using the

simplex representation, where the p Potts states are described as vectors
pointing to the corners of a (p − 1) dimensional hyper-tetrahedron. The
Potts scalar spins si are thus written as (p− 1)-dimensional unit vectors Si

satisfying the relations

Sa · Sb =
p δab − 1

p− 1
, (2.21)

where a and b ∈ [1, p]. We use this vector representation to define the
observables required to investigate the critical behavior of the system. In the
simplex representation we have that:

H = −
∑
⟨i,j⟩

J ′
ij Si · Sj . (2.22)

The couplings in the simplex representation have the form

J ′
ij =

p− 1

p
Jij . (2.23)

The spin glass behavior is studied via a properly defined tensorial overlap
between two replicas (independent copies of the system characterized by the
same quenched disorder variables Jij). Its Fourier transform (with wave
vector k) is given by [55]

qµν(k) =
1

V

∑
i

S
(1)µ
i S

(2)ν
i eik ·Ri , (2.24)
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where S
(1)µ
i is the µ component of the spin at site i of the first replica in

the simplex representation, S
(2)ν
i the ν component of the spin at site i in the

second replica, and V = L3 is the volume of the system.
This spin glass order parameter is then used to define the spin glass

susceptibility in Fourier space.

χq(k) ≡ V
∑
µ,ν

⟨|qµν(k)|2⟩ , (2.25)

where ⟨(· · ·)⟩ indicates a thermal average and (· · ·) denotes the average over
different realizations of the disorder (samples in the following). With the
above definition, χq(0) is the usual spin glass susceptibility.

We are interested in studying the value of the dimensionless correlation
length ξ/L, since at the transition temperature it does not depend on L, and
is therefore extremely helpful to estimate the critical temperature value Tc: in
fact one can usually simulate different lattice sizes, and look for the crossing
point in the plot of the different ξ/L values. One can derive [56] the value
of the correlation length ξ from the Fourier transforms of the susceptibility
with

ξ =
1

2 sin (km/2)

(
χq(0)

χq(km)
− 1

)1/2

, (2.26)

where km is the minimum wave vector allowed in the lattice. With the
periodic boundary conditions used in this work we have km = (2π/L, 0, 0) or
any of the two vectors obtained permuting the indexes.

We also study the ferromagnetic properties of the model by monitoring
the usual magnetization

m =
1

V

∑
i

Si , (2.27)

and correspondingly the magnetic susceptibility

χm ≡ V ⟨|m |2⟩ . (2.28)

These two observables are crucial to check the possible existence of a fer-
romagnetic phase, as predicted by the mean field approximation of this
model [57].

2.4 Numerical methods

We have analyzed the DPM with 5 and with 6 states, on a number of lattice
sizes (L = 4, 6, 8, and 12). All the numerical simulations have been run using
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a standard Metropolis algorithm combined with the Parallel Tempering (PT)
optimized algorithm, in order to improve performances and allow to reach
thermalization despite the very large relaxation times typical of spin glass
models.

We define a Monte Carlo sweep (MCS) as a set of V trial updates of lattice
spins. Each simulation consists on a thermalization phase, during which
the system is brought to equilibrium, and a phase of equilibrium dynamics
in which relevant physical observables are measured. As we require high
quality random numbers, we use a 32-bit Parisi-Rapuano shift register [58]
pseudo-random number generator. 2

In order to improve the simulation performance and to speed up ther-
malization we apply a step of the PT algorithm [59] every few MCS’s of the
Metropolis algorithm. The PT algorithm is based on the parallel simula-
tion of various copies of the system, that are governed by different values of
temperature, and on the exchange of their temperatures according to the al-
gorithm’s rules. In practice we let the different configurations evolve indepen-
dently for a few MCS, and then we attempt a temperature swap between all
pairs of neighboring temperatures: the aim is to let each configuration wan-
der in the allowed temperature range (that goes from low T values, smaller
than Tc, to high T values, larger than Tc), and to use the decorrelation due
to the high T part of the landscape to achieve a substantial speed up.

In order to check the time scales of the dynamical process, so as to assess
the thermalization and the statistical significance of our statistical samples,
we have computed a number of dynamical observables that characterize the
PT dynamics.

One of them is the temperature-temperature time correlation function,
introduced in Ref. [60], that we briefly recall. Let β(i)(t) be the inverse
temperature of the system i at time t (i = 0, . . . , NT − 1), where NT is the
total number of systems evolving in parallel in the PT. 3 We consider an
arbitrary function of the system temperature, f(β), changing sign at βc. We

shall name f
(i)
t = f(β(i)(t)). In equilibrium, system i can be found at any

of the NT with uniform probability, hence ⟨f (i)
t ⟩ =

∑NT−1
k=0 f(βk)/NT , for all

i and all t. We must choose a function f as simple as possible, such that

2Our FPGA did not have components to accomodate the L=12 code with a 48 bits
generator (that could instead be used for L=8). We have performed additional numerical
simulations in the smaller lattices, on PC, using 64 bits random numbers and in the
L = 8, on Janus, using 48 bits random numbers. We have reproduced in all cases, within
statistical errors, the results obtained with the 32 bits generator.

3We have used β’s not uniformly distributed in order to have a PT acceptance of order
30-40% in the whole β-interval. In addition, we have include additional β’s in the critical
region to have clearer crossing points of the correlation length.
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∑NT−1
k=0 f(βk) = 0. 4 Next, we can define the correlation functions

C
(i)
f (t) =

1

N − |t|

N−|t|∑
s=1

f (i)
s f

(i)
s+|t| , (2.29)

ρ
(i)
f (t) =

C
(i)
f (t)

C
(i)
f (0)

, (2.30)

where N is the total simulation time. To gain statistics we consider the sum
over all the systems

ρf (t) =
1

NT

NT−1∑
i=0

ρ
(i)
f (t) . (2.31)

Notice that this correlation function measures correlations for a given copy
of the system, that is characterized, during the dynamics, by different tem-
perature values.

We have characterized the correlation function ρf (t) through its inte-
grated autocorrelation time [56, 61]:

τint =

∫ Λint

0

dt ρf (t) , (2.32)

where Λint = ω τint and we have used ω = 10 (we have always used a total
simulation time larger than 15 or 20 times τint).

We have studied the systems defined on the smaller lattices (L = 4 and
6) on standard PCs, while for the larger lattice sizes we have used the Janus
computer [52, 53], an FPGA-based machine specifically designed to handle
simulations of spin glass models. The performance improvement offered by
Janus allowed us to thermalize lattices of size up to L = 12. While the
thermalization of lattices with L = 8 was relatively fast, the bigger lattice
sizes proved to be rather difficult to equilibrate, even within Janus, things
getting worse as the number of Potts states increases.

Tables 2.1 and 2.2 summarize the details about the numerical simulations
respectively for the p = 5 and the p = 6 case. We were able to thermalize a
large number of samples for L up to 12. The thermalization of L = 16 is pos-
sible, but it requires a dramatically large investment in computer resources,
since the time required by each sample is very large. Because of that, and
given the resources we could count upon, we have only been able to analyze

4Our choice of f(·) is slightly different from that of Ref. [60]; f(β) = a(β − βc) for
β < βc, and f(β) = b(β − βc) for β > βc. The ratio of the slopes a/b is fixed by the

condition
∑NT−1

k=0 f(βk) = 0. The overall normalization being irrelevant, we choose a = 1.
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a few samples: the results for the few samples that we have studied in this
case are consistent with the ones obtained from the smaller sizes. In addition,
for some samples with L = 8 and L = 12, which were especially difficult to
thermalize, we had to use larger numbers of MCS’s: see section 2.5.1.

L Nsamples MCSmin [βmin, βmax] Nβ NMetropolis Nm

4 2400 107 [1.6, 9.5] 18 5 103

6 2400 2× 107 [1.6, 9.5] 22 5 103

8 2448 4× 108 [1.7, 6.5] 24 10 2× 105

12 2451 6× 109 [1.8, 5.5] 20 10 2× 105

Table 2.1: Details of the simulations for p = 5. Nsamples is the number of
samples (i.e. of the disorder realizations that we have analyzed), MCSmin

is the minimum number of MCSs that we have performed, [βmin, βmax] is
the range of inverse temperatures simulated in the PT, Nβ is the number of
temperatures inside this interval, NMetropolis is the frequency of the Metropolis
sweeps per PT step, and Nm is the total number of measurements performed
within each sample.

L Nsamples MCSmin [βmin, βmax] Nβ NMetropolis Nm

4 2400 107 [2.1, 9.8] 10 5 103

6 2400 2× 107 [2.0, 9.65] 16 5 103

8 1280 109 [1.7, 7.5] 30 10 2× 105

12 1196 6× 1010 [1.6, 6.5] 22 10 2× 105

Table 2.2: As in table 2.1, but for p = 6.

The number of Metropolis sweeps per PT step is 10 on Janus and 5 on
the PC, and there is an important reason for that: in a standard computer
the time needed for a step of the PT algorithm is small compared with a
complete Metropolis MCS. This is not true on Janus, where it takes longer
to perform a PT step than an Metropolis MCS: because of that, after a
careful test of the overall simulation performance, we decided to lower the
PT to Metropolis MCS ratio in order to increase Janus efficiency.

In the p = 5 case a numerical simulation of a single sample (thermalization
plus measurements) on Janus takes 39 minutes for L = 8 and 10 hours
on L = 12. The same simulations would require 7.4 days of an Intel(R)

Core2Duo(TM) 2.4 GHz processor for L = 8 and 315 days for L = 12. These
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values grow when p = 6: here the equilibration takes 120 minutes for an
L = 8 sample and 110 hours for L = 12 (on the PC they would take 24 days
for L = 8 and 10 years for L = 12).

The results shown in this paper for the p = 5 model would have required
approximately 2150 equivalent years of an Intel(R) Core2Duo(TM) 2.4 GHz
processor: the ones for p = 6 would have required 12000 years.

2.5 Results

2.5.1 Thermalization Tests

Thermalization tests are a crucial component of spin glass simulations. Be-
fore starting to collect relevant results from the data we have to be sure that
they are actually taken from a properly thermalized system, and are not
biased from spurious effects.

A standard analysis scheme consists in evaluating the average value of
an observable on geometrically increasing time intervals. The whole set of
measurements is divided in subsets, each of which covers only part of the
system’s history (the last bin covers the last half of the measurements, the
previous bin takes the preceding quarter, the previous bin the previous eighth
and so on), and observables are averaged within each bin. The convergence
to equilibrium is checked comparing the results over different bins: stability
in the last three bins within error bars (that need to be estimated in an
accurate way) is a good indicator of thermalization.

We show in figures 2.5 and 2.6 the logarithmic binning of ξ, as defined in
equation (2.26), in the p = 5 and p = 6 cases. The compatible (and stable)
values for the three last points satisfy the thermalization test explained above.
The data in the plots are for the lowest temperature used on each lattice size:
this is expected to be the slowest mode of the system, and its thermalization
guarantees that also data at higher temperature values are thermalized. The
plateau in the last part of each plot is a clear signal of proper thermalization:
only data from the last bin are eventually used to compute thermal averages.

We have also investigated how thermalization is reached in the individual
samples (as opposed to the information on averages obtained from figures
2.5 and 2.6): to do that we have studied the correlation function for the
temperature random walk defined in (2.31) and its associated integrated
autocorrelation time, τint, defined in (2.32). As an example we plot in figure
2.7 the autocorrelation function (2.31) for a given sample as a function of the
Monte Carlo time (here L = 8 and p = 6): one can see a fast, exponential
decay in the left part of the figure, and (large) fluctuations around zero at
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Figure 2.5: Log-binning thermalization test for p = 5. For all data points
the point size is bigger than the corresponding error bar.

later times.

Sample to sample fluctuations of τint are very large: in figure 2.8 we plot
τint for all our samples with p = 5, L = 8. In order to be on the safe side we
have increased the number of MCS, by continuing the numerical simulation
for a further extent, in all samples where our estimate of τint was bigger than
the length of the simulation divided by a constant c (c = 20 for L = 8 and
c = 15 for L = 12, where achieving thermalization is much more difficult). 5

5In the p = 5, L = 8 case for 2442 samples we have run a simulation of total extent
η = 4× 108 MCSs, while for 5 samples η = 8× 108 MCSs, and for 1 sample η = 1.6× 109

MCS. In the p = 5, L = 12 case for 2382 samples η = 6 × 109 MCSs, for 54 samples
η = 1.2 × 1010, for 8 samples η = 2.4 × 1010, and for 7 samples η = 4.8 × 1010 MCS. In
the p = 6, L = 8 case: for 1263 samples η = 109 MCSs, for 8 samples η = 2× 109 and for
9 samples η = 4× 109. In the p = 6, L = 12 case for 1173 samples η = 6× 1010 MCSs, for
17 samples η = 1.2× 1011 MCSs and for 6 samples η = 2.4× 1011 MCSs.
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Figure 2.6: As in figure 2.5, but p = 6.

2.5.2 Critical temperature and critical exponents

Our analysis of the critical exponents of the system has been based on the
quotient method [56, 62]: by using the averaged value of a given observable
O measured in lattices of different sizes, we can estimate its leading critical
exponent xO,

⟨O(β)⟩ ≈ |β − βc|−xO . (2.33)

By considering two systems on lattices of linear sizes L and sL respectively
one has that [56, 62]

⟨O(β, sL)⟩
⟨O(β, L)⟩

= sxO/ν +O(L−ω) , (2.34)

where ν is the critical exponent of the correlation length and ω is the exponent
of the leading-order scaling-corrections [56].

We use the operators ∂βξ, from (2.26), and χq, from (2.25) in equa-
tion (2.34) to obtain respectively the critical exponents 1 + 1/ν and 2 − ηq.
The exponent 2− ηm is obtained applying eq. (2.34) to the magnetic suscep-
tibility χm, from (2.28).
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Figure 2.7: The autocorrelation function (2.31) for one generic sample (p = 6,
L = 8).
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Figure 2.8: Integrated autocorrelation time, τint, for all p = 5, L = 8 samples.
τint is in units of blocks of ten measurements, i.e. of 20103 MCS. Samples
above the green line have been “extended” (see the text for a discussion of
this issue).
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To use the quotient method we start estimating the finite-size transition
temperature: we do this by looking at the crossing points of the correlation
length in lattice units (ξ/L) for various lattice sizes. We have used a cubic
spline interpolating procedure to compute both the crossings of ξ/L and its
β-derivative (we have followed the approach described in detail in Ref. [63]).

 0.1

 0.2
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 0.4

 2  3  4  5  6  7

ξ 
/ L

β

L =  4
L =  6
L =  8
L =12

 0.35

 0.4

 4.5  5  5.5

Figure 2.9: Overlap correlation length in lattice size units as a function of
the inverse temperature β for L = 4, 6, 8 and 12. Here p = 5.

We show in figures 2.9 and 2.10 the behavior of ξ/L as a function of β.
The different curves are for different lattice sizes. The crossing points are
rather clear in both cases, giving a strong hint of the occurrence of a second
order phase transition. At least for p = 5 scaling corrections play a visible
role, and the crossing points undergo a small but clear drift towards lower
temperatures for increasing lattice sizes. We summarize in tables 2.3 and
2.4 the β values of the crossing points for two different pairs of lattice sizes,
together with the estimated values of the critical exponents ν and ηq that we
obtain using relation (2.34).

Since we can only get reliable results on small and medium size lattice
we cannot control in full scaling corrections, and a systematic extrapolation
to the infinite volume limit is impossible. It is clear however that the effec-
tive critical exponents summarized in tables 2.3 and 2.4 do not suggest that
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Figure 2.10: As in figure 2.9, but p = 6.

asymptotically for large volume the system will not be critical (in this case,
for example, ηq should be asymptotically equal to 2): our numerical data
clearly support the existence of a finite temperature phase transition.

(L1, L2) βcross(L1, L2) ν(L1, L2) ηq(L1, L2) ηm(L1, L2)

(4, 8) 4.83(5) 0.82(3) 0.13(2) 1.72(2)
(6, 12) 5.01(4) 0.81(2) 0.16(2) 1.94(2)

Table 2.3: Numerical values of our estimates for the crossing point of the
curves ξ/L. We give βcross, the thermal critical exponent ν, the anomalous
dimension of the overlap ηq, and the anomalous dimension of the magnetiza-
tion ηm.

We take as our best estimates for the critical exponents the one obtained
from the lattices with sizes L = 6 and L = 12. For p = 5

βc = 5.01(4) , ν = 0.81(2) , ηq = 0.16(2) , (2.35)
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(L1, L2) βcross(L1, L2) ν(L1, L2) ηq(L1, L2) ηm(L1, L2)

(4, 8) 6.30(9) 0.80(2) 0.10(2) 1.453(19)
(6, 12) 6.26(7) 0.80(4) 0.16(2) 1.971(19)

Table 2.4: As in table 2.3, but p = 6.

while for p = 6.

βc = 6.26(7) , ν = 0.80(4) , ηq = 0.16(2) . (2.36)

It is interesting to compare these values with those of other Potts models
with a different number of states. In particular we are interested in the value
of the critical exponents as a function of the number of states, since we want
to characterize the critical behavior of the various models and attempt a
prediction of the model’s behavior when the number of states is large. In
our particular model and with the (low) values of the temperature that are
interesting for us (since we need to get below the critical point) even with
the large computational power available to us thanks to Janus the simulation
for p = 8, say, on a L = 12 lattice, would require an unavailable amount of
CPU time. What is found in the very interesting work of Refs. [51] and
[55] is different, since there one is able to thermalize a p = 10 model on a
large lattice, and no transition is observed. The model analyzed in these
two references [51, 55] is indeed slightly (or maybe, it will turn out, not so
slightly) different from the present one, since there J is negative. It is not
clear to us if this difference could explain a quite dramatic discrepancy of
the observed behavior, or if, for example, a different (very low) temperature
regime should be analyzed to observe relevant phenomena: this is surely an
interesting question to clarify, and the fact that the coupling have a negative
expectation value, reducing in this way frustration, could turn out to make
a difference.

2.5.3 Absence of ferromagnetic ordering in the critical
region

Our DPM is in principle allowed to undergo a ferromagnetic phase transition
(since no symmetry protects it), and at low temperatures could present a
spontaneous magnetization, as discussed in Ref. [[63]]. Because of that we
have carefully studied the magnetic behavior of the model at low tempera-
tures. We have analyzed both the magnetization and the magnetic suscepti-
bility below the spin glass critical point.
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Figure 2.11: Magnetic susceptibility as a function of β for L = 4, 6, 8 and
12. Here p = 5.

In the paramagnetic phase the magnetization is random in sign, and
its absolute value is expected to be proportional to 1/

√
V . In Figs. 2.11

and 2.12 we check whether ⟨|m |⟩ around the spin glass critical region tends
to an asymptotic value for larger lattice size, or not. From the figures we
see ⟨|m |⟩ goes to zero in the critical region. Also, we studied the magnetic
susceptibility χm = V ⟨|m |2⟩ which is independent of size. Again in Figs. 2.11
and 2.12 we check that, and we see a non-divergent behavior. This behavior
is extremely different from a ferromagnetic phase in which χm diverges as
the volume.

Besides, as reported in Sec. 2.5.2 the exponent ηm is close to 2, so we could
say that a ferromagnetic-paramagnetic phase transition does not happen in
the range of temperatures that we have studied.

2.6 Evolution of critical exponents with p

In table 2.5 we summarize the values of the inverse critical temperature and
of the thermal and overlap critical exponents for DPM from p = 2 (the Ising,
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Figure 2.12: As in figure 2.11, but p = 6.

Edwards-Anderson spin glass) up to p = 6. We also plot these data items in
figure 2.13.

From table 2.5 and figure 2.13 some results emerge very clearly. First,
the inverse critical temperature roughly follows a linear behavior in p, with a
slope very close to one. We have added in table 2.5 the ratio (R) between the
numerical determinations (in 3d) of βc(p) and their values in the Mean Field
(MF) approximation. One can see that the large deviations from the MF
prediction occur for large values of p (notice that R > 1 since MF suppresses
fluctuations). 6

6In the MF approximation was obtained, using the Hamiltonian [57, 67],

H ≡ −p

2

∑
i ̸=j

Jij δsi,sj ,

that Tc/J = 1 for p ≤ 4 and (Tc/J)
2
= 1 + (p − 4)2/42 + O((p − 4)4) for p > 4. In

addition for very large p, Tc/J ≃ 1
2 (p/ log p)

1/2
. Taking into account the extra p factor

in the Hamiltonian used in the Mean Field and the fact that J =
√
2d (J2

ij = J2/N ,
being N the number of spins in the MF computation) since we are working in finite
dimension (d), we obtain the finite dimension version of the critical β using the Mean
Field approximation: βc = p/

√
2d for p ≤ 4 and βc =

p√
2d

(
1− (p− 4)2/84 +O((p− 4)4)

)
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Second, ν decreases monotonically and ηq grows monotonically with the
number of states p. To discuss this behavior it is useful to keep in mind
that when using finite size scaling to study a disordered first order phase
transition one expects to find [64] ν = 2/D and 2 − ηq = D/2, i.e., in our
D = 3 case, ν = 2/3 and ηq = 1/2. These are “effective” exponents, that are
a bound to the ones allowed for second order phase transitions.

Both sets of values for ν and ηq are indeed completely compatible with
tending, as p increases, to those limit values that characterize a first order
phase transition. If this turns out, as our numerical data make very plausible
to be true, two different scenarios open. The first possibility is that the p-
states DPM undergoes a disordered first order phase transition for large
enough values of p (just as in the ordered Potts model, that for p ≥ 3
undergoes a first order phase transition), while the second possibility is that
the DPM will show a standard second order phase transition for all finite
values of p. This is the typical issue that is very difficult to settle with
numerical work: an analytical solution of the model with infinite number
of states would be very useful as a starting point in order to discriminate
between these two possible scenarios.

p βc ν ηq R

2 (Ref.[[65]]) 1.786(6) 2.39(5) 7 −0.366(16)8 2.187(8)
2 (Ref.[[66]]) 1.804(16) 2.45(15) −0.375(10) 2.209(20)
3 (Ref.[[55]]) 2.653(35) 0.91(2) 0.02(2) 2.17(3)
4 (Ref.[[63]]) 4.000(48) 0.96(8) 0.12(6) 2.45(3)
5 (this paper) 5.010(40) 0.81(2) 0.16(2) 2.51(2)
6 (this paper) 6.262(71) 0.80(4) 0.16(2) 2.69(3)

Table 2.5: Critical parameters as a function of p. All data are for binary
couplings, with zero expectation value. By R we denote the ratio between
the critical β in three dimensions and that computed in Mean Field.

2.7 Conclusions

In this note we have characterized the critical behavior of the 3D DPM with
p = 5 and p = 6, i.e. with a reasonably large number of states. Our numerical

for p > 4 (notice the minus signum of the (p− 4)2 correction); in addition, for large p, one

obtains βc ≃
√

2
d (p log p)

1/2
. Note that in our case

√
2d ≃ 2.45.
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Figure 2.13: In the bottom plot: βc versus p, and the straight line f(p) = p.
Middle plot: ν as a function of p. We also show (dashed line) the value which
marks the onset of a disordered first order phase transition (νfirst = 2/3).
Upper plot: ηq as a function of p.

simulations have allowed us to reach some clear evidences, and to stress some
difficult issues that will require further analysis.

We first stress that in both cases the spin glass transition is very clear, and
we have been able to obtain a reliable estimate of the critical temperature
and of the critical exponents ν and ηq. We have discussed what happens
when p increases; we have found that βc increases like p. A similar result
was conjectured in Ref. [68] (for all values of p) analyzing high temperature
series and found in Mean Field for p ≤ 4 (although, of course, the slope is
wrong). In addition, the behavior of ν and ηq is compatible with going to
the large p limit value that characterizes a first order phase transition.

In the low temperature regime we do not see any sign of a transition to a
ferromagnetic regime, that would be in principle allowed by the structure of
our model. We cannot exclude that at very low T values something would
happen, but in all the range we can explore the system stays in the spin glass
phase.
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A last piece of important evidence is that low temperature simulations
of this model look difficult, and that they slow down severely for increasing
p. In our particular model, where the expectation of the coupling is zero, it
would be impossible to study reliably a p = 8 model with the computational
resources available today.

This last observations opens indeed a last point that it will be interesting
to analyze in the future. When couplings have a negative expectation value
the simulation of a p = 10 model [51, 55] is possibly easier than it would
be in our case, and the results are very different: in that case one does not
see any sign of a phase transition. Analyzing how the DPM depends on the
expectation value of the couplings is indeed at this point a crucial issue, since
it could turn out that the reduction in frustration due to a negative net value
of the couplings could completely change the critical behavior of the model.



Chapter 3

Sample to sample fluctuations

3.1 Preliminary study

Studying spin glasses, specially its spin glass phase, is a complex task. In
Section 1.3.1, a brief analysis of the infinite range Sherrington-Kirkpatrick
model was presented. This model has an exact solution which in the spin
glass phase corresponds to the Parisi’s Replica Symmetry Breaking (RSB).
In fact, Guerra [70, 71] demonstrated the existence and uniqueness of the
thermodynamic limit (N → ∞) of all observables and also demonstrated
that the thermodynamic limit of the free energy (without using the replica
method) is bounded by the expression computed using Parisi’s RSB Ansatz.
Besides, Talagrand [72] demonstrated that the free energy asymptotically is
that of the Parisi’s Ansatz.

Several concepts have been developed to study the properties of the spin
glass phase, such as stochastic stability, replica equivalence or overlap equiv-
alence. These concepts will be described in detail are in following sections.
In Section 3.1.1 it is shown that replica equivalence is equivalent to stochastic
stability.

However, the application of these properties in short range models (like
Edwards-Anderson model for instance), which are more realistic, is still con-
troversial. Stochastic stability is thought to be a quite general property, so
it should hold even in short range models, thus if one demonstrates that it
is equivalent to replica equivalence, the last one would also hold. Besides,
ultrametricity appears in mean field but demonstrating whether it also holds
n short range models is quite complicated. In Section 3.1.2 it is shown that,
in short range models, if overlap equivalence (which is an easier property to
check) and replica equivalence hold, then ultrametricity appears.

In this context, the aim of the work presented in this chapter is to check

69
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if these properties hold in a short range model: the Edwards-Anderson Ising
spin glass. We focused on verifying the validity of the stochastic stability
and ultrametricity, so our results complement analysis of overlap equivalence
performed in Ref. [73, 88, 89, 100].

3.1.1 Stochastic stability and replica equivalence

In 1995, Guerra [82] demonstrated that1

⟨q212q223⟩ =
1

2
⟨q412⟩+

1

2
⟨q212⟩

2
(3.1)

⟨q212q234⟩ =
1

3
⟨q412⟩+

2

3
⟨q212⟩

2
(3.2)

His proof is based on the study of the average over the disorder of the internal
energy and its fluctuations, and the properties of positivity and convexity
of them. Moreover, they are stable under the addition of a stochastical
perturbation

λ
∑
i

Ĵiσi (3.3)

where Ĵi are independent random (Gaussian) variables. Guerra stated that

uN = −1

2
β
(
1− ⟨q212⟩

)
(3.4)

∂uN

∂β
= −1

2

(
1− ⟨q212⟩

)
+

β2

2
N
(
⟨q412⟩ − 4⟨q212q223⟩+ 3⟨q212q334⟩

)
(3.5)

u2
N − uN

2 = − 1

2N
⟨q212⟩ −

1

2N2
+

3

2
β2
(
⟨q212q234⟩ − ⟨q212q223⟩

)
+

1

4
β2
(
⟨q412⟩ − ⟨q212⟩

2
)

(3.6)

Using the property of the convexity of the free energy

lim
N→∞

N−1logZN (3.7)

and the fact that Eq. (3.6) is non-negative, he found that

⟨q212q234⟩ − ⟨q212q223⟩ =
1

6

(
⟨q412⟩ − ⟨q212⟩

2
)

(3.8)

1Parisi in () using Replica Symmetry Breaking (RSB) obtained for first time these
equations [102]
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Besides, differentiating the right hand term of Eq. (3.4) with respect to β
and using Eq. (3.5), he found, after a little algebra, that

⟨q412⟩ − 4⟨q212q223⟩+ 3⟨q212q234⟩ = 0 (3.9)

Now, using Eqs. (3.8) and (3.9), it is evident that Eqs. (3.1) and (3.2) hold.
Moreover, it can also be demonstrated in a similar way that

⟨q12q23⟩ =
1

2
⟨q212⟩+

1

2
⟨q12⟩

2
(3.10)

⟨q12q34⟩ =
1

3
⟨q212⟩+

2

3
⟨q12⟩

2
(3.11)

In the last part of this section, we will show the derivation of the previous
equations, Eqs. (3.10) and (3.11), for the moment of the overlap using replica
equivalence concepts.

In 1998, Parisi [85] demonstrated these relations using the replica equiv-
alence assumption, which means that∑

c

f (Qac) =
∑
c

f (Qbc) (3.12)

holds2 for every function, f , and replica indices, a and b. We will report here
the Parisi’s derivation.

Replica equivalence implies:

∑
c,d

Qk1
acQ

k2
bd =

(∑
c

Qk1
ac

)(∑
d

Qk2
bd

)

=

∫
dq1P (q1)q

k1
1

∫
d12P (q2)q

k2
2 (3.13)

The first term can be written as∑
c,d

Qk1
acQ

k2
bd =

∑
c,d;c ̸=d

Qk1
acQ

k2
bd +

∑
c,d;c=d

Qk1
acQ

k2
bd (3.14)

The Eq. (3.13) holds both for a ̸= b and a = b. Firstly, we will solve the case
a = b. Then the sum, where c ̸= d, has (n− 2)(n− 1) non-vanishing terms,
so we can write it as

(n− 2)(n− 1)

∫
dq12dq13P

12,13(q12, q13)q
k1
12q

k2
13 (3.15)

2In the mean field framework this implies to have a well defined free energy in the limit
n → 0.
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The second sum, where c = d, has (n − 1) non zero terms, so it is possible
to be expressed as

(n− 1)

∫
dq12P (q12)q

k1+k2
12 (3.16)

Rewriting Eq. (3.13) taking into account Eqs. (3.14), (3.15) and (3.16) and
evaluating the limit n → 0, Parisi found that

P 12,13(q12, q13) =
1

2
P (q12)P (q13) +

1

2
P (q12)δ(q12 − q13) (3.17)

Now, we will deal with the case a ̸= b. Then the sum, where c ̸= d, has
(n− 2)(n− 1) + 1 non vanishing terms, so its result is

[(n− 2)(n− 1) + 1]

∫
dq12dq34P

12,34(q12, q34)q
k1
12q

k2
34 (3.18)

The second sum, where c = d, has (n− 2) non zero terms, so its result is

(n− 2)

∫
dq12dq13P

12,13(q12, q13)q
k1
12q

k2
13 (3.19)

Substituting Eq. (3.17) in Eq. (3.19) and evaluating the limit n → 0, one
can rewrite Eq. (3.13) as

P 12,34(q12, q34) =
2

3
P (q12)P (q34) +

1

3
P (q12)δ(q12 − q34) (3.20)

A similar method is used to deal with three or more overlaps. Eqs. (3.20) and
(3.17) can also be written in terms of the averages. Assuming k1 = k2 ≡ k,
then one finds that

⟨qk12qk13⟩ =
1

2
⟨q2k12⟩+

1

2
⟨qk12⟩

2
(3.21)

⟨qk12qk34⟩ =
1

3
⟨q2k12⟩+

2

3
⟨qk12⟩

2
(3.22)

Obviously, when k = 2 one recovers Eqs. (3.1) and (3.2) and when k = 1 one
recovers Eqs. (3.10) and (3.11). According Parisi [85], every equation from
replica equivalence, like the ones demonstrated here, can be also built using
the general techniques of Guerra [82] or that of Aizenman and Contucci’s
method [83].
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3.1.2 Overlap equivalence

The overlap equivalence is the property of a system when every generalized
overlap that one can define, using an arbitrary observable, O,

qO =
1

N

∑
i

Oi(σ
a)Oj(σ

b) (3.23)

depends on the usual overlap q. That is, although they both do fluctuate
when N → ∞, qO restricted to pairs of replicas with a given q do not fluc-
tuate. Therefore, the usual overlap q contains all the useful information
and, thus, is the complete order parameter3. Separability is a similar prop-
erty, but using equilibrium configurations instead of real replicas. These two
properties are equivalent4.

Let Mab be matrices that belong to the set of all matrices computed from

the matrix Q (for example
∑
c

QacQcb). In 2000, Parisi and Ricci-Tersenghi

[74] demonstrated that the overlap equivalence (or separability) implies that∑
b

Qk
abMab =

∑
b

∫
dqδ(q −Qab)Q

k
abMab =

∫
dqP (q)M(q)qk (3.24)

where M(q) is the value that the matrix Mab takes when Qab = q and

P (q) =
∑
b

δ(q −Qab) (3.25)

They setted that ∑
b

Qk
abMab =

∫
dqP (q)M(q)qk (3.26)

∑
b

Qk
abM

′
ab =

∫
dqP (q)M ′(q)qk (3.27)

∑
b

Qk
abMabM

′
ab =

∫
dqP (q)M(q)M ′(q)qk (3.28)

(3.29)

Notice that the probability of the last equation can be written in function of
the probabilities of the other two relations

P (q)M(q)M ′(q) =
[P (q)M(q)] [P (q)M ′(q)]

P (q)
(3.30)

3For example, in mean field, the energy overlap satisfies qe = q2.
4See Ref. [74] for more details of this property. Moreover, a detailed analysis of the

overlap equivalence is performed in this reference.
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Choosing two matrices like

Mab =
∑
c

Qk1
acQ

k2
cb (3.31)

M ′
ab =

∑
c

Qk3
acQ

k4
cb (3.32)

and considering all possible values of k, they found that the joint probability
P (5) ≡ P 12,13,32,24,41 can be computed as

3P (5)(q, q1, q2, q3, q4) = δ(q1 − q4)δ(q2 − q3)P
(3)(q, q1, q2)

+ 2
P (3)(q, q1, q2)P

(3)(q, q3, q4)

P (q)
(3.33)

where P (3) is defined as

P (3) ≡ P 12,23,31 (3.34)

Now, integrating Eq. (3.33) over q, the joint probability P (4) ≡ P 13,32,24,41 is
computed

3P (4)(q1, q2, q3, q4) =
1

2
δ(q1 − q4)δ(q2 − q3) [P (q1)P (q2) + δ(q1 − q2)P (q2)]

+ 2

∫
dq

P (3)(q, q1, q2)P
(3)(q, q3, q4)

P (q)
(3.35)

This relation is quite useful because P (4)(q1, q2, q3, q4) is, by construction,
invariant under permutations of the overlaps, but the right hand term of Eq.
(3.35) is not for a generic P (3) function. Therefore this equation enforces
hard constrains in P (3). Impose equations like

P (4)(qi, qj, qj, qi)− P (4)(qi, qi, qj, qj) = 0 (3.36)

P (4)(qi, qi, qj, ql)− P (4)(qi, qj, ql, qi) = 0 (3.37)

One can compute admissible P (3).

3.1.3 Replica equivalence and overlap equivalence im-
ply ultrametricity

Once we have explained the concepts of replica equivalence and overlap equiv-
alence, we will now demonstrate that if this two concepts hold, then ultra-
metricity also hold.
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In order to compute P (q) and P (3), we assume that overlap can take only
a few values, k (we suppose that our results also hold in the continuous case),
so these probabilities are just a sum of delta functions

P (q) =
k∑

i=1

piδ(q − qi) (3.38)

P (3)(qi, qj, ql) =
∑
i,j,l

pijlδ(q − qi)δ(q − qj)δ(q − ql) (3.39)

where pi and pijl are weights, the last one is invariant under permutations of
the indices. Obviously all the weights belong to the interval [0, 1]. Besides,
relations like Eqs. (3.17) and (3.20) (from stochastic stability or replica
equivalence) generate new relations between these pijl weights. Remind that
in Section 1.3.1, where the existence of ultrametricity is shown in a infinite
range model (but using distances defined from the overlaps), Eq. (1.52)
tells us that only equilateral and isosceles triangles are allowed (in fact some
isosceles triangles are also forbidden, those that do not satisfy this relation,
that is, assuming q1 < q2 < q3, all weights piij vanish if i > j). Therefore, if
the scalene terms, pijl with i ̸= j ̸= l and the forbidden isosceles terms vanish,
ultrametricity holds. In fact, after using the symmetry under permutations of
the indices and relations from replica equivalence, only weights from scalene
and forbidden isosceles are free parameters, the rest of the parameters can
be expressed as a function of them and weights pi. For a given k, there are(
k
3

)
scalene weights and

(
k
2

)
forbidden isosceles parameters.

Now, we will study, as an example, the case when k = 5. Using Eqs.
(3.35) and (3.36) with the overlaps q4 and q5, we get

0 =
1

4
p5p4 +

p2541
p1

+
p2542
p2

+
p2543
p3

+
p2544
p4

+
p2554
p5

−
(
p551p441

p1
+

p552p442
p2

+
p553p443

p3
+

p554p444
p4

+
p555p544

p5

)
(3.40)

Using replica equivalence relations, the allowed isosceles parameter and the
equilateral parameters of the previous relation can be written as a function
of the forbidden isosceles and scalene parameters

p555 =
1

2
p5 (1 + p5)− p554 − p553 − p552 − p551 (3.41)

p444 =
1

2
p4 (1 + p4 − p5)− p441 − p442 − p443

+ p541 + p542 + p543 + p554 (3.42)

p544 =
1

2
p4p5 − p541 − p542 − p543 − p554 (3.43)
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Substituting Eqs. (3.41), (3.42) and (3.43) in Eq. (3.40) we find

0 = 2p1p2p3p4p5E
5,4
0 + [2p1p2p3p5p554 + p1p2p3p4 (3p5 − 2p555)] (p543 + p542

+ p541) + 4p1p2p3p5 (p543p542 + p543p541 + p542p541) + [2p2p3p5 (p1 + p4)] p
2
541

+ [2p1p3p5 (p2 + p4)] p
2
542 + [2p1p2p5 (p3 + p4)] p

2
543 (3.44)

where in E5,4
0 we include all the terms independent of the scalene parameters.

It can be written as

E5,4
0 = p1p4p5

4

[
2p551
p1p5

(
1− 2p554

p4p5

)(
1− 2p441

p1p4

)
+
(
1− 2p551

p1p5

)
4p554p441
p1p24p5

]
+p2p4p5

4

[
2p552
p2p5

(
1− 2p554

p4p5

)(
1− 2p442

p2p4

)
+
(
1− 2p552

p2p5

)
4p554p442
p2p24p5

]
+p3p4p5

4

[
2p553
p3p5

(
1− 2p554

p4p5

)(
1− 2p443

p3p4

)
+
(
1− 2p553

p3p5

)
4p554p443
p32p24p5

]
(3.45)

The terms with the form
2piij
pipj

(3.46)

belong to [0, 1] due to the fact that all the weights are positive. Therefore, it is
obvious that E4,3

0 is non-negative. Thus, all of the terms of Eq. (3.44) are also
non-negative, so in order to satisfy the equation, all the scalene parameters
must vanish. Repeating this method with other pairs of overlaps, one finds
that all the scalene parameters do vanish

p543 = p542 = p541 = p532 = p531 = p521 = p432 = p431 = p421 = p321 = 0 (3.47)

The following step is to study the isosceles parameters (in this case in k = 4),
although they are a bit more tricky. Using Eqs. (3.35) and (3.37) with the
overlaps q1, q2 and q3 (assuming q1 < q2 < q3 < q4), we get

0 = p1p2p3
4

[
2p331
p1p3

(
1− 2p332

p2p3

)(
1− 2p221

p1p2

)
+
(
1− 2p331

p1p3

)
2p332
p2p3

2p221
p1p2

]
(3.48)

Repeating this method one finds other three similar relations. All of them
imply that three of the forbidden isosceles parameters vanish

p331 = p441 = p442 = 0 (3.49)

and one of the rest p332, p221 or p443 do also vanish. Therefore, two of the
forbidden isosceles parameters do not vanish and ultrametricity is violated.

Fortunately, for a general k there are

(
k
2

)
∼ k2 forbidden isosceles parame-

ters and k/2 of these parameters violate ultrametricity. As k grows propor-
tion of isosceles parameters which violate ultrametricity decreases and in the
limit k → tends to 0.

We can conclude that if one assumes that replica equivalence and overlap
equivalence hold, all the scalene and forbidden isosceles parameters vanish
and, thus, ultrametricity also holds.
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3.1.4 Ultrametricity in short range models

Finally, in 1996 Íñiguez, Parisi and Ruiz-Lorenzo [75] demonstrated that if
ultrametricity holds in a short range spin glass model, Eq. (1.52) of ultra-
metricity in mean field is recovered. Let H be this short range spin glass
model

H = −
∑
⟨ij⟩

Jijσiσj (3.50)

which is invariant under permutations of replicas. Then, the general expres-
sion of the joint probability P 12,13,23 is

P 12,13,23(q12, q13, q23) = A(q12)δ(q12 − q13)δ(q12 − q23)

+ B(q12, q13)θ(q12 − q13)δ(q13 − q23)

+ B(q13, q23)θ(q13 − q23)δ(q23 − q12)

+ B(q23, q12)θ(q23 − q12)δ(q12 − q13) (3.51)

Moreover, the two replicas probability P 12,13 can be computed from Eq.
(3.51) integrating over q23, so

P 12,13(q12, q13) =

[
A(q12) +

∫ ∞

q12

dq23B(q13, q23)

]
δ(q12 − q13)

+ B(q12, q13) (3.52)

Integrating again, now over q13, the one replica probability distribution is
computed

P (q12) = A(q12) +

∫ ∞

q12

dq13B(q12, q13) +

∫ ∞

−∞
dq13B(q12.q13) (3.53)

Using Eq. (3.17) and a little algebra, one finds that

A(q12) =

∫ q12

−∞
dq13B(q12, q13) (3.54)

B(q12, q13) = 2

(∫ ∞

−∞
dq23B(q12, q23)

)(∫ ∞

−∞
dq23B(q13, q23)

)
(3.55)

Besides, using Eqs. (3.53) and (3.54) one gets

P (q12) = 2

∫ ∞

−∞
dq23B(q12, q23) (3.56)

Finally, taking into account Eqs. (3.56), (3.54) and (3.55) one finds

A(q12) =
1

2
x(q12)P (q12) (3.57)

B(q12, q13) =
1

2
P (q12)P (q13) (3.58)
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Substituting them in Eq. (3.51), Eq. (1.52) is recovered. So, if ultrametricity
holds in finite dimensional spin glasses, it will be the same kind of ultrametric-
ity as obtained in mean field
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3.2 Introduction

Spin glasses are model glassy systems which have been studied for decades
and have become a paradigm for a broad class of scientific applications. They
not only provide a mathematical model for disordered alloys and their striking
low-temperature properties (slow dynamics, age-dependent response), but
they have also been the test-ground for new ideas in the study of other
complex systems, such as structural glasses, colloids, econophysics, and com-
binatorial optimization models. The non-trivial phase-space structure of the
mean-field solution to spin glasses [76, 77, 78] encodes many properties of
glassy behavior.

Whether the predictions of the mean-field solutions correctly describe the
properties of finite-range spin-glass models (and of their experimental coun-
terpart materials) is a long-debated question. The Droplet Model describes
the spin glass phase in terms of a unique state (apart from a global inver-
sion symmetry) and predicts a (super-universal) coarsening dynamics for the
off-equilibrium regime. [79] Moreover, there is no spin glass transition in pres-
ence of any external magnetic field. On the other side, the Replica Symmetry
Breaking scenario [78, 80], based on the mean field prediction, describes a
complex free-energy landscape and a non-trivial order parameter distribution
in the thermodynamic limit; the dynamics is critical at all temperatures in
the spin-glass phase. The spin glass transition temperature is finite also in
presence of small magnetic fields; the search for the de Almeida-Thouless
line Tc(h) is the purpose of many numerical experiments (see, for example,
Ref. [81]).

From the theoretical perspective, the last decade has seen a strong ad-
vance in the understanding of the properties of the mean-field solution: its
correctness has been rigorously proved thanks to the introduction of new con-
cepts and tools, like stochastic stability or replica and overlap equivalence
[82, 83, 84, 85, 86]. Besides, numerical simulation has been the methodology
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of choice when investigating finite-range spin glasses, even if the computa-
tional approach is severely plagued by the intrinsic properties (slow con-
vergence to equilibrium, slowly growing correlation lengths) of the simulated
system’s (thermo)dynamics. In this respect, a Moore-law-sustained improve-
ment in performance of devices for numerical computation and new emerging
technologies in the last years has allowed for very fast-running implementa-
tion of standard simulation techniques. By means of the non-conventional
computer Janus [87] we have been able to collect high-quality statistics
of equilibrium configurations of three-dimensional Edwards-Anderson spin
glasses, well beyond what would have been possible on conventional PC clus-
ters.

Theoretical predictions and Janus numerical data have been compared
in detail in Refs. [88] and [89]. One of the main results presented therein
is that equilibrium properties at a given finite length scale correspond to
out-of-equilibrium properties at a given finite time scale. On experimentally
accessible scales (order 104 seconds waiting times corresponding to order
102 lattice sizes) the Replica Symmetry Breaking picture turns out as the
only relevant effective theory. Theories in which some of the fundamental
ingredients of the mean-field solutions are lacking (overlap equivalence in the
TNT model [90], ultrametricity in the Droplet Model) show inconsistencies
when their predictions are compared to the observed behavior.

In this work we reconsider the analysis of the huge amount of data at
our disposal, focusing on the sample-to-sample fluctuations of the distribu-
tion of the overlap order parameter. The assumptions of the mean-field
theory allow us to make predictions on the joint probabilities of overlaps
among many real replicas which can be tested against numerical data for the
three-dimensional Edwards-Anderson model. The structure of the paper is
as follows: in section 3.3 we give some details on the considered spin-glass
model and the performed Monte Carlo simulations. In the subsequent sec-
tion we first recall some fundamental concepts such as stochastic stability,
ultrametricity, replica and overlap equivalence and some predictions on the
joint overlap probability densities, and then present a detailed comparison
with numerical data. In section 3.5 we show how finite-size numerical overlap
distributions compare to the mean-field prediction in which finite-size effects
are appropriately introduced. We finally present our conclusions in the last
section.
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3.3 Monte Carlo Simulations

3.3.1 The Model

We consider the Edwards-Anderson model [91] in three dimensions, with Ising
spin variables σi = ±1 and binary random quenched couplings Jij = ±1.
Each spin, set on the nodes of a cubic lattice of size V = L3 (L being
the lattice size), interacts only with its nearest neighbors under periodic
boundary conditions. The Hamiltonian is:

H = −
∑
⟨i,j⟩

Jijσiσj , (3.59)

where the sum extends over nearest-neighbor lattice sites. In what follows
we are dealing mainly with measures of the spin overlap

qab =
1

L3

∑
i

σa
i σ

b
i , (3.60)

where a and b are replica indices, and the sample-dependent frequencies
NJ(qab) with which we estimate the overlap probability distribution PJ(q) of
each sample (we indicate one-sample quantities by the subscript J):

PJ(qab) =

⟨
δ

(
qab −

1

L3

∑
i

σa
i σ

b
i

)⟩
, (3.61)

where ⟨(· · ·)⟩ is a thermal average. In what follows (· · ·) denotes average
over disorder.

3.3.2 Numerical Simulations

We present an analysis of overlap probability distributions computed on equi-
librium configurations of the three-dimensional Edwards-Anderson model de-
fined in Eq. (3.59). We computed the configurations by means of an inten-
sive Monte Carlo simulation on the Janus supercomputer. Full details of
these simulation can be found in Ref. [89].For easy reference, we summarize
the parameters of our simulations in Table 3.1. In order to reach such low
temperature values, it has been crucial to tailor the simulation time, on a
sample-by-sample basis, through a careful study of the temperature random-
walk dynamics along the parallel tempering simulation.
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L Tmin Tmax NT NS

8 0.150 1.575 10 4000
16 0.479 1.575 16 4000
24 0.625 1.600 28 4000
32 0.703 1.549 34 1000

Table 3.1: A summary of parameters of the simulations we have used in
this work. For each lattice size, L, we considered NS samples, with four
independent real replicas per sample. For the Parallel Tempering algorithm,
NT temperatures were used between Tmin and Tmax, uniformly distributed in
that range (except in the case of L = 8, in which we have 7 temperatures
uniformly distributed between 0.435 and 1.575 plus the 3 temperatures 0.150,
0.245 and 0.340). Our MCS consisted of 10 Heat-Bath sweeps followed by
1 Parallel Tempering update. More detailed information regarding these
simulations can be found in Ref. [89].

3.4 Replica equivalence and ultrametricity

The Sherrington-Kirkpatrick (SK) model [76] is the mean-field counterpart
of model (3.59). It is defined by the Hamiltonian

H =
∑
i̸=j

Jijσiσj , (3.62)

where the sum now extends to all pairs of N Ising spins and the couplings
Jij are independent and identically-distributed random variables extracted
from a Gaussian or a bimodal distribution with variance 1/N . The quenched
average of the thermodynamic potential may be performed by rewriting the
n-replicated partition function in terms of an n × n overlap matrix Qa,b for
which the saddle-point approximation gives the self-consistency equation

Qab = ⟨σaσb⟩ , (3.63)

where the average ⟨(···)⟩ involves an effective single-site Hamiltonian in which
Qa,b couples the replicas. The thermodynamics of model (3.62) is recovered
in the limit n → 0, after averaging over all possible permutations of replicas.

The overlap probability distribution P (q) is defined in terms of such an
averaging procedure: for any function of the overlap f(q), one has that∫

dqa,bP (qa,b)f(qa,b) = lim
n→0

1

n!

∑
p

f(Qp(a),p(b)) , (3.64)
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the sum being over permutations p of the n replica indices. The assumption of
the replica approach is that P (q) defined in this way is the same as the large-
volume limit of the disorder average PJ(q) of the probability distribution of
the overlap defined in Eqs. (4.19) and (3.61).

The hierarchical solution [78] for Qab is based on two main assumptions:
stochastic stability and ultrametricity. In what follows we are interested in
the consequences of such assumptions when dealing with a generic random
spin system defined by a Hamiltonian HJ(σ), where the subscript J sum-
marizes the dependence on a set of random quenched parameters, e.g., the
random couplings in models (3.59) and (3.62).

Stochastic stability [82, 83] in the replica formalism is equivalent to replica
equivalence [84, 85]: one-replica observables retain symmetry under replica
permutation even when the replica symmetry is broken. This property im-
plies that the n× n overlap matrix for an n-replicated system, satisfies

0 ≡
∑
c

[f(Qac)− f(Qbc)] (3.65)

for any function f and any indices a, b. In the framework of the solution to the
mean-field model, this is necessary for having a well defined free energy [77,
85] in the limit n → 0. A consequence of (3.65) is, given a set of n real
replicas, the possibility of expressing joint probabilities ofm among the n(n−
1)/2 overlap variables to joint probabilities for overlaps among a set of up
to m replicas. [85] The following relations hold, for instance, in the cases
n = 4,m = 2 and n = 6,m = 3:

3P (q12, q34) = 2P (q12)P (q34)

+ δ (q12 − q34)P (q12) , (3.66)

15P (q12, q34, q56) = 2P (q12, q23, q31)

+ 5P (q)P (q′)P (q′′)

+ 2δ (q − q′)P (q′)P (q′′)

+ 2δ (q′ − q′′)P (q)P (q′)

+ 2δ (q − q′′)P (q)P (q′)

+ 2δ (q − q′) δ (q′ − q′′)P (q) , (3.67)

where q ≡ q12, q
′ ≡ q34, q

′′ ≡ q56.
Note that relation (3.66) quantifies the fluctuations of the overlap distri-

bution: even in the limit of very large volumes, for the joint probability of
two independent overlaps,

P (q12, q
′
34) ≡ PJ(q12, q′34) ̸= PJ(q12) PJ(q′34) . (3.68)
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Ultrametricity is the other remarkable feature of the mean-field solution,
stating that when picking up three equilibrium configurations, either their
mutual overlaps are all equal or two are equal and smaller than the third. A
distance can be defined in terms of the overlap so that all triangles among
states are either equilateral or isosceles. In terms of overlaps probabilities,
the property reads:

P (q12, q23, q31) = δ(q12 − q23)δ(q23 − q31)B(q12) (3.69)

+ [Θ(q12 − q23)A(q12, q23)δ(q23 − q31)

+ two perm.]

where Θ(x) is the Heaviside step function. By replica equivalence, A and B
can be expressed in terms of P (q): [97]

A(q, q′) = P (q)P (q′) , (3.70)

B(q) = x(q)P (q) , (3.71)

x(q) =

∫ q

−q

P (q′)dq′ . (3.72)

Ultrametricity implies that the joint probability of overlaps among n replicas,
which in principle depends on n(n−1)/2 variables, is a function of only n−1
variables. Thus, using replica equivalence, it is reduced to a combination of
joint probabilities of a smaller set of replicas. Note that P (q12, q23, q31) is the
only non-single-overlap quantity appearing in the r.h.s. of Eq. (3.67): by
combining replica equivalence and ultrametricity, three-overlap probabilities
reduce to combinations of single-overlap probabilities.

Stochastic stability, or equivalently replica equivalence, is a quite general
property that should apply also to short-range models, in the hypothesis that
the model is not unstable upon small random long-range perturbations [82].
Whether short-range models would feature ultrametricity is a long-debated
question, for which direct inspection by numerical means is the methodology
of choice. It has been shown [98] that, in the hypothesis that the overlap
distribution is non-trivial and fluctuating in the thermodynamic limit, then
ultrametricity is equivalent to the simpler assumption of overlap equivalence,
in the sense that it is the unique possibility when both replica and overlap
equivalence hold. Overlap equivalence states that, in the presence of replica
symmetry breaking, given any local function Ai(σ), the generalized overlap
qA = N−1

∑
iAi(σ

a)Ai(σ
b), with a, b indices of real replicas, does not fluctu-

ate when considering configurations at fixed spin-overlap [99]: all definitions
of the overlap are equivalent. Assuming that stochastic stability is a very
generic property, there may be violation of ultrametricity only in a situation
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in which also overlap equivalence is violated. In this respect, evidence of
overlap equivalence has been found in both equilibrium and off-equilibrium
numerical simulations of the Edwards-Anderson model [89, 100, 88].

The aim of this work is a numerical study of the sample-to-sample fluc-
tuations of the overlap distribution; we focus on the sample statistics of the
cumulative overlap probability functions defined by

XJ(q) ≡
∫ q

−q

PJ (q
′) dq′ . (3.73)

This is a random variable, since it depends on the random disorder, and we
denote by Πq(XJ) its probability distribution. We estimate the moments of
the Πq distribution as

Xk(q) =

∫
xkΠq(x)dx = [XJ (q)]

k

=

[∫ q

−q

PJ (q′) dq′
]k

, (3.74)

where PJ (q) are the Monte Carlo overlap frequencies for a given sample.
Given a set of three independent spin configurations we obtain also the

probability for the three overlaps to be smaller than q:

XT(q) =

∫ q

−q

PJ(q12, q23, q31)dq12dq23dq31 (3.75)

In the replica equivalence assumption Xk(q) can be expressed in terms of
XT(q) and X1(q); integrating the Ghirlanda-Guerra relations (3.66,3.67) up
to k = 3 we have:

X2(q) =
1

3
X1(q) +

2

3
X2

1 (q) , (3.76)

X3(q) =
1

15
[2XT(q) + 2X1(q)

+ 6X2
1 (q) + 5X3

1 (q)
]

. (3.77)

Ultrametricity imposes a further constraint: from relations (3.69 - 3.72) it
follows

XT(q) = [x(q)]2 ≡ X2
1 (q) , (3.78)

And the quantities (3.74) become polynomials in X1 only. The above relation
simply states that, if ultrametricity holds, the probability of finding three
overlaps smaller than q factorizes to the probability of finding two overlaps
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independently smaller than q, with the third bound to be equal to at least
one of the previous two.

For models in which the overlap is not fluctuating in the large-volume
limit (i.e., P (q) is a delta function) the above relations are satisfied but re-
duce to trivial identities. If the replica symmetry is broken, then stochastic
stability imposes strong constraints on the form of the overlap matrix and
consequently on the overlap probability densities. Ultrametricity is a fur-
ther simplification: lack of this property might indicate that more than one
overlap might be needed to describe the equilibrium configurations [98].

We can extract further information from the distribution Πq(x). It has
been found [101, 102, 103] that in mean-field theory the probability distri-
bution π(y) of the random variable YJ = 1−XJ behaves as a power law for
YJ ∼ 1. This implies that Πq(x) also follows a power law for small x values

πq(y → 1) ∼ (1− y)x(q)−1 ,

Πq(s → 0) ∼ sx(q)−1 . (3.79)

Since for most samples the PJ(q) is a superposition of narrow peaks around
sample-dependent q values, separated by wide q intervals in which PJ is
exactly zero, when dealing with data from simulations of finite-size systems,
it is convenient to turn to the cumulative distribution of the XJ to improve
the statistical signal, especially at small q values:

ΠC
q (s) =

∫ s

0

dxΠq(x) (3.80)

which should verify at small s

ΠC
q (s → 0) ∼ sx(q) ; (3.81)

the probability of finding a sample in which the overlap probability distri-
bution PJ(q) in the interval [0, q] is small enough to verify

∫ q

−q
P (q′)dq′ < s

goes to zero as a power law of s.

3.4.1 Numerical results

We recall that in our simulations we tailored the temperature range for the
parallel tempering implementation to improve its performance as discussed
in Ref. [89]. This brought us to direct measurements of observables at tem-
perature sets that were not perfectly overlapping at all lattice sizes. In what
follows we compare data at temperatures that are slightly different for dif-
ferent lattice sizes. Considering that even if the simulations were performed
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at exactly the same temperatures, tiny size-dependent critical effects may
always affect the results, we preferred not to perform involved interpolations
to correct for order 1% or less of temperature discrepancies. In what fol-
lows we will refer to the set of data at T ∼ 0.64Tc and T ∼ 0.75Tc for the
sake of brevity; the precise values of the temperatures are summarized in
Table 3.2. We also compare data at exactly T = 0.625 = 0.57Tc for lattice
sizes L = 8, 16, 24.

As our simulations were not optimized to study the critical region, we
take the value Tc = 1.109(10) from Refs. [104] and [105] (featuring many
more samples and small sizes to control scaling corrections). Still, combining
the critical exponents determination of these references with the Janus data
used herein, we obtain a compatible value of 1.105(8). [106]

L T ∼ 0.57Tc T ∼ 0.64Tc T ∼ 0.75Tc

8 0.625 − 0.815
16 0.625 0.698 0.844
24 0.625 0.697 0.842
32 − 0.703 0.831

Table 3.2: Temperature values for each lattice size (Tc = 1.109 [104, 105]).

We simulated four independent real replicas per sample: thus we avoid
any bias in computing XT(q), Eq. (3.75), by picking three configurations in
three distinct replicas. We show the computed XT(q) for the largest lattices
L = 24 and L = 32 in Fig. 3.1 i) considering only configurations for different
replicas (data labeled as ABC ); ii) picking two configurations out of three
from the same replica (labeled AAB); iii) picking the three configurations
in the same replica (labeled AAA) . To minimize the effect of bias due to
hard samples, we picked up the same number of configurations per sample,
spaced in time by an amount proportional to the exponential autocorrelation
time τexp of that sample [89]. The three data sets (ABC, AAB, AAA) are
equivalent and small deviations at low q values remain within error bars: this
is a strong indication of the statistical quality of our data, as described in
Ref. [89].

We now come to test the Ghirlanda-Guerra relations, Eqs. (3.76) and
(3.77). Plotting the two sides of Eq. (3.76) parametrically in q, the data
show a slight deviation from the theoretical prediction (see Fig. 3.2 top).
It is interesting to compare the discrepancies for different lattice sizes. As
the position and width of P (q) are size-dependent, it seems more natural to
compare functions of the moments Xk for different lattice sizes as functions
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of the integrated probability x(q) = X1(q) (see Fig. 3.2 middle). It is evident
from the third plot in Fig. 3.2 that the quantity

K2 =
[
X2 − (X1 + 2X2

1 )/3
]2

(3.82)

is definitely non-zero although very small in the entire range. However, the
data are compatible with K2 decreasing with lattice size and becoming null
in the L → ∞ limit.

We can reach similar conclusions regarding X3 as a function of XT and
X1, and the quantity

K3 =
[
X3 − (2XT + 2X1 + 6X2

1 + 5X3
1 )/15

]2
(3.83)

(see Fig. 3.3). Even if the data for different lattice sizes stand within a
couple of standard deviations, there is a clear improvement in the agreement
between the prediction and the Monte Carlo data as the size increases.

The data plotted in Fig. 3.4 take into account the ultrametric relation (3.78).
When comparingXT andX2

1 small deviations from the prediction arise. How-
ever, data for L = 32 have strong fluctuations, and do not hint at any clear
tendency with the system size. The bottom plot in Fig. 3.4 shows data for
the quantity

Ku
3 =

[
X3 − (2X1 + 8X2

1 + 5X3
1 )/15

]2
, (3.84)

which we obtain by substituting (3.78) in (3.83). The same considerations
we made above apply here: the agreement with ultrametric relations (3.77)
and (3.78) improves with increasing L.

We can compare the results above with those of Ref. [103], in which a
good agreement between theoretical prediction of the kind of Eqs. (3.76),
(3.77), (3.78) and Monte Carlo data on 3D Edwards-Anderson spin glass
with Gaussian couplings was reported, but without clear evidence on whether
the very small discrepancies could be controlled or not in the limit of large
volume. In this respect, we have been able to thermalize systems of linear
sizes up to twice the largest lattice studied in Ref. [103] and these larger
sizes show a trend towards satisfying Eqs. (3.76), (3.77), (3.78) that was
not clear in Ref. [103]. We also note that finite-size effects are stronger
at low temperatures, and obtaining evidence of the correct trend requires
data from simulations of larger systems than at higher temperature. We can
also compare data at T ∼ 0.75Tc and T = 0.57Tc (we have data at exactly
T = 0.625 for lattice sizes L = 8, L = 16 and L = 24 but unfortunately not
for L = 32). We see that at T ∼ 0.75Tc the data for the squared differences
Ku

3 and [XT −X2
1 ]

2
are almost size-independent (this is actually true for

[XT −X2
1 ]

2
when L > 8, see Fig. 3.5, top). At T ∼ 0.64Tc (see Fig. 3.4),
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such effects cannot be clearly told by comparing only the smallest lattices
considered, L = 16 and L = 24. At T = 0.57Tc, size-dependent effects are
strong even for L = 16, 24 (see Fig. 3.5, bottom).

Having data from four independent replicas per sample, we have access
to the joint probability of two independent overlaps. According to Eq. (3.66)
the quantity

P (q12, q34)

P (q34)
− 2

3
P (q12) = P (q12|q34)−

2

3
P (q12) , (3.85)

(where P (·|·) denotes conditional probability) when plotted versus q12, should
be a delta function in q34. This quantity is shown for L = 32, T ∼ 0.64Tc and
two values of q34 in the top plot of Fig. 3.6 and reveals a clear peak around
q34. At high q12 values there is a small excess in the probability P (q12)P (q34),
so the difference in Eq. (3.85) becomes negative. As one sees in Fig. 3.6 this
happens at values q12 ≳ qEA, i.e., in a region of atypically large overlaps that
should vanish in the thermodynamical limit. The size dependence for the
quantity in Eq. (3.85) is not easy to quantify from the data: as one can see
in Fig. 3.6 (bottom) for a particular choice of q34, the peak height tends to
increase with L (at least for T ∼ 0.75Tc), but in a very slow way, making
extrapolations in the L → ∞ limit practically impossible. Despite this, we
note that the negative peaks get narrower as the system size increases: we
expect then that this effect will disappear at larger system sizes.

We conclude this section commenting the asymptotic behavior of the
cumulative probability ΠC

q (z), Eq. (3.81). The small-z decay is clearly a
power law (see top plot in Fig. 3.7), but the best fit exponent is significantly
different from the estimate obtained by integrating the overlap distribution
P (q). Fig. 3.7 shows a comparison of the exponent x(q) obtained by the two
methods, for some lattice sizes, many cut-off values q and two temperatures,
T ∼ 0.64Tc and T ∼ 0.57Tc. Although the differences seem to decrease by
increasing the lattice size, the trend is very slow and even not in a clear
direction for some values of the cutoff q. Again, the only conclusion that can
be drawn is that the finite-size effects are large, even for L = 32, and safe
extrapolations in the L → ∞ limit cannot be done.

A closer inspection of the data reported in Fig. 3.7 reveals that the dif-
ference between the two data sets is roughly a constant, and this difference
becomes extremely important in the limit of small q, where one would expect
both measurements of x(q) to approach zero. Contrary to expectations, the
x(q) estimated from the data of ΠC

q seems to remain non-zero even in the
q → 0 limit. A possible explanation for this observation comes from the fact
that the delta peaks in the PJ(q) get broader for systems of finite size. In-
deed, in the thermodynamic limit, one would expect PJ(q) to be the sum of
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delta functions centered on overlap values extracted from the average distri-
bution P∞(q): if this expectation is true, then the value for XJ(q) is nothing
but the probability of having a peak at an overlap value smaller than q and
this is exactly x(q). However, if the delta peaks acquire a non-zero width ∆
due to finite-size effects, then for q < ∆ the overlap probability distribution
close to the origin PJ(0) may be affected by broad peaks centered on overlaps
larger than q, which should not count in the thermodynamical limit. If this
explanation is correct, then the limit q → 0 for the data shown in Fig. 3.7
(bottom) obtained from ΠC

q should give a rough estimate, in the large L
limit, for the peak width ∆ (see data in Table 3.3 and discussion below).

3.5 The order parameter distribution

We now compare the P (q) obtained in numerical simulations of the three-
dimensional Edwards-Anderson model (3.59) to the prediction obtained by
smoothly introducing controlled finite-size effects on a mean-field-like distri-
bution consisting in a delta function centered in q = qEA and a continuous
tail down to q = 0 (a similar analysis has been carried out for long-range
spin-glass models, see Ref. [107]). On the positive q axis one has

P∞(q) = P̃ (q)Θ(qEA − q)

+ [1− x∞(qEA)]δ(q − qEA) , (3.86)

x∞(qEA) =

∫ qEA

0

dq P̃ (q) . (3.87)

It is convenient to introduce the effective field h trough

q = tanh (h) (3.88)

and consider its distribution

P∞(h) = P∞
(
q(h)

)dq(h)
dh

=
dq(h)

dh
P̃
(
q(h)

)
Θ(hEA − h) +

[1− x∞(qEA)]δ(h− hEA) , (3.89)

x∞(qEA) =

∫ hEA

0

dhP̃(h) , (3.90)

being clear that qEA = tanh (hEA). This change of variable smooths the
constraint on the fluctuations of q near the extremes of the distribution.
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L T/Tc qEA x∞(qEA) ∆
32 0.75 0.663(19) 0.91(13) 0.0923(80)

0.64 0.7319(30) 0.828(28) 0.1015(30)
24 0.75 0.69674(72) 1.0000(3) 0.10618(84)

0.64 0.7625(27) 0.876(24) 0.1182(24)
0.57 0.7954(24) 0.842(25) 0.1216(32)

16 0.75 0.73780(73) 1.000031(7) 0.1443(10)
0.64 0.809(16) 1.00(14) 0.150(11)
0.57 0.8210(41) 0.811(49) 0.1683(51)

8 0.75 0.8250(21) 1.000001(9) 0.2872(37)
0.57 0.886(18) 0.95(18) 0.296(28)

L T/Tc α γ χ2/d.o.f.
32 0.75 1.92(34) 11.2(1.2) 20/97

0.64 0.93(44) 7.7(1.0) 38/103
24 0.75 2.04(21) 9.68(55) 45/101

0.64 0.95(21) 6.88(41) 69/107
0.57 0.75(17) 5.62(30) 88/110

16 0.75 1.76(16) 5.14(31) 77/107
0.64 0.45(21) 4.50(52) 133/113
0.57 0.53(19) 3.37(40) 161/115

8 0.75 0.73(22) 2.02(34) 501/121
0.57 0.49(16) 1.36(17) 466/123

Table 3.3: Results of the fitting procedure of Eq. (3.94) on numerical P (q)
data, with kernel exponent k = 2.5 (see Eq. (3.91)). All errors on parameters
are jackknife estimates. We used the symbol χ2 in the table to denote the
sum of squares of residuals, which is not a true chi-square estimator as the
values of P (q) at different q are mutually correlated.

In a finite-size system the thermodynamical distribution P∞(h) will be
modified, mainly by the fact that delta functions become distributions with
non-zero widths. Remember that, in the thermodynamical limit, we expect
the distribution PJ(h) for any given sample to be the sum of delta functions.
A simple way to take into account the spreading of the delta functions due
to finite-size effects is to introduce a symmetric convolution kernel

G
(k)
∆ (h− h′) ≡ C exp

[
− (|h− h′| /∆)

k
]
, (3.91)

where C is a normalizing constant and the spreading parameter ∆ is assumed
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not to depend on h, 5 while it should have a clear dependence on the system
size, such that limL→∞∆ = 0. The parameter k, to be varied in the inter-
val [2, 3], is introduced in order to consider convolutions different from the
Gaussian case (k = 2).

In order to obtain an analytic expression for the finite size distribution

PL(h) ≡
∫

dh′P∞(h′) + P∞(−h′)

2
G

(k)
∆ (h− h′) , (3.92)

we assume the following form for the continuous part of the distribution

P̃(h) ≡ P̃
(
q(h)

)dq(h)
dh

= P̃ (0)(1 + αh2 + γh4) , (3.93)

where P̃(0) = P̃ (0) = P∞(0), α and γ are free parameters to be inferred
from the data. The final result is

PL(h) = [1− x∞(qEA)]
G

(k)
∆ (h− hEA) +G

(k)
∆ (h+ hEA)

2

+ P̃ (0)

∫ hEA

−hEA

dz
[
1 + αz2 + γz4

]
G

(k)
∆ (h− z) (3.94)

where x∞(qEA) = 2P̃ (0)[hEA + αh2
EA/3 + γh5

EA/5].
We let α, γ, qEA and ∆ vary in a fitting procedure to P (q) Monte Carlo

data; values of P̃ (0) are fixed to the Monte Carlo values PMC(0). The choice
of the exponent k in the convolution kernel is crucial. We varied k in the
interval [2, 3]. The Gaussian convolution k = 2 turned out to be the worst
choice in such interval, giving rise to unphysical negative weights for the
delta function contributions, i.e., 1 − x∞(qEA) < 0. We obtained very good
results with the choice k = 2.5. Fit parameters are reported in Table 3.3 for
some lattice sizes and temperatures, while Fig. 3.8 shows comparison between
Monte Carlo P (q) and the relative fitting curve. Although the fitting curves
interpolate nicely the numerical P (q), some of the fitting parameters may
look strange: in particular qEA is a bit larger than the peak location and
x∞(qEA) ≃ 1 (for example, in the L = 32 data the difference is around
2%). It is worth remembering that in the solution of the SK model at low
temperatures the continuous part P(q) has a divergence for q → q−EA, which
can easily dominate the delta function in finite-size systems (where delta
peaks are broadened). Indeed, by increasing the system size, qEA seems

5This introduces a q-dependent spread, as the Jacobian of the transformation (3.88)
stretches the distribution at high q values.
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to move towards the location of the peak maximum and x∞(qEA) becomes
smaller than 1.

In order to make a stronger test of the above fitting procedure, we have
used the fit parameters in Table 3.3 to derive the finite-size conditional prob-
ability

PL(q|q′) = PL(q, q
′)/PL(q

′) (3.95)

applying the convolution kernel G
(k)
∆ (h− h′) to the L = ∞ joint probability

given by the Ghirlanda-Guerra relation, r.h.s of Eq.(3.66). Fig. 3.8 shows a
comparison between our extrapolated PL(q12|q34 = q0) and the Monte Carlo
data for L = 32, T = 0.64Tc and three values of q0: the agreement is very
good at any value of q0, especially considering that the fitting parameters
were previously fixed by interpolating the unconditional overlap distribution
PL(q).

3.6 Conclusions

We performed a direct inspection of stochastic stability and ultrametric-
ity properties on the sample-to-sample fluctuations of the overlap probabil-
ity densities obtained by large-scale Monte Carlo simulations of the three-
dimensional Edwards-Anderson model. We found small but still sizeable
deviations from the prediction of the Ghirlanda-Guerra relations but a clear
tendency towards improvement of agreement with increasing system size.

Large fluctuations make it difficult to draw any definitive conclusion on
the analysis of the ultrametric relation (3.78) when taking into account data
for the largest lattice size. In addition, critical effects show up at T ∼ 0.75Tc.
Considering that for a stochastically stable system overlap equivalence is
enough to infer ultrametricity, the results presented here support and inte-
grate the analyses and claims of Refs [88], [89] and [100], in which the
authors reported strong evidence of overlap equivalence.

We also turned our attention to the shape of the overlap probability
distribution, showing that finite-size PL(q) and PL(q, q

′) compare well with
mean-field (infinite-size) predictions, modified by finite-size effects that only
make delta functions broad.
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Figure 3.1: (Color online) The quantity XT as defined in the text, as a
function of q for lattice size L = 24 (top) and L = 32 (bottom) at temperature
T ≃ 0.64Tc. Insets show a magnified view of the region q ∼ 0.6 (log-log
plot). Plots show data for XT computed only with triplets of independent
configurations (ABC), with triplets in which two configurations belong to the
same Monte Carlo history (AAB), and triplets in which all configurations
come from the same Monte Carlo history (AAA). No significant difference
shows up as long as we take enough uncorrelated configurations from the
same replica.
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Figure 3.2: (Color online) Top: X2 as a function of the corresponding poly-
nomial in X1 (Eq. (3.76)). The straight line is the theoretical prediction
(unit slope). Center: the ratio X2/X1 as a function of X1, where the
straight line is the theoretical prediction. Bottom: the squared difference
K2 = [X2 − (X1 + 2X2

1 )/3]
2
as function of X1. Data refer to T ∼ 0.64Tc
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as function of X1, T = 0.64Tc.

Lines connecting points are only a guide to the eye.
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as a function of X1. All data for T ∼ 0.64Tc and for lattice sizes L =
16, 24, 32. The lines connecting the data points are only intended as a guide
to the eye.
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for T = 0.75Tc and L = 8, 16, 24, 32. Bottom: for T = 0.57Tc and
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Figure 3.6: (Color online) Top: The conditioned probability P (q12|q34) (open
squares) for L = 32 and T ∼ 0.64Tc and two values of q34 = 0.211 (left) and
q34 = 0.367 (right). We also plot 2P (q12)/3 (open circles) and the difference
(full triangles) of the two above quantities (Eq. (3.85) in the text), scaled
by a factor 2 for a better view. q34 and qEA values are indicated by vertical
lines for visual reference. We took the value qEA(L = 32, T = 0.64Tc) ∼ 0.72
as given in Ref. [89]. Bottom: The difference P (q12|q34) − 2P (q12)/3 with
q34 = 0.367, for different lattice size compared at temperatures T = 0.75Tc,
T = 0.64Tc, T = 0.57Tc.
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T ∼ 0.64Tc. Bottom: the conditioned probability P (q12|q34 = q0) for L = 32,
T ∼ 0.64Tc and some values of q0.
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Chapter 4

Microscopic dynamics of the
3D Spin Glass in presence of a
magnetic field

4.1 Preliminary study

In Section 1.3 we have explained two different scenarios which are approaches
to real spin glasses with analytical solution. The first scenario, Replica Sym-
metry Breaking (RSB), is the mean field approach, which can be interpreted
as a D = ∞ model. The second scenario, droplet, is exact at dimension
D = 1. However, the behaviour that these two scenarios predict for a spin
glass in presence of an external magnetic field, h, is completely different.
RSB predicts that a phase transition to a spin glass phase happens even
when h > 0, whereas Droplet predicts that the spin glass phase is destroyed
in presence of a magnetic field (even for Heisenberg spin glasses).

Therefore, the existence of a phase transition in presence of an exter-
nal magnetic field in a spin glass system of dimensionality D = 3 is still a
controversial issue, both in experimental and theoretical physics. In RSB,
the phase diagram in T − h variables presents a line which indicates where
the phase transition takes place. This line is the so-called the de Almeida-
Thouless (AT) line (see figure 4.1). The upper critical dimension is DU = 6
is the minimun dimensionality where it is shown that this scenario holds.
Thus the behavior of the system between D = 1 (Droplet holds) and D = 6
(RSB holds) is not clear and clarifying this point has been the goal of many
research works. The behavior of the overlap probability density function
may help us to distinguish between these two scenarios. In Section 1.3, the
probability distribution of q in both scenarios in absence of a magnetic field
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T

h

SG

PM

Figure 4.1: Phase diagram in T − h variables in the RSB scenario. The de
Almeida-Thouless line separates the paramagnetic and spin glass phases.

have been shown. If h > 0, the probability distribution changes, but the
probability distribution of q in RSB scenario (see Figure 4.2) and in Droplet
scenario (see Figure 4.3) are still completely different.

q

P(q)

qEA

Figure 4.2: Probability distribution of q in presence of an external magnetic
field in RSB scenario.

We will describe in the following sections the experimental situation and
different analytical approaches to this problem.
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q

P(q)

qEA

Figure 4.3: Probability distribution of q in presence of an external magnetic
field in Droplet scenario.

4.1.1 Experimental results

Regarding experiments in spin glasses, we will focus on Fe0.5Mn0.5TiO3 which
is supposed to be a short range Ising spin glass1. This material was studied
by Jönsson et al [108] in a large range of external magnetic fields, up to
h = 20000 Oe and no phase transition was reported. They studied the decay
of the overlap to control whether the phase transition happened. In figure
4.4, their results about this observable are shown.

From the classic Ogielski’s paper [113], it is known that a decay like
q(t) ∼ 1/tx indicates the onset of a spin glass phase. For h = 1000 Oe in
the Figure 4.4, one can observe that the behavior of q(t) is almost a power
law, and for h = 300 Oe this behavior is quite clear. Therefore this property
suggests us that for a smaller external magnetic field, the spin glass phase
transition might have been detected. Moreover, we will show the data of this
experiment with those of a one dimensional long range model, KAC model
[109, 110] with ρ = 1.5 [110] in Figure 4.5. This model roughly corresponds
to the four dimensional short range model. In this figure, one can observe
that the critical field in four dimensions is near h = 1000 Oe and critical field
decrease with the dimensionality, which supports the previous deduction that
experimentalist should try smaller magnetic fields (h ≤ 1000 Oe) to detect a
spin glass phase transition in real samples (D = 3).

Besides, an AT line was found in Heisenberg spin glasses [111] (remind
that Droplet scenario states that this line should not exist even in Heisenberg

1Fe0.5Mn0.5TiO3 is an Ising like spin glass whereas AgMn at 2.5% and CdCr1.7IN0.3S4
are Heisenberg like spin glasses.
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Figure 4.4: Behavior for the dynamical overlap, q(τ) (which is proportional
to the quantity plotted in the y-axis), as a function of time for different
magnetic fields. Figure from Ref. [108].

Figure 4.5: Relative decrease of Tc(h)/Tc(0) with increase field for ρ = 1.5 and
h = 0, 0.1, 0.15 and 0.2 versus the relative decrease of χ∗ (ZFC susceptibility).
Figure from Ref. [110]. Experimental data from Fe0.5Mn0.5TiO3, see Ref.
[108].

spin glasses). The same authors also studied Ising-like samples (FeNiPBAl)
[112] and reached the same conclusion that we stated here, the magnetic
fields used in experiments are too high to see a spin glass phase transition in
Ising spin glasses.

To sum up, one can conclude that experimental data suggest us that the
spin glass phase transition may take place for h < 1000 Oe for the Ising
Universality class.
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4.1.2 Analytical approaches

From the theoretical point of view, one can study the replicated Hamiltonian
but only above the critical temperature, that is, in the paramagnetic phase.
This Hamiltonian becomes [114], in terms of the original overlap field Qab

(remind that Qaa = 0),

H =
1

4

∑
(∇Qab)

2 +
1

4
r
∑

Q2
ab −

1

6
w
∑

QabQbcQca

− 1

8
u
∑

QabQbcQcdQda +
1

4
x
∑

Q2
abQ

2
ac −

1

8
y
∑

Q4
ab

− 1

2
h2
∑

Qab +O(Q5, h2Q2) . (4.1)

where w, u, x, and y are positive couplings.

Let Q be the minima and qab the fluctuations around that minima, then
one can write that Qab = Q + qab. In presence of a magnetic field, h, the
minima must satisfy [114]

rQ+ 2wQ2 − 3uQ3 + 2xQ3 − yQ3 = h2 (4.2)

Taking the limit n → 0 and neglecting higher orders of qab, the Hamilto-
nian, Eq. (4.1), becomes in

H =
1

4

∑
(∇qab)

2 +
1

4

(
r + uQ2 + 2xQ2 − 3yQ2

)∑
q2ab

− 1

2
Q (w − uQ− 2xQ)

∑
a ̸=b

qabqac −
1

4
uQ2

∑
a̸=b̸=c ̸=d

qabqcd

− 1

6
w
∑

qabqbcqca −
1

2
uQ2

∑
a ̸=c

qabqbcqcd + xQ
∑

qabq
2
ac

− 1

2
yQ
∑

q3ab +O(q4) (4.3)

Therefore, the starting field theory is a ϕ3 theory with an upper critical
dimension DU = 6. Hence, the external magnetic field does not change DU .
The critical exponents in six dimensions are ν = 1/2, β = 1 and η = 0, so
one has the same critical behavior as in the h = 0 case at D ≥ 6.

Notice that we can recover the usual ϕ3 field theory for an Ising spin glass
in absence of a magnetic field by putting Q = 0:

H =
1

4

∑
(∇qab)

2 +
1

4
r
∑

q2ab −
1

6
w
∑

qabqbcqca . (4.4)
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In the case h = 0 (that is, Q = 0) only one propagator exists. However, in
presence of an external magnetic field one has three different types of propa-
gators: longitudinal (L), anomalous (A), and replicon (R). Diagonalizing the
quadratic term in Eq. (4.3) for finite n, one obtains [115]

GL = G1 + 2(n− 2)G2 +
1

2
(n− 2)(n− 2)G3 =

1

p2 + r − 2wQ(n− 2)
, (4.5)

GA = G1 + (n− 4)G2 − (n− 3)3G3 =
1

p2 + r − wQ(n− 4)
, (4.6)

GR = G1 − 2G2 +G3 =
1

p2 + r + 2wQ
, (4.7)

being n the number of replicas and p the momentum. In terms of the original
spin variables, G1, G2 and G3 can be written

G1(x) = ⟨sisi+x⟩2 , (4.8)

G2(x) = ⟨sisi+x⟩⟨si⟩ , (4.9)

G3(x) = ⟨si⟩2⟨si+x⟩2 . (4.10)

Notice that if one sets n = 0, Eqs. (4.5) and (4.6) are identical:

GA(p) = GL(p) =
1

p2 + r + 4wQ
. (4.11)

Therefore, one actually has the replicon mode and two degenerated modes
(anomalous and longitudinal).

Of course, if one sets Q = 0, then the standard propagator is recovered:

GA(p) = GL(p) = GR(p) =
1

p2 + r
. (4.12)

In the standard mean field picture, the de Almeida-Thouless line is defined
by imposing that only the replicon mode is massless, that is G−1

R (p = 0) = 0,
but the other two degenerated modes are massive. In other words, G−1

L (p =
0) = G−1

A (p = 0) > 0. Bray and Roberts [114] projected the original theory,
Eq. (4.3), into the replicon subspace, using the behavior of the propagators
in Mean Field and the degeneration of L and A modes. This is equivalent
to setting the longitudinal and anomalous masses to infinity (one can write
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m2
L ∝ G−1

L (p = 0) and analogously for the other two modes). The final
projected Hamiltonian is:

H =
1

4

∑
(∇Rab)

2 +
1

4
r̃
∑

R2
ab −

1

6
w1

∑
RabRbcRca −

1

6
w2

∑
R3

ab (4.13)

They studied this projected Hamiltonian using a perturbative renormaliza-
tion group and, at the order of the perturbation theory they used, no fixed
points were found. Therefore a new strategy has been developed:

• One needs to avoid the degeneration between the anomalous and longi-
tudinal propagators (or masses). So we will work with non zero n and
at the very end of the computation, n will be set to 0.

• Due to the fact that the degeneration between the modes L and A
has been broken, one can try to explore more exotic scenarios for the
Almeida-Thouless line, like mR = mA = 0 and mL > 0.

• The starting Hamiltonian should be the most general cubic Hamilto-
nian compatible with symmetry, extending the interacting cubic Hamil-
tonian from four couplings (as in Bray and Roberts [114]).

This strategy has been devised and followed by De Dominicis and Temes-
vari in reference [116]. Their Hamiltonian (H = H(2) +H(3)) reads

H(2) =
1

2

∑
p

[(1
2
p2 +m1

)∑
αβ

ϕαβ
p ϕαβ

−p +m2

∑
αβγ

ϕαγ
p ϕβγ

−p +m3

∑
αβγδ

ϕαβ
p ϕγδ

−p

]
(4.14)

H(3) = − 1

6
√
N

∑′

p1p2p3

[
w1

∑
αβγ

ϕαβ
p1
ϕβγ
p2
ϕγα
p3

+ w2

∑
αβ

ϕαβ
p1
ϕαβ
p2
ϕαβ
p3

(4.15)

+ w3

∑
αβγ

ϕαβ
p1
ϕαβ
p2
ϕαγ
p3

+ w4

∑
αβγδ

ϕαβ
p1
ϕαβ
p2
ϕγδ
p3

+ w5

∑
αβγδ

ϕαβ
p1
ϕαγ
p2
ϕβδ
p3

+ w6

∑
αβγδ

ϕαβ
p1
ϕαγ
p2
ϕαδ
p3

+ w7

∑
αβγδµ

ϕαγ
p1
ϕβγ
p2
ϕδµ
p3

+ w8

∑
αβγδµν

ϕαβ
p1
ϕγδ
p2
ϕµν
p3

]

where
∑′

p1p2p3

means that the sum is restricted to p1 + p2 + p3 = 0.

They found a non trivial fixed point below six dimensions. As a test, they
recover the previous results of Bray and Roberts. They computed the critical
exponent, ν, related with the A and R sectors. However they were unable to
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relate these two ν exponents to the physical critical exponents, like γ of the
spin-glass susceptibility and the standard ν of the correlation length. They
stated that this identification is difficult since the system presents two mass
scales.

Some years later [117], Temesvári, computed the value of the eight dif-
ferent cubic couplings as a function of the original ones which appear in the
Edwards-Anderson Hamiltonian, completing the work started in Ref. [116].
A more recent paper by Bray and Moore [118] states that the de Almeida-
Thouless line should disappeared just at six dimensions:

h2
AT ∝ (6−D) as D → 6 . (4.16)

They further argue that the break point, x1, of P (q) in the Parisi’s solution
should be zero below D < 6. Their final conclusion is that no Almeida-
Thouless line can be found below or at six dimensions.

Finally, in a recent paper of the Janus collaboration [119], simulations on
four dimensional Ising spin glass in presence of an external magnetic field
have been developed, showing the presence of a phase transition (please, see
Section 7.5 for more details).
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Dynamics of the D = 3 spin glass in an external
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To be published

4.2 Introduction

The glass transition is a ubiquitous but still mysterious phenomenon in con-
densed matter physics [120, 121, 122]. Indeed, many materials such as spin
glasses, fragile molecular glasses, polymers or colloids display a dramatic in-
crease of relaxation times when cooled down to their glass temperature, Tg.
However, the dynamic slowing down is not accompanied by dramatic changes
on structural or thermodynamic properties. In spite of this, quite general
arguments suggest that the sluggish dynamic must be correlated with an in-
creasing length scale [123]. However, this putative length scale can be fairly
difficult to identify. In fact, it was suggested long ago that the slowdown is
caused by the collective movements of an increasing number of elements in
the system, with a free energy barrier growing with the size of the cooperative
regions [124]. These cooperative regions become larger as the temperature
gets closer to Tg. The rather recent experimental evidence for cooperative
dynamics comes from dynamical heterogeneities [125] or non-linear suscepti-
bilities [126]. The work of Ref. [127] suggests that characteristic length-scales
will soon be investigated as well in non-equilibrium, aging materials.

It is clear that simple model systems can be a blessing for the study of such
a difficult problem. To some extent, spin glasses (which are disordered mag-
netic alloys [128]) can be such a model system. Upon cooling, they undergo
a dynamic slowdown without developing any recognizable magnetic ordering
pattern. Their study offers experimental advantages. Time-dependent mag-
netic fields are a very flexible tool to probe their dynamic response, which
can be very accurately measured with a SQUID (for instance, see Ref. [198]).
On the theoretical side, they are simple to model, which greatly eases nu-
merical simulation. In fact, special-purpose computers have been built for
the simulation of spin glasses [130, 131, 202, 133]. It is then not surprising
that the study of spin glasses is ahead in some respects:

• We know that the dynamic slowdown is due to a thermodynamic phase
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transition at Tc = Tg [134, 135, 136]. The issue is subtler for super-
cooled liquids, as we discuss below.

• Experiments can measure the size of the glassymagnetic domains, ξ(tw)
[137, 138]. These domains are rather large, of the order of 100 lattice
spacings [137], compared with any length scale identified for structural
glasses [126].

• The Janus dedicated computer [139] allows us to simulate non-equilibrium
dynamics from picoseconds to a tenth of a second [133, 199], and to
compute equilibrium correlation functions for large lattices and low
temperatures [200]. As a result we are able to relate non-equilibrium
correlation functions (at finite times) with their equilibrium counter-
part in systems of finite sizes [201] (see also Ref. [143]).

However, not all is well. We know that spin glasses differ from structural
glasses in, at least, two significant respects. First, like all magnetic systems,
spin glasses enjoy time-reversal symmetry in the absence of an applied mag-
netic field. And second, free-energy barriers grow logarithmically with ξ(tw)
in spin glasses [199], rather than with a power law as in fragile glasses.

The correspondence between spin glasses and structural glasses is more
accurate, specially in the mean-field approximation, if one considers instead
a rather artificial spin-glass model, the p-spin glass model, with p-body in-
teractions [144, 145]. For odd p, the time-reversal symmetry is broken. The
odd-p models, at least in the mean-field approximation, display a dynamic
phase transition in their paramagnetic phase. Reaching thermal equilibrium
becomes impossible in the temperature range Tc < T < Tg. The dynamic
transition at Tg is identical to the ideal Mode Coupling transition of super-
cooled liquids [146]. The thermodynamic phase transition at Tc is analogous
to the ideal Kauzmann’s thermodynamic glass-transition [122]. The thermo-
dynamic transition is very peculiar: although it is of the second order (in the
Eherenfest sense), the spin-glass order parameter jumps discontinuously at
Tc from zero to a non-vanishing value.

However, the analogy between structural glasses and p-spin glasses was
established only in the mean-field approximation. Mean-field is to be trusted
only for spatial dimensions larger than the so-called upper critical dimension
du. There is no doubt that du > 3, hence it is legitimate to wonder how
much of the analogy carries out to our three-dimensional world. On the one
hand, for supercooled liquids, the ideal Mode Coupling transition is actually
a crossover. The power-law divergences predicted by Mode Coupling theory
hold when the equilibration time lies in the range 10−13 s < τ < 10−5 s.
Fitting to those power-laws, one obtains a Mode Coupling temperature TMC.
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However, τ is finite at TMC (typically TMC is a 10% larger than the glass
temperature Tg where τ ∼ 104 seconds). A theory for a thermodynamic
glass transition at Tc < Tg has been put forward [147, 148, 149, 150], but it
has still not been validated (however, see Ref. [151]). On the other hand,
little is known on the behaviour of the p-spin glass model for dimensions
below du.

A different route to a simple enough model system is quite obvious: break
time-reversal symmetry by placing a standard (as opposed to p-spin) spin
glass in an external magnetic field. According to mean field [152, 153],
though, breaking time reversal is not enough. The mean-field prediction
is that, for standard spin glasses on a field, Tc = Tg. Furthermore, the spin-
glass order parameter would behave continuously when T crosses Tc. How-
ever, these objections have been challenged for three-dimensional systems
(recall that du = 6 [154]). An effective field-theory computation predicts
that the spin glass in a magnetic field is the physical realization of a p-spin
glass model for spatial dimensions below du [155]. Furthermore, an effective
spin glass Hamiltonian in a field has been recently derived for a binary liquid
mixture [156].

In fact, whether spin glasses in a magnetic field undergo a phase transition
has been a long-debated and still open question (see, e.g., Refs. [157, 158]).
Yet, recent numerical simulations in three dimensions [159, 160] did not find
the thermodynamic transition predicted by Mean-Field. Experimental stud-
ies have been conducted as well, with conflicting conclusions [161, 162, 163,
164]. Only in four dimensions (note that 4 < du = 6) clear signatures of
the transition have been found up to now. This exploit required the intro-
duction of special finite-size analysis techniques as well as the power of the
Janus special-purpose computer [165].

Our scope here is to explore the dynamical behaviour of three-dimensional
spin glasses in a field using the Janus computer. We shall study lattices
of size L = 80, where we expect finite-size effects to be negligible [133].
Our time scales will range from 1 picosecond (i.e., one Monte Carlo full
lattice sweep [128]) to 0.1 seconds. Hence, if the analogy with structural
glasses put forward by Moore and Drossel [155] holds, we should be able of
identifying the Mode Coupling crossover. A bonus of studying spin glasses
rather than structural glasses is a rather deep theoretical knowledge of the
relevant correlation functions [166]. Hence, we shall be able to correlate the
equilibration time τ with the correlation length ξ.
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4.3 Model and observables

4.3.1 Model

We studied a three dimensional cubic lattice system with volume V = L3 (L
being the linear size) and periodic boundary conditions. On every node of
the lattice there is an Ising spin, σx = ±1 and nearest neighbors are joined
bye quenched bimodal couplings, Jxy = ±1. We also include a local magnetic
field, hx , on every node. The magnetic field is Gaussian distributed with zero
mean and variance H. Instead of continuous values, we used discrete values
for the field by using the Hermite integrals of its probability distribution [167]
(see the Appendix for more details on the implementation). We made this
transformation to use more efficiently the supercomputer Janus [139, 202,
203]. We checked the compatibility of our approach by comparing with real
Gaussian fields simulated on PCs (see also the Appendix). The Hamiltonian
of the model is

H = −
∑
⟨x ,y⟩

Jxyσxσy −
∑
x

hxσx , (4.17)

where ⟨x , y⟩ means sum over nearest neighbors. A given realization of cou-
plings, Jxy , and external field, hx , defines a sample. We have simulated four
replicas in parallel with the same couplings and protocols (annealing and
direct quench).

4.3.2 Observables

First, a couple of useful definitions of local quantities. On every node x of
the lattice we have the local overlap:

qx (t) = σ(1)
x (t)σ(2)

x (t) , (4.18)

where the superscripts are the replica indices. The total overlap is written
as

q(tw) =
1

V

∑
x

qx (tw) , (4.19)

where (· · · ) means sample average (over the J ’s and h’s). Notice that

lim
tw→∞

q(tw) = qmin , (4.20)

where qmin is the minimum overlap allowed by the system.
In addition, we have focused in this work on the magnetic energy defined

as

Emag(tw) =
1

V

∑
x

hxσx (tw) . (4.21)
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and

W (tw) = 1− TEmag(tw)/H
2 . (4.22)

By integrating by parts the Gaussian magnetic field, which is inside of Emag,
one can obtain that at equilibrium

W = ⟨q⟩ . (4.23)

From Eqs. (4.20) and (4.23) one can conclude:

lim
tw→∞

(W (tw)− q(tw)) = ⟨q⟩ − qmin . (4.24)

In the droplet model, the rhs of the previous equation is just zero, while it
is non-zero in a spin glass phase.

Finally, we have also computed the complete spin-spin correlation func-
tion:

C(r , tw) =
∑
x

(⟨σxσx+r⟩ − ⟨σx ⟩⟨σx+r⟩)2 . (4.25)

We need four replicas to define the latter quantity properly. Finally we can
extract the correlation length using the integral estimators [199]

ξk,k+1(tw) ≡
Ik+1(tw)

Ik(tw)
∝ ξ(tw) . (4.26)

where

Ik(tw) ≡
∫ L/2

0

dr rkC(r, tw) , (4.27)

where r means r = (r, 0, 0) and permutations.

4.3.3 Strategy and Outlook of our main results

Our strategy will rely on the study of the difference between W (tw) and q(tw)
as a function of time and will also be based on the classic paper by Ogielski
[131] in its analysis. Our approach has been twofold:

• We have extrapolated this difference to large waiting times, eventually
to infinite time. As cited in the previous subsection, a non-zero value
of this difference, for tw → ∞ (equilibrium), will mark the onset of a
low-temperature region clearly different of the high temperature one
(a paramagnetic phase). We have been able to do that for very low
temperatures. We have found that the following law (see [131]) works
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very well in this regime (even in the presence of an external magnetic
field H):

W (t)− q(t) = a(T,H) +
b

tx
. (4.28)

Eventually b and x could also depend on the temperature [131] and on
the external magnetic field. We recall that a(T1(H)−, H) = 0 marks
the onset of a spin glass phase with a critical temperature given by
T1(H).

• In the high temperature region, the differenceW (t)−q(t) should vanish
for large t. In this temperature region we have found (as happens for
q(t) in the three dimensional Ising spin glass in no magnetic field [131]),
that:

W (t)− q(t) =
a

tx
exp

[
−
(
t

τ

)β
]
, (4.29)

which allows us to compute the relaxation time, τ , in the high tempera-
ture region. In this approach, we have studied, as was done numerically
by Ogielski and in experimental studies (e.g. [169]), the dependence
of τ with the temperature. To model this behavior we will use the
following (and standard) functional (critical) dependence:

τ = τ0(T − T2(H))−νz , (4.30)

where τ0 is a microscopical time, T2(H) marks a “divergence” of τ (as-
suming an underlying thermodynamical phase transition at T2(H) =
Tc(H)), ν is the correlation length critical exponent and z is the dy-
namical critical exponent. We have found that our numerical data for
τ are very well described by this law.

At this point of the paper we will discuss both temperatures (T1(H) and
T2(H)) and the possible explanations of our findings using different frame-
works (a non-thermodynamical phase transition and a RSB phase transition).

4.4 Simulation details

We have performed two independent sets of simulations, one at a fixed tem-
perature and another with an annealing algorithm. In both cases we have
simulated four replicas for each sample with external fields H = 0.1, 0.2 and
0.3. The linear size of the system is L = 80.

In the simulations at a fixed temperature we took 462 samples for each
external field. The length of our simulations is 1010 Monte Carlo steps (MCS)
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and the fixed temperature is T = 0.7. We measured at times with the form
t = [2i/4], where [· · ·] means the integer part.

L T H MCS N

80 0.7 0.1 1010 462
80 0.7 0.2 1010 462
80 0.7 0.3 1010 462

Table 4.1: Details of the simulations at fixed temperature. MCS means total
Monte Carlo steps and N means the number of samples simulated.

The other set of simulations was performed with an annealing algorithm.
We started the simulation from a high temperature. After a certain number
of MCS (lets name it base), we change the temperature to a new one 0.1
cooler, i.e. Tnew = Told − 0.1, and we duplicated the number of MCS, i.e.
basenew = 2 × baseold. We repeated the procedure until we reached the
lowest simulated temperature. Therefore, at a temperature T , we perform

base · 2(
Tinit−T

0.1 ) MCS, where Tinit is the initial temperature of the run. We
performed in every case the annealing from T = 2.0 till T = 0.4 taking
several bases, 105, 104, 103, 102, 101 or 100. We took 1000 samples for each
external field and base, performing a total of 1.3 × 105 × base MCS in each
sample and replica.

4.5 Results

In this section we will compute the asymptotic values of W (t) and q(t). We
recall that W (t) should extrapolate to the mean value of the overlap q and
q(t), starting from a disordered configuration, to the minimum value of the
overlap qmin. If these two extrapolated values are different, we would find
evidence for RSB. If, however, they are equal the droplet model should hold.

4.5.1 Low Temperature Region

We have used two different numerical protocols to study the low temperature
region:

• Sudden-quenched runs from infinite temperature to a fixed (low) tem-
perature.

• Annealing runs, just described in the Simulation Details Section.
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L [Tinit, Tend] H base MCS N

80 [2.0, 0.4] 0.02 104 1.3 · 109 1000
80 [2.0, 0.4] 0.02 103 1.3 · 108 1000
80 [2.0, 0.4] 0.02 102 1.3 · 107 1000
80 [2.0, 0.4] 0.02 101 1.3 · 106 1000
80 [2.0, 0.4] 0.02 100 1.3 · 105 1000
80 [2.0, 0.4] 0.05 104 1.3 · 109 1000
80 [2.0, 0.4] 0.05 103 1.3 · 108 1000
80 [2.0, 0.4] 0.05 102 1.3 · 107 1000
80 [2.0, 0.4] 0.05 101 1.3 · 106 1000
80 [2.0, 0.4] 0.05 100 1.3 · 105 1000
80 [2.0, 0.4] 0.1 105 1.3 · 1010 1000
80 [2.0, 0.4] 0.1 104 1.3 · 109 1000
80 [2.0, 0.4] 0.1 103 1.3 · 108 1000
80 [2.0, 0.4] 0.1 102 1.3 · 107 1000
80 [2.0, 0.4] 0.1 101 1.3 · 106 1000
80 [2.0, 0.4] 0.1 100 1.3 · 105 1000
80 [2.0, 0.4] 0.2 105 1.3 · 1010 1000
80 [2.0, 0.4] 0.2 104 1.3 · 109 1000
80 [2.0, 0.4] 0.2 103 1.3 · 108 1000
80 [2.0, 0.4] 0.2 102 1.3 · 107 1000
80 [2.0, 0.4] 0.2 101 1.3 · 106 1000
80 [2.0, 0.4] 0.2 100 1.3 · 105 1000
80 [2.0, 0.4] 0.3 105 1.3 · 1010 1000
80 [2.0, 0.4] 0.3 104 1.3 · 109 1000
80 [2.0, 0.4] 0.3 103 1.3 · 108 1000
80 [2.0, 0.4] 0.3 102 1.3 · 107 1000
80 [2.0, 0.4] 0.3 101 1.3 · 106 1000
80 [2.0, 0.4] 0.3 100 1.3 · 105 1000

Table 4.2: Details of the simulations with the annealing algorithm. The
same notation as in Table (4.1) and Tinit and Tend mark the initial and final
temperatures of the annealing procedure.

We will start with a qualitative description of our results using the sudden-
quenched runs.

In Figs. (4.6) and (4.7) we show the behavior of q(t) and W (t) as a
function of time for two values of the magnetic field (H = 0.1 and 0.3 re-
spectively), both runs at temperature T = 0.7.
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Figure 4.6: q(tw) and W (tw) at T = 0.7 and H = 0.1.
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Figure 4.7: q(tw) and W (tw) at T = 0.7 and H = 0.3.

One can see that for H = 0.1 both curves are far away and that q(t) has
not reached the asymptotic behavior. However, the H = 0.3 data show a
likely merging of the two curves, so we have obtained a clear signature of a
paramagnetic phase for the pair (T,H) = (0.7, 0.3).

From Figs. (4.6) and (4.7) it is clear that the sudden-quenched runs show
us the onset of a paramagnetic phase (T = 0.7 and H = 0.3 case) but they
cannot help us to affirm or discard the existence of a spin-glass phase since
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the overlap is not yet in the asymptotic regime (T = 0.7 and H = 0.1 case).
For this reason we have resort all our analysis to the annealing runs.

In Figs. (4.8) and (4.9) we show the behavior of two annealing runs with
base = 105 for H = 0.1 and 0.3 respectively. It is clear from these two figures
that the runs with annealing behave in a different way from those obtained
at fixed temperatures. Notice that each step in the figures corresponds to
a change in the temperature during the annealing procedure. In particular,
the final overlap obtained in the runs is much larger than that obtained in
the non-annealing runs. This fact has improved dramatically our results.
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Figure 4.8: q(tw) and W (tw) for H = 0.1 and base = 105 (annealing run).
Notice that every step in the figure corresponds with a change of the tem-
perature.

We have observed that the difference between W (t) and q(t) follows with
great precision a power law (see Eq. (4.28)) with an exponent essentially
independent of the external magnetic field in the range of very low tempera-
tures. This exponent seems to have a small dependence on the temperature
and on the magnetic field. In the following we will take x ≃ 0.22, which
describes extremely well the data at lower temperatures.

We show in Figs. (4.10), (4.11), (4.12), (4.13) and (4.14) our results for
the following temperatures T = 0.5, 0.6, 0.7, 0.8 and 0.9 by plotting the
difference W (t)− q(t) as a function of t−0.22 for the three simulated magnetic
fields. Remember that if the difference between q(t) and W (t) extrapolates
to a non-zero value, this is the onset of RSB. For the lowest temperature
simulated, T = 0.5, one can see a non-zero extrapolated value of the difference
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Figure 4.9: q(tw) and W (tw) for H = 0.3 and base = 105 (annealing run).
Every step in the figure corresponds with a change of the temperature.
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Figure 4.10: Extrapolation of the difference between W (t) and q(t) as a
function of a power of time, for the three external magnetic fields simulated.
Bottom to top: H = 0.1, 0.2 and 0.3. Temperature T = 0.5.

for the three magnetic fields, hence this temperature at these three magnetic
fields behaves as driven by a spin glass phase. The dependence of the data
plotted in these figures with the base parameter of the annealing procedure
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Figure 4.11: Extrapolation of the difference between W (t) and q(t) as a
function of a power of time, for the three external magnetic fields simulated.
Bottom to top: H = 0.1, 0.2 and 0.3. Temperature T = 0.6.

is inside the error bars.
If we examine the next higher temperature, T = 0.6, we can observe that

the data corresponding to H = 0.3 extrapolate to zero, while the two lower
magnetic fields, H = 0.1 and 0.2, still have a non-zero extrapolated value:
we can conclude that the point (T,H) = (0.6, 0.3) is just in the paramagnetic
phase, whereas the pairs (0.6, 0.2) and (0.6, 0.1) are still in a spin glass phase.

In particular, we can state that the spin glass phase (the de Almeida-
Thouless line) satisfies T1(H = 0.3) > 0.5. For T = 0.8 (see Fig. (4.13)) only
H = 0.1 extrapolates to a non-zero value, whereas at T = 0.9 (see Fig (4.14))
all three magnetic field extrapolates to a non positive value. One can roughly
estimate that T1(H = 0.3) ≃ 0.6, T1(H = 0.2) ≃ 0.7 and T1(H = 0.1) ≃ 0.8.

We can study in more detail the dependence of the power law exponent
with the temperature. As it has been described above we have fitted the
difference between q(t) and W (t) following the power law described by Eq.
(4.28). This equation, with a ≥ 0 should hold only deeply in the spin glass
phase. If we approach the transition from below we would start to see the
critical effects of the (thermodynamical) critical point, and the exponent x
begin to be controlled by this critical point and not by the “critical” spin
glass phase (Goldstone phase). So, in the critical region we should expect:

W (t)− q(t) =
f

txc
, (4.31)
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Figure 4.12: Extrapolation of the difference between W (t) and q(t) as a
function of a power of time, for the three external magnetic fields simulated.
Bottom to top: H = 0.1, 0.2 and 0.3. Temperature T = 0.7.
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Figure 4.13: Extrapolation of the difference between W (t) and q(t) as a
function of a power of time, for the three external magnetic fields simulated.
Bottom to top: H = 0.1, 0.2 and 0.3. Temperature T = 0.8.

where in general xc (driven by the critical point) should be different from x
(driven by the spin glass phase, which is a critical one). Finally well above
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Figure 4.14: Extrapolation of the difference between W (t) and q(t) as a
function of a power of time, for the three external magnetic fields simulated.
Bottom to top: H = 0.1, 0.2 and 0.3. Temperature T = 0.9.

the critical region we should expect a stretched exponential behavior (see Eq.
(4.29)).

From the previous discussion, and assuming the onset of a phase tran-
sition, it is clear that the x-exponent should take a constant value at lower
temperatures (here we are assuming that the phase transition is Universal in
the magnetic field), then change as we reach the critical region, and finally
change again in the high temperature region since the pure power law is not
longer valid (the behavior should switch to a stretched exponential). If we
try to fit the high-temperature region with Eq. (4.28) with a = 0 or Eq.
(4.31) instead of, for example Eq. (4.29), we will obtain a higher value of
the x-exponent to compensate the lack of the exponential. This is just what
happens in Fig. (4.15).

As an additional test we can monitor the behavior of the constant term
in the power law fit (see Eq. (4.28). We present the dependence of a with
temperature in Fig. (4.16), and we can observe that above a threshold (which
depends on the magnetic field) the value of a starts to be negative. This
conclusion reinforces the results obtained using a constant x-value in the fits.
Notice that the values of x and a presented in figures (4.15) and (4.16) are
obtained doing a three-parameter fit on our data, and that our choice for x
(which is 0.22) is compatible with the x from the three-parameter fit in the
low temperature region and for the three values of the magnetic fields.
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W (t) and q(t), a (see Eq. (4.28)), as a function of temperature, for the
external magnetic fields simulated. Value computed from a three-parameter
fit.

We can use the temperature at which a becomes negative as our estimate
of T1(H). From figure 4.16 we can estimate, now leaving vary the exponent



126
CHAPTER 4. MICROSCOPIC DYNAMICS OF THE 3D SPIN GLASS

IN PRESENCE OF A MAGNETIC FIELD

x, T1(H = 0.3) ≃ 0.65(5), T1(H = 0.2) ≃ 0.80(5), T1(H = 0.1) ≃ 0.96(5).
It is clear that we have found a spin glass region in field, nevertheless the

method used cannot allow us to obtain a precise value of the de Almeida-
Thouless line.

4.5.2 High temperature Region: Computation of the
relaxation times

Once we have some estimates of T1(H) we can try to study the dynamical
behavior of the system in the high temperature region. We have observed
that our data for W (tw)− q(tw) in this high temperature region follows very
well the stretched exponential behavior (see Eq. (4.29)). This allows us to
compute, using our annealing runs, the relaxation time as a function of the
temperature. We should keep in mind that the computed time should be
less than the maximum time the system is in a given temperature during the
annealing process.

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

τ

T

H=0.3
H=0.2
H=0.1

Annealing max. times

Figure 4.17: Behavior of the correlation time (τ) as a function of the temper-
ature for the three magnetic fields simulated (see Eq. (4.30)). We also plot
the best fits we have had using the critical law of τ , see the text for more
details. Finally we have a discountinous line of triangles which marks the
maximum times simulated during the annealing procedure at a given tem-
perature, which marks a cutoff on our computation of the relaxation times.

Computing a fit to Eq. (4.29) is difficult due to the extreme correlation of
our data, which prevents us from inverting its full covariance matrix (neces-
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sary to define the χ2 goodness-of-fit indicator). Therefore, we consider only
the diagonal part of the matrix in order to minimize χ2 and take correla-
tions into account by repeating this procedure for each jackknife block in
order to estimate the errors in the parameters. This is, of course, only an
empirical procedure, but one that has been shown to work well under these
circumstances (see, e.g., Ref. [199], especially sections 2.4 and 3.2).

In Fig. (4.17) we show the computed relaxation time as a function of the
temperature and for the three simulated magnetic fields. In addition, we
have plotted the maximum times the system spends at each temperatures
(for our largest value of base).
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Figure 4.18: Behavior of the stretching exponent β (see Eq.(4.29)) as a func-
tion of T for our three simulated magnetic fields.

Let us mention, finally, that a possible additional source of uncertainty in
our determination of τ is the depedence of the fit on the value of β. Indeed, for
each T we are fitting simultaneously for x, A, τ and β in (4.29). However,
a small variation in β can have a large effect on τ , which may lead us to
think that the fit is unstable and unreliable. Fortunately (see Fig. 4.18), β
is actually a very smooth monotonic function of T , which leads us to believe
that our determination of τ is sound.

Fig. (4.17) shows us that the relaxation times are diverging very quickly,
as a function of temperature, for the three magnetic field. One can examine in
detail if this behavior is driven by a divergence at finite temperature. Again,
and following Ref. ([131]) we try to fit the “divergence” of the relaxation
time under the onset of a phase transition at finite temperature: e.g. by
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using Eq. (4.30). The continuous lines in the fit correspond to this kind of
fit (with very good χ2/dof, dof being the number of degrees of freedom). We
have obtained the following values:

• H = 0.1: T2 = 0.97(6) and zν = 5.8(7). Using only T ≥ 1.2 [χ2/dof =
0.77].

• H = 0.2: T2 = 0.72(6) and zν = 7.3(1.0). Using only 0.9 ≤ T ≤ 1.7
[χ2/dof = 0.79].

• H = 0.3: T2 = 0.66(8) and zν = 6.2(1.6). Using only 0.8 ≤ T ≤ 1.7
[χ2/dof = 0.5].

Since we have computed the correlation length in addition to the relax-
ation times, we can address the issue of the dependence of τ with ξ, which
gives us useful information on the dynamics.
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Figure 4.19: Behavior of τ against the correlation length (ξ12) for the three
magnetic fields simulated. We have also marked the H = 0 behavior: τ ≃ ξz,
with z = 6.86.

In Fig. (4.19) we plot τ against ξ12 (defined using Eq. (4.26)) for the three
simulated magnetic fields. In addition, to control, we have plotted the H = 0
behavior (τ ∝ ξz, using the critical temperature value for the dynamical
critical exponent z ≃ 6.9). From this figure, it is clear that the dependece of
τ with ξ have changed when we have turned on the external magnetic field,
however, we lack of accuracy in order to determine the analytical dependence.
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4.6 Discussion of the Results

Since in our high-temperature study we have followed closely Ogielski’s ap-
proach, we need to put the exponents and critical temperatures computed
by Ogileski (remember at H = 0) in relation with the most accurate values
found in the literature, in order to asses our own data.

• Ogileski provided as a critical temperature Tg = 1.175(25) which should
be compare with that computed in Ref. [170]: Tc = 1.109(10): moni-
toring the relaxation times gives us an overestimated value (6%) of the
critical temperature.

• He obtained zν = 7.0(8) and 7.9(1). The most recent and accurate
values for ν = 2.53(8) [170] and z = 6.86(16)[199], providing us zν =
17.4(7). Hence, the computed value of zν is off by a factor of two.

• Experimentalists have also followed this strategy since they are able to
measure q(t) in the high-temperature region. The experimental value
for Ising spin glass can be quoted as: zν ≃ 10.5(1.0) [169].

Summarizing, (at H = 0) one obtains an overestimated temperature
(+6%) and a factor two off value for the product νz. Notice the robustness
of the procedure even providing a wrong value of the product, essentially
the same number (near 10) is obtained in real experiments. It is clear that
the lack of corrections-to-scaling in the analysis of the relaxation times has
strong effect in zν but not so much in the critical temperature. With the
available computational facilities we are unable to improve this procedure.

Once we have discussed the methodology (and some drawbacks) used to
obtain our data, we can try to put a coherent physical picture. At this point,
we have clearly three possibles scenarios:

NPT. No phase transition at all.

Both T1(H) and T2(H) should eventually drift to zero temperature or
be the effect from a crossover from the H = 0 phase transition. The
experiments in a field should give T2(H) (they can not access T1(H) in
this way). They obtain a good dynamical scaling in field with zν ≃ 9,
but this is usually interpreted as a crossover effect. In addition, the
low-temperature behavior of the difference (1/t0.22) could change if we
simulate long waiting times (however, we remind the reader that we are
already simulating up to the beginning of the experimental time scales).
In addition, the value of T1(H = 0.1) is compatible with the critical
temperature of the model n absence of magnetic field (Tc(H = 0) ≃ 1.1,
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so our data for H = 0.1 coild be strongly affected by the H = 0 critical
point. Yet, the values for T1(H = 0.2) and T1(H = 0.2) are not near
to T ≃ 1.1, so, in principle, these two magnetic field should be avoided
the crossover effect of the H = 0 critical point.

2PT. T1(H) < T2(H) Scenario. This scenario is the most suggestive one from
the point of view of the hypothetical correspondence beteween struc-
tural glasses and spin glasses on a magnetic field [155, 156]. The replica
theory for structural glasses [147, 148, 149, 150] suggests that T2(H)
would rather correspond to the Mode Coupling temperature (which is
rather a crossover in three spatial dimensions), while a real thermo-
dynamic phase transition would take place at T1(H). We note that
the existence of a thermodynamic glass transition is being vigorously
debated by the supercooled liquids community [122].

1PT. Only one thermodynamical phase transition. In this light, T1(H) =
T2(H), since the phase transition drives the divergence of the relaxation
times and also the breakdown of the law given by Eq. (4.28). The main
difference of this work regarding dynamical experimental studies is that
we can also compute T1(H) in addition to T2(H). We note that this
scenario is the one predicted by Mean Field theory.

Regarding the last two scenarios, our values of T1(H) and T2(H) are very
similar, but they are not so accurate to fix the possible escenario. As cited
in the fisrt scenario, we cannot even discard an eventual crossover of both T1

and T2 to zero (simulating larger values of base).

4.7 Conclusions

We have tried to characterize the behavior of the three-dimensional spin glass
both in the high and low temperature regions, monitoring the behavior of
the difference W (t)− q(t).

These studies have allowed us to determine (at least in our range of
simulated times) two changes of regime as a function of temperature: in the
first one (T1(H)), below that, the low temperature phase behaves as a spin
glass one; in the second one (T2(H)), we have obtained a divergence of the
relaxation times. Numerically we have found that Ts(H) is roughly similar
to T1(H). We are simulating the beginning of the experimental times, so,
we will have the same advantages and drawbacks as in real experiments:
in particular, we cannot discard a change of the low-temperature exponent
(x ≃ 0.22), which, eventually, can drive T1(H) to zero.
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In order to grasp a better understaning of this problem, we have started to
run equilibrium numerical simulations to complement the studies presented
in this work.

4.8 Discretization of the Gaussian Magnetic

Field

In this appendix we will describe the procedure we have used to discretize
the Gaussian magnetic field in order to be able to simulate the Gaussian
model in the Janus dedicated computer (which can no cope efficiently with
non-integers numbers).

We have used the strategy, first introduced in Ref. [?], based on the use
of Hermite polynomials. It is well known that a Gaussian integral can be
done numerically as (f(x) being an even function):∫ ∞

−∞
dxf(x)e−x2 ≃

n∑
i=1

wif(xi) , (4.32)

where the weights wi and the points xi are tabulated (see, for instance,
Ref. [167]). In particular, in this work we have used n = 2 and hence
x1 = 0.524647623275, x2 = 1.65068012389, w1 = 0.804914090006 and w2 =
0.0813128354472. So, we can encode the Gaussian magnetic using only two
bits.

Obviously, our n = 2 choice should fail for higher magnetic field and
small lattice sizes. We have checked that our choice is valid at least for
H ≤ 0.3. In particular we have compared the data using n = 2 in the
numerical simulation and that of a fully Gaussian one. In Fig. (4.20) we
show the result of a test performed on a L = 8 by computing the overlap,
thermal and magnetic energy (running on a PC-clusters). One can see in this
figure data from n = 2 and n = 5 as well as Gaussian ones. The agreement
is perfect.

Finally, we can cite that a strong test is that, in the paramagnetic phase,
q(t) and W (t) should converge to the same value asymptotically, for example
in Fig. (4.9).
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Chapter 5

Analysis of the zeros of the
partition function in an
Edwards-Anderson system

The characterization of phase transitions is an extremely important issue
in statistical physics, in fact Chapters 2 and 4 of this thesis deal with this
issue. In a first order phase transition, the first derivative of the free energy
is discontinuous at the critical temperature in the thermodynamic limit and
two different phases coexist. The behavior in a second order transition is
different, because the quantities which diverges are the second derivative of
the free energy and the correlation length, which can be characterized by the
appropriate critical exponents. In fact, in finite size systems, which are the
ones that can be simulated, these divergences smoothen. Many tools have
been developed to study these phase transitions, but we will focus in this
chapter in the one introduced by Lee and Yang [172, 173] in 1952. They
studied the zeros of a lattice gas and found that the zeros live in the unit
circle of the complex plane of the magnetic external field and condensed (as
V → ∞) onto the real axis when a phase transition happens (see appendix
D for more details).

In 1965, Fisher started the study of the zeros in the complex plane of
the temperature. However, there is not a theorem like the Lee-Yang one, so
Fisher’s zeros do not have to live in the unit circle. For example, in Figure 5.1
(taken from Ref. [177]), the locus of the Fisher’s zeros of a two dimensional
Ising model system, which do not lie on the unit circle.

Obviously, only simulations of finite size systems can be performed, so
to study the properties in the V → ∞ limit, one should simulate several
lattice sizes and study the behavior of the system as a function of the size,
the scaling. Besides, Janke and Kenna introduced in 2001 [174] a new tool
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Figure 5.1: Locus of the Fisher zeros of a 2D Ising model, L = 16. Figure
from Ref. [177]

using the density of the zeros (one can see its definition and a complete
explanation in Section 5.3 of the paper attached) to determine the strength
of the phase transition. This technique, has been used to study the phase
transitions of several models, even though in some of them (like, for example,
Potts models) where the Lee-Yang theorem does not actually hold, so the
zeros do not lie on the unit circle. However, one can suppose that the zeros
do condense onto the real axis when a phase transition happens. We will
show some examples focused in spin models, firstly in pure models. In the
two dimensional Ising model, the simplest pure spin system, it is well known
that a second order phase transition happens and the specific heat presents a
logarithmic singularity [176]. This technique is used in Ref. [174] to analyse
the distribution of the Fisher’s zeros in the two dimensional Ising model
(determined in Ref. [177]) and the results are compatible with both, the
existence of the phase transition and the logarithmic singularity of the specific
heat.

Regarding Potts model, Janke and Kenna also studied it in reference
[174], both the two dimensional and ten states Potts model (which is also
studied in [178]) and the three dimensional three states Potts model. In the
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first one a first order phase transition takes place, which is confirmed by the
analysis of the density of zeros. Moreover, they managed to compute a latent
heat ∆e = 0.698(2) while the exact value is 0.6961. Three dimensional and
three states Potts model also has a first order phase transition but a weak
one, so it is useful to check new algorithms to search phase transitions and
characterized them. In the analysis of the density of the zeros done in the
Ref. [174], the slope of the fit does not vanish near the origin, which shows
the existence of a first order phase transition. Besides, they computed the
latent heat ∆e = 0.247(5) which can be confronted with the value found in
the literature 0.2421(5) [175].

In addition to the pure models, disordered systems have also been studied.
In disorder systems one has to compute the zeros in every sample, average
over the disorder before doing a similar analysis to the pure system. In
Ref. [179] a two dimensional diluted Ising model is studied, supporting the
strong universality hypothesis instead of the weak one, that is, the critical
exponents do not change with the dilution and α = α̂ = 0. In Ref. [180] a
four dimensional diluted Ising model is studied, and the existence of a phase
transition is shown, even more clearly than using the standard numerical
techniques.

Finally, in this thesis, we are really interested in the study of spin glasses,
so we will apply this technique to study the three dimensional Ising spin glass
model. Remind that in spin glasses the overlap is the order parameter, so
we will use a parameter coupled with it to study the zeros of the partition
function1. Therefore, one of the main goals of this work is to study how these
zeros behave in a frustrated system like a spin glass. Moreover, we will be to
study qEA, which characterization has been attempted for long time.

1Overlap should play a similar role in spin glasses that magnetic field plays in Ising
model, where it is the order parameter.
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5.1 Introduction

In two seminal papers, T. D. Lee and C. N. Yang [181, 182] introduced
a new tool to understand the origin of a phase transition by studying the
complex singularities of the free energy, or, equivalently, the zeros of the
partition function. In particular, they showed that all the zeros are located
on the unit circumference on the complex activity plane (taking as variable
z = e−2h, where h is the external magnetic field). They also proved that
if the zeros condense onto the real axis when V → ∞ a phase transition
takes place. Finally, they related, in the low-temperature phase, the density
of zeros with the discontinuity in the order parameter (remember that the
Ising model experiences a first-order phase transition when h changes at a
fixed temperature below the critical one). This approach was subsequently
extended to the temperature zeros by Fisher [183, 184, 185, 186].

We have Lee-Yang like theorems only for a limited class of non-disordered
systems (such as Ising models). However, it is possible to develop a scaling
theory by assuming that asymptotically the complex singularities (wherever
they lie) touch the real axis (thus generating the phase transition). Hence,
despite the lack of formal theorems it is still possible to apply Lee and Yang’s
main results to a wide class of systems (e.g., Potts models [187]). In this class
of systems the zeros do not live on a circle as stated by the Lee-Yang theorem,
but they still control the critical properties of the model. We will only assume
this last fact irrespectively of the form of the locus of the zeros in the complex
plane [187].
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In Refs. [188, 189, 190] the analysis of complex singularities was applied
successfully to diluted systems (in particular diluted Ising models in two
and four dimensions). The key point for the applicability of the standard
results, well tested in non-disordered systems, is to compute the complex
singularities individually for each disorder realization (called sample) and
then use the mean of the individual zeros (sample zeros) in order to test the
scaling properties of the zeros and to study the properties of the integrated
density of zeros. In this work we will also introduce the analysis of the
median.

Nowadays we are interested in gaining a deeper understanding (from the
point of view of the complex singularities) of the properties of an interest-
ing frustrated and disordered system: the three-dimensional Ising spin glass.
The magnetization, while very interesting in off-equilibrium dynamics and in
experiments, plays no role in the critical behavior and in the understanding
of the low-temperature properties in a finite-dimensional spin glass. The ob-
servable that controls this spin-glass phase is the overlap. Hence, in this work
we have focused on the numerical study of the complex singularities linked
with the overlap in order to study the phase transition and the properties of
the spin-glass phase.

In the past, Lee-Yang and Fisher zeros were obtained in spin glasses by
means of the numerical evaluation of the partition function on small lat-
tices [191, 192, 193, 194]. This methodology was also applied to models
defined on Bethe lattices [195]. Finally, some calculations were performed
with the help of replicas [196].

More recently, the complex singularities linked with the external magnetic
field were studied for the two and three-dimensional Ising spin glass model
in the interesting reference [197], which focuses on the Griffiths singularity
and computes all the zeros for small lattices.

In particular we are interested in characterizing the scaling of the individ-
ual zeros at the critical point (which will allow us to compute the anomalous
dimension exponent) and checking the scaling in the spin-glass region. In ad-
dition, we want to study the properties of the density of zeros in the critical
and spin-glass region: the behavior of this observable will clearly signal the
phase transition. Finally, we will show how this density of zeros can be used
to compute the Edwards-Anderson order parameter. However, the spin-glass
susceptibility presents strong scaling corrections (even on an L = 32 lattice
and β = 1.4), which induce strong corrections on the density of zeros allow-
ing us (from the numerical point of view) only to test our density of zeros
against the values of qEA found in the literature, rather than attempting a di-
rect numerical computation of the order parameter. We want to stress that in
cases in which the spin glass susceptibility reaches the asymptotic value, the
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method we propose will be able to provide directly the order parameter (qEA)
giving an additional method to those used nowadays [198, 199, 200, 201].

Let us finally mention that we have obtained the data presented in this
work from the analysis of the configurations produced in parallel tempering
runs [200, 201] using the Janus computer [202, 203, 204].

5.2 Model and observables

We have studied the three-dimensional Edwards-Anderson model with dy-
namical variables σi. These variables are Ising spins and are placed on the
nodes of a cubic lattice of linear dimension L and volume V = L3. The
Hamiltonian of the system is

H0 = −
∑
⟨i,j⟩

Jijσiσj, (5.1)

where ⟨ij⟩ indicates that the sum is over the nearest neighbouring sites.
The couplings Jij are random quenched constants with bimodal probability
distribution, that is, J = ±1 with 50% probability. Every realization of the
couplings is called a sample. Due to the fact that we have a random Hamilto-
nian, we have to deal with a double average: first the thermal average, which
we will denote by ⟨(· · · )⟩, and then the average over the samples, which we
will denote by (· · · ).

We have simulated several real replicas of the system, so we can define
the local overlap

qi = σ
(1)
i σ

(2)
i (5.2)

where σ
(1)
x belongs to the first replica and σ

(2)
x belongs to the second one.

The spin overlap is defined from this local overlap as

Q =
∑
i

qi, (5.3)

where the sum runs over the whole volume (V ). In addition, we define
q ≡ Q/V . These observables allow us to define some new quantities, for
example the non-connected spin-glass susceptibility

χSG =
1

V
⟨Q2⟩. (5.4)

Let us now rewrite the Hamiltonian adding a new perturbation ϵQ and
including the two replicas explicitly,

Hϵ = H(σ1) +H(σ2) + ϵQ

= −
∑
⟨i,j⟩

Jij

(
σ
(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

)
+ ϵ
∑
i

σ
(1)
i σ

(2)
i . (5.5)
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This Hamiltonian looks like that of the Ising model in a magnetic field

Hh = H0 + hM. (5.6)

We can write the partition function, whose zeros we want to study, as

Z =
∑

[σ(1)σ(2)]

e−βH0+βiϵQ (5.7)

=
∑

[σ(1)σ(2)]

(
cos(βϵQ)e−βH0 + i sin(βϵQ)e−βH0

)
.

Let Z0 the partition function of the non-perturbed system, so

Z = Z0{⟨cos(βϵQ)⟩+ i⟨sin(βϵQ)} (5.8)

and we have to find the zeros of the function ⟨cos(βϵQ)⟩ since in absence
of a magnetic field ⟨sin(βϵQ)⟩ is zero. The algorithm to find them is quite
easy: we start from the list of individual measurements of Q for each sample
(see Section 5.4) and evaluate the average ⟨cos(βϵQ)⟩, increasing ϵ in small
steps ∆ϵ. When the function changes signs from one step to the next, we
have found a zero in this interval. Obviously, the smaller ∆ϵ the better the
precision of the zero that we have found, but also the slower the analysis, so
we have to be careful with the error estimates. We have analyzed the first
four zeros of this function.

5.3 Finite-Size Scaling

One can obtain the expected behavior of the LY zeros by means of (see for
example Ref. [187])

ϵ ≃ 1√
χSGV

(5.9)

therefore, the finite-size dependence, at the critical point, of the Yang-Lee
zeros can be expressed as:

ϵj(L) ∼ L−x1 , (5.10)

where
x1 = (D + 2− η)/2 , (5.11)

and D is the dimensionality of the system, being D = 3 in this work. If
corrections to scaling are taken into account, the above relation becomes

ϵj(L) ∼ L−x1
(
1 +O(L−x2)

)
, (5.12)
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where x2 is the leading correction-to-scaling exponent, x2 = ω.
In the broken symmetry phase, where the non-linear susceptibility di-

verges as the volume of the system, we expect the following behavior:

ϵj(L) ∼
1

V
, (5.13)

We can take scaling corrections into account, as in the critical point, and

ϵj(L) ∼ V −1
(
1 +O(L−x3)

)
. (5.14)

where x3 is the leading correction-to-scaling exponent in the broken phase.2.
In order to discuss the density of zeros we need to describe some known

properties of the Hamiltonian defined in Eq. (5.5). This Hamiltonian was
introduced in the past [205, 206]. In particular it experiences a first-order
phase transition in ϵ, below the critical temperature of the uncoupled model.
Hence, the overlap is discontinuous:

lim
ϵ→0±

⟨q⟩(ϵ) = ±qEA , (5.15)

being the discontinuity at the transition just 2qEA.
We can also introduce the density of zeros

µϵ(ϵ) =
∑
j

δ(ϵ− ϵj(L)) (5.16)

and its integrated version

G(ϵ) =

∫ ϵ

0

dxµϵ(x) (5.17)

which takes the following value computed for a given zero:

G(ϵj(L)) =
2j − 1

2V
, (5.18)

where j labels the j-th zero (j = 1, 2, . . .). In order to deal with the discontin-
uous behavior of G(ϵ) at the zeros, we follow the recipe of references [207, 208]

2Both droplet and RSB predict algebraic decays for the connected correlation functions
in the spin glass phase (the spin glass phase is critical in both models). In the droplet
model the exponent of the decay is y (sometimes denoted as θ), so one can show that
x3 = y. In RSB depending of the value of q we have different decays (of the q-constrained
correlation functions), denoting the decay exponents as θ(q). So the leading correction
exponent can be shown to be the smallest of the different θ(q). See Refs. [200, 201] for a
detailed discussion on θ(q).
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and use the mean between two consecutive plateau values (j−1 and j). Any-
how, the asymptotic value of the integrated density computed in the j-th zero
is j/V . We will discuss this point again in subsection 5.5.3.

This integrated density is very useful to characterize a phase transition.
In general it behaves as

G(ϵ) = a1ϵ
a2 + a3 (5.19)

and we can extract a great amount of physical information from these three
numbers (a1, a2 and a3):

• In the symmetric phase a3 < 0. In a broken phase a3 > 0.

• In the onset of a first-order phase transition, varying ϵ as it is our case:
a2 = 1 and a3 = 0. In addition we can extract the order parameter of
the broken phase: qEA = πa1/β.

3

• At the critical point, a3 = 0 and a2 is related with the anomalous
dimension η by means:

a2 =
2D

D + 2− η
. (5.21)

5.4 Simulation details

We have run simulations for several lattice sizes on the Janus supercom-
puter [202, 203, 204] (for L = 16, 24, and 32) and on conventional comput-
ers (for L = 8 and 12). These simulations were originally reported in [200],
which gives full details on the chosen parameters and the thermalization
protocol. In this section we give only a brief summary.

We have used the parallel tempering algorithm [209, 210], choosing the
temperatures to maintain an acceptance around 20% in parallel tempering
updates. Besides, since Janus needs far more time to do a parallel tempering

3In Lee and Yang’s paper, the starting point is the Hamiltonian βHh = βHh=0 + hM ,
where M is the total magnetization of the system. In terms of the fugacity z = e−2h,
they obtained the following result (valid below the critical temperature) for the density
of zeros (in the fugacity variable that we will denote as µz(z)): µz(0) = msp/(2π), where
msp is the spontaneous magnetization below the critical temperature. In order to transfer
this result to our notation we remark that our “magnetic field” is βϵ, qEA plays the role of
msp and we need to use the standard law of the transformation of the probability densities
(µz(z) = µϵ(ϵ)|dϵ/dz|, where z = exp(−2βϵ)), obtaining:

µϵ(0) =
qEAβ

π
. (5.20)

Notice that near ϵ = 0 we can identify a1 with µϵ(0).
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update than a heat-bath one, we have chosen to do one parallel tempering
update every 10 heat-bath ones. In table 5.1 one can find a summary of the
simulations parameters. In order to choose the simulation length, we have
assessed thermalization on a sample-by-sample basis, using the temperature
random walk technique [211, 200] (table 5.1 gives the average number of
lattice updates for each L).

In general, each of the single processors (FPGAs) of Janus takes care of
the simulation of one replica of the system. However, some samples have such
a slow dynamics that even with this algorithm the simulation would be too
long (more than six months of continuous running time), so we would need
to accelerate it. For these few cases we have created a special low-level code
that is in charge of the parallel tempering in the control FPGA of a board
of Janus. This allows us to spread the simulation over several processors
running only a subset of temperatures in each FPGA, thus accelerating the
simulation by increasing the parallelism.

Table 5.1: Summary of the simulations. NT is the number of simulated
temperatures (evenly spaced between Tmin and Tmax); Nmes is the number
of Monte Carlo steps (updates of the whole lattice) between measurements;
Nmed

HB is the average simulation time (since we use the random-walk technique
the simulation time depends on the sample); Nsam is the number of simulated
samples. We have simulated four real replicas for each sample. Finally, L = 8
and L = 12 have been simulated on PCs and L = 16, L = 24 and L = 32 on
Janus.

L Tmin Tmax NT Nmes Nmed
HB Nsam

8 0.150 1.575 10 103 7.82× 106 4000
12 0.414 1.575 12 5× 103 3.13× 107 4000
16 0.479 1.575 16 105 9.71× 108 4000
24 0.625 1.600 28 105 4.02× 109 4000
32 0.703 1.549 34 2× 105 1.90× 1010 1000

5.4.1 Data for the computation of the zeros

We have saved on disk every individual measurement of the overlap. Since
we have simulated four real replicas of the system, for each sample we have
a total of 6NHB/Nmes values of Q. Given the variable NHB, this ranges from
1.2× 105 to 2× 107 measurements for our largest lattices, so we have a very
good precision for computing the zeros of the partition function. We have
discarded the first half of the measurements for equilibration.
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We want to study the behavior of the system in the critical temperature
and in the low-temperature phase of the system, analyzing the scaling of the
zeros. Therefore, we need to compute the zeros of different system linear
sizes, L, but at the same temperature. Since we have not simulated the same
temperatures for every lattice size, we have interpolated, using cubic splines,
in order to estimate the zero at each of the chosen scaling temperatures.

5.5 Results

In this section we will study the behavior of the zeros as a function of the
lattice size, both in the critical and in the spin-glass phase. Finally, we will
compute the density of zeros and extract the η exponent from the analysis
at the critical temperature and the Edwards-Anderson order parameter from
the scaling in the low-temperature phase.

5.5.1 Scaling at the Critical Point

We first consider the scaling at the critical point and use it to determine
the anomalous dimension, as in (5.10). Our simulations were optimized to
investigate the low-temperature phase, for large system sizes, rather than to
obtain the critical parameters. Therefore, we take the value of βc = 0.902(8)
from [212], which features many more samples and small sizes to control
scaling corrections but does not reach the low-temperature phase, and will
also use this reference to check our value of η.4

Let us first consider a fit of the individual zeros, leaving aside corrections
to scaling, i.e., following (5.10). For the j-th zero, we fit to

ϵj(L) = AjL
−x1 . (5.22)

We report the results of these fits in table 5.2. We see that the first and
second zeros follow (5.22) very well for L ≥ 8, but for j > 2 we need to
restrict the fit to L ≥ 12. However, there is an inconsistency in the results:
the value of x1 should be the same for all zeros, but we see that it increases
with j. Moreover, at least for the larger j, x1 is incompatible with the
expected value of x1 = 2.688(5), (taking η = −0.375(10) from [212]) This
hints that corrections to scaling should be taken into account, as in (5.12).

In order to do so, we consider all values of j at the same time and perform
a global fit, enforcing data from different zeros to share the same x1 and x2.

4If we combine the critical exponents of [212] with the Janus simulations studied herein,
we obtain a compatible value of βc = 0.905(7) [213].
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Table 5.2: Fits of the zeros to ϵj(L) = AjL
−x1 , for L ≥ Lmin. As we can see,

with Lmin = 8 the χ2 per degree of freedom is acceptable only for j = 1, 2,
but with Lmin = 12 all the zeros have a reasonable fit. However, the value of
x1 grows with j, an indication that we have to consider corrections to scaling
(see text).

j Lmin β x1 χ2/d.o.f.
1 8 0.902 2.703(12) 1.78/3
2 8 0.902 2.712(6) 3.23/3
3 8 0.902 2.718(5) 8.12/3
4 8 0.902 2.725(5) 15.1/3
1 12 0.902 2.695(14) 1.27/2
2 12 0.902 2.715(8) 2.95/2
3 12 0.902 2.731(7) 2.19/2
4 12 0.902 2.745(7) 2.49/2

As points coming from a given L are correlated, the full covariance matrix
has to be considered. We label our set of points {ϵj(La)} by their L and their
j: we have data for L = 5 different values of L (L1 = 8, L2 = 12, L3 = 16,
L4 = 24, L5 = 32) and for j = 1, 2, 3, 4. The appropriate goodness-of-fit
estimator is, therefore,

χ2 =
4∑

i,j=1

L∑
a,b=1

[ϵi(La)−AiL
−x1
a (1+BiL

−x2
a )]σ−1

(ia)(jb)[ϵj(Lb)−AjL
−x1
b (1+BjL

−x2
b )], (5.23)

where σ(ia)(jb) is the covariance matrix of the set of zeros (which is block
diagonal, since data for different L are uncorrelated).

Unfortunately, we do not have enough data to determine x2 and x1 at the
same time (the resulting error in ω would be greater than 100%). Instead,
we take x2 = ω = 1.0(1) from [212] and fit only for x1 and the amplitudes.
The resulting fit for L ≥ 12, shown in figure 5.2, gives

x1 = 2.67(6)[1], χ2/d.o.f. = 5.88/7, (5.24)

where the error in square brackets accounts for the uncertainty in ω. Our de-
termination of x1 is now compatible with the expected value of x1 = 2.688(5).
Therefore, the scaling of the zeros is consistent at the critical point.
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Figure 5.2: The four first zeros at β = βc. In order to appreciate the scaling
better, we show only the data for L ≥ 12 and compare to equation (5.12),
fixing x2 = ω = 1.0(1) from [212] and performing a global fit for a common
value of x1 (see text). We obtain x1 = 2.67(6)[1], with a chi-square per degree
of freedom of χ2/d.o.f. = 5.88/7.

5.5.2 Scaling in the low-temperature phase

Now we consider the scaling of ϵj(L) in the low-temperature phase. This
time, we expect, from (5.13),

ϵj(L) ≃ AL−x1 , (5.25)

with x1 = D.
We have fitted the data for β = 1.2 (Figure 5.4) and β = 1.4 (Figure 5.3)

to (5.25).5 The results, in Table 5.3, show a value of x1 incompatible with

5The crossover length Lc which marks the change between the criticality induced by the
critical point at Tc (L < Lc) and that of the spin glass phase (L > Lc) has been computed
for different values of β in reference [200]. In particular, we know that Lc(β = 1.2) ≃ 6 and
Lc(βc = 1.4)) ≃ 2.5. Hence all the data presented in this section belong to temperatures
which lie deep into the spin glass phase. In other words, we can only see the critical effects
induced by the spin-glass phase itself, which is critical, not those of the critical point at
Tc.
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Table 5.3: Scaling of the zeros in the low-temperature phase. For the two
considered temperatures (β = 1.2, 1.4) we first show a fit without corrections
to scaling for L ≥ 16, that is ϵj(L) ≃ AjL

−x1 . As explained in Section 5.5.1,
this is a global fit for the four zeros, considering their full covariance matrix.
We then consider the same fit with corrections to scaling, trying different
values for ω (see the text for more details). In all cases x1 is smaller than
the expected value x1 = D = 3.

Lmin β ω x1 χ2/d.o.f.
16 1.4 - 2.842(11) 7.34/7
12 1.4 1 2.57(12) 3.79/7
12 1.4 3 2.79(2) 4.18/7
12 1.4 0.255 2.75(10) 17.6/7
12 1.4 0.39 2.67(9) 14.7/7
12 1.4 0.65 2.55(11) 7.90/7
12 1.4 0.79 2.48(13) 5.03/7
16 1.2 - 2.844(10) 2.89/7
12 1.2 1 2.82(5) 10.5/7
12 1.2 3 2.84(2) 6.90/7
12 1.2 0.255 2.80(10) 12.3/7
12 1.2 0.39 2.80(12) 11.9/7
12 1.2 0.65 2.81(10) 11.3/7
12 1.2 0.78 2.81(8) 11.0/7

x1 = D = 3. We have also included corrections to scaling, using both ω = 1
(Goldstone-like correction) [214] and ω = 3 (Ising ordered correction) [214],
ω = y = 0.255 (droplet) [215, 216, 217], ω = θ(0) = 0.39 (replicon and also
1/ν̂ which controls the scaling correction of qEA(L) [201]), ω = 0.79 = 2θ(0)
(twice the replicon [201]) and ω = 0.65 = θ(qEA) [201] but in neither case is
the asymptotic x1 = D behavior recovered (see Table 5.3). In addition, we
have forced the fits with x1 = 3 and leaving free ω and the statistical quality
of the fits was bad.

The origin of this discrepancy with the standard theory can be understood
using Eq. 5.9. Notice from this equation that the scaling of the zeros depends
strongly on the behavior of the non-connected spin glass susceptibility, so
only with a divergence of this observable as the volume, we can recover
x1 = 3. However, for these two temperatures (β = 1.2 and 1.4) this is not
the case (see Fig. 5.5). Notice that ⟨q2⟩ = χ/V has not reached the plateau
asymptotic value6: Hence at these temperatures the spin-glass susceptibility

6In a spin glass phase, both the droplet as the RSB theory predict power law corrections
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does not yet diverge as the volume.

5.5.3 Behavior of the integrated density of zeroes

We will start our analysis of the integrated density of zeros by plotting this
density at the critical point in Fig.5.6. One can see that the largest lattices
follow a pure power law as predicted by the theory. The slope, on a log-log
scale, of this straight line should correspond with an exponent a2. Fitting
only the L = 32 points we obtain a2 = 1.16(2) in good agreement with the
theory a2 = 1.116(2) (using Eq. 5.21 and η = −0.375(10)). To obtain this
figure we have discarded in the fit the first zero.7

For large L we should expect a good collapse of all points in the same
power law curve: the non collapsing part (small L in the figure) is due to the
presence of scaling corrections (which we also found in the previous sections).

Now we will check the theoretical predictions for the integrated density of
zeros in the broken phase, which predict a linear behavior in the perturbing
parameter ϵ. Notice that in our case the margins between the critical point
and the broken phase are tight since in the infinite volume limit we will see
a behavior ϵ1.116 at the critical point which changes just below Tc to ϵ (of
course, this is due to the value of the η exponent).

In Figs 5.7 and 5.8 we show that the data nearly follow a linear behavior
of the integrated density deep in the spin glass phase (more concretely at
β = 1.2 and β = 1.4), in particular for L ≥ 24. The non-collapsing part of
the curve is produced by the presence of scaling corrections as at the critical
point.

However, it is easy to show that if the zeros do not follow (for the lattice
sizes simulated), in the broken phase, a scaling as the inverse of the volume,
then the integrated density of zeros does not follow exactly a linear behavior,

on the lattice size, so the approach to the infinite volume values is really slow.
7This phenomenon has been previously found in the literature. For example, the au-

thors of [208] studied the anisotropic Ising model at the critical point and found a different
behavior of the first zero in the study of the integrated density. This model shows a spread-
ing distribution of the zeros in the fugacity complex plane. The authors suggest that the
effect of this spreading distribution of the zeros is modifying the behavior of the first zero.
We have not computed the complete distribution of the complex zeros (only in the straight
line iϵ), nevertheless, we know from reference [197] that the zeros spread in the magnetic
field complex plane, so it is quite natural to assume that we will have a similar (spreading)
spatial distribution of the zeros in ϵ. Another possible explanation is that the behavior
of the integrated density of zeros as j/L3 is only asymptotic. These anomalies affect only
the lower order zeros. Notice that this phenomenon affects only to the pre-factor of the
power law of the smallest zeros. We have seen in subsection 5.5.1 that the first zero scales
with the right power law. We thank R. Kenna for interesting comments regarding this
behavior.
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since a2 = D/x1. We have discussed at the end of Sec. 5.5.2 that this lack
of 1/V behavior is related to a susceptibility that is not yet diverging as the
volume.

In sec. 5.5.2 we have found an exponent x1 = 2.842(11) for β = 1.2
and x1 = 2.844(10) for β = 1.4, which implies that a2 = 1.056(4) and
a2 = 1.055(3) for β = 1.2 and β = 1.4 respectively.

In Fig. 5.9 we show the behavior of the integrated density of zeros com-
puted for our largest lattice (L = 32) and lowest temperature, (β = 1.4).
Notice the points are not lying on a straight line. A fit to a1ϵ

a2 works well,
with a2 consistent with the value computed from x1 (a2 = 1.068(10)). So
we have obtained, numerically, a2 = 1.16(2), at the critical point which has
changed to 1.068(10) in the broken phase.8

In this situation, we cannot compute the order parameter directly from
the linear behavior of the integrated density since we are not observing a fully
linear behavior. Hence, we confront our numerical data for G(ϵ) against the
theoretical prediction for really small ϵ, which is G(ϵ) = (βqEA/π)ϵ. It is
interesting to note (see Refs. [207] and [214]) that we can recover the exact
slope for a given lattice size if we substitute the value of the order parameter
computed for this lattice size. We have followed this advice, and we show in
Figs. 5.11 and 5.12 our data for G(ϵ) at β = 1.2 and 1.4 showing L = 32 data.
In addition we have plotted the asymptotic slope using the order parameter
(qEA) computed for L = 32 lattices for these two temperatures in Ref. [200].
Notice that we have a slow approach to the right slope, but also that the
overall picture seems to be correct.

In order to gain a better understanding of this effect, we have computed
the density of zeros not with the average of the sample zeros but with the
median of the probability distribution of the zeros.9

We show in Fig. 5.10 the histogram of the 1000 first zeros computed on
the L = 32 lattice at β = 1.4. Notice from this figure the asymmetry of
the histogram and the presence of events at large values of the zeros (which
induces a large and strongly fluctuating value of the mean).

One can see in Figs. 5.11 and 5.12 that the median data produce an
improved scaling, compared with those obtained from the mean, when com-
paring the data with the analytical prediction (slope provided by qEA).

For the sake of completeness, we can cite that the integrated density of

8We can do the same analysis with the x1 exponent: we have obtained at the critical
point x1 = 2.67(7), which should change in the broken phase to x1 = 3, although we
actually see with our numerical data x1 = 2.842(11).

9The probability distributions one usually finds in disordered systems present long tails
due the presence of rare events, hence, the study of the median of this kind of distributions
is also very useful (see for example [218, 213]).
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zeros using the medians does not behave completely linearly but with a law
ϵ1.06(2) (for β = 1.4).

5.6 Conclusions

By studying the complex singularities linked with the overlap we have ob-
tained a clear picture of the critical region and of the low temperature phase
fully compatible with that obtained by other more standard approaches.

In particular, we have studied the behavior of the individual zeros as
well as the integrated density at the critical point. In both cases we have
obtained good values for the η exponent and we have seen that the data are
compatible with the corrections to scaling published in the literature [212].

Finally, we have checked the scaling laws in the spin-glass phase, obtaining
strong scaling corrections as found previously [200]. In addition we have
obtained, by monitoring the behavior of the integrated density, a compatible
picture using the zeros with that obtained from the order parameter of the
model (qEA) computed in finite volumes with standard methods. We have
also shown that the use of the median instead of the mean improves the
overall picture.
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Figure 5.3: Scaling of the zeros at β = 1.4, with a best fit to (5.25) for
L ≥ 16. We obtain x1 = 2.842(11), with χ2/d.o.f. = 7.34/7.
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Figure 5.4: Scaling of the zeros at β = 1.2, with a best fit to (5.25) for
L ≥ 16. We obtain x1 = 2.844(10), with χ2/d.o.f. = 2.89/7.
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Figure 5.5: χ/V = ⟨q2⟩ versus the lattice size for β = 1.2 and 1.4. Notice
that none of the temperatures have reached the plateau asymptotic value.
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Figure 5.9: Integrated density of the zeros, for the largest lattice L = 32 and
the lowest temperature β = 1.4. Notice that we are almost, but not in, the
linear regime. The data are well fitted with b = 1.068(10).
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Figure 5.11: Integrated density of the zeros, for the largest lattice L = 32
and temperature β = 1.2 using the average of zeros. We have also plotted the
median values. We have marked the expected slope at the origin, using the
Edwards-Anderson order parameter computed in Ref. [200] for the L = 32
lattice.
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Chapter 6

Rejuvenation and memory

6.1 Introduction

One of the most interesting properties of the spin glasses is the aging, that is,
the behavior of the system at low temperatures depends on the history of that
system. Therefore, one can perform experiments where the temperature is
kept constant or experiments where one changes the temperature. The aging
at constant temperature arises in experiments that studies the thermorema-
nent magnetization (TRM) and the zero-cooled magnetization (ZFC) (see,
for example, Refs. [10, 11, 12]). In experiments to study the TRM, one cools
the spin glass up to a temperature, T , below its glass temperature, Tc, in
presence of an external magnetic field, then one let the system evolves a time
tw and then one switches off the magnetic field. In experiments to study
the ZFC the algorithm is different, one cools the system without an external
magnetic field and switches it on after a time tw at a temperature below its
critical temperature.

However, in this chapter we will focus on experiments where the temper-
ature is not kept constant. Then, rejuvenation and memory are the most
relevant aging phenomena. To understand them, let us imagine the easiest
experiment, a two temperatures (both below the glass temperature of the
system) algorithm. Let be the system at temperature T1 and, after a time ts
at this temperature, we change the temperature to a smaller one, T2. Then,
one can observe that the relaxation of some observables like the susceptibil-
ity, χ, is similar to the one that a system that had be cooled directly from
a temperature higher than Tc to this T2. This effect is the so-called reju-
venation. If one gets back the system to the temperature T1, one does not
observe this effect, but the susceptibility restart its relaxation where it left
when the temperature was changed before. This effect is the memory. The

157
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dip experiment shows these two effects very clear.

In the dip experiment, one decreases the temperature of the system at
a constant rate but with several stops, that is, at several temperatures one
spends a longer time. Then one increases the temperature at the same rate
but without any stop. Experiments with this algorithm usually show spec-
tacular evidences of rejuvenation and memory. For example, in references
[219, 220] experiments with the material CdCr1.7In0.3S4 are performed and
in Figures 6.1 and 6.2 one can observe the rejuvenation and memory effects.
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ageing at
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1
=12 K
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  Increasing T
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T (K)
Figure 6.1: Susceptibility versus the temperature. Solid line is the ref-
erence one (without any stop). Open diamonds mark measurements while
decreasing temperature with a stop at 12 K during 7h. Solid circles mark
measurements increasing the temperature. The rate of the change of the
temperature is 0.1 K/min. Figure from reference [219].

However, simulations have not been so successful so far perhaps due to
the fact that simulation computers are not powerful enough.

6.2 Model, observables and simulation details

We performed simulations of Edwards-Anderson model

H =
∑
<i,j>

Jijσiσj (6.1)

without an external magnetic field. Jij are bimodal quenched random cou-
plings.
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Figure 6.2: Susceptibility versus the temperature. In this figure, the stops
are of 30 min. Figure from Ref. [220].

We measure the two times correlation function

C(tw, tw + t0) =
1

V

∑
i

⟨σi(tw)σi(tw + t0)⟩ (6.2)

to calculate the real part of the susceptibility, which is, according to Fluctuation-
Dissipation Theorem,

χ(ω =
2π

t0
, tw) ≈

[1− C(tw, tw + t0)]

T
(6.3)

We also measure the coherence length, computed from the C4 correlation
function

C4(r, tw) =
1

V

∑
x

qx(tw)qx+r(tw) (6.4)

ξk,k+1(tw) ≡
Ik+1(tw)

Ik(tw)
∝ ξ(tw) (6.5)

where

Ik(tw) ≡
∫ L/2

0

dr rkC4(r, tw) (6.6)

We have simulated three dimensional cubic lattices, with linear size L = 256
in the Janus dedicated computer (see appendix A), using parallel computa-
tion and a whole board of Janus for every sample. In the dip experiment
we have simulated 64 samples with Tmax = 2.015, Tmin = 0.575 and only one
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stop Tstop = 0.775. The system spent 781248 = (2 · 58 − 2) MCS on every
temperature but a 125 times longer time at Tstop. In the two temperatures
experiment, we have performed simulations of 32 samples at T = 0.9 and
T = 0.8.

6.3 Numerical results

6.3.1 Dip experiment

In Figures 6.3 and 6.4 one can observe the behavior of the susceptibility at
a set value of t0. However, rejuvenation and memory do not appear.
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Figure 6.3: Susceptibility at t0 = 624 and maximum tw vs temperature.

We have also studied the coherence length, but the results are not better.
In Figures 6.5 and 6.6 one can observe the coherence length of this experi-
ment. It is quite clear that the system does not evolve enough to show up
aging characteristics.

6.3.2 Two temperatures experiment

Finally, we have also studied the coherence length in a two temperatures
protocol. Besides, references simulations at fixed temperatures have also
been performed. The behaviour of the system, as can be observed in Figures
6.7 and 6.8, is the expected one: when the temperature is changed, the
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evolution of the coherence length tend to converge to the evolution at a fixed
temperature. One also expect a decreasing of the coherence length when
the temperature is changed due to chaos, which would indicate rejuvenation
phenomenon. However, no evidence of a decreasing of the coherence length
have been detected.
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6.3.3 Conclusions

We have not manage to reproduce the dip experiment, even using the Janus
machine and simulating lattices up to L = 256. Therefore, rejuvenation and
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Figure 6.8: Coherence length versus t. Simulations of the same samples at
fixed temperatures T = 0.9 and T = 0.8 are also plotted.

memory effects have not been detected in a protocol with several changes
of temperature. The study of the coherence length has not shown better
results, although it showed us that the system seemed to not evolve enough
to show up aging effects, so it suggests us that we would need more powerful
simulations to simulating dip experiment.
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Chapter 7

Other researches in the Janus
collaboration

7.1 Introduction

In the previous chapters are explained the works which form the main re-
search task in this thesis. Besides, I have also worked in other researches of
the Janus Collaboration since I joint the group in 2009. In the following, I
will introduce a brief summary of these works:

• F. Belletti, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero, M. Guidetti,
A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor, J. Mon-
forte, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J.
J. Ruiz-Lorenzo, S. F. Schifano, D. Sciretti, A. Tarancon, R. Tripic-
cione and D. Yllanes, J. Stat. Phys. 135, 1121 (2009). Eprint:
arXiv:0811.2864. “An in-depth look at the microscopic dynamics of
Ising spin glasses at fixed temperature”.

• R. Álvarez Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A.
Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Mari-
nari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D.
Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schi-
fano, B. Seoane, A. Tarancon, R. Tripiccione and D. Yllanes, J. Stat.
Mech. P06026 (2010). Eprint: arXiv:1003.2569. “Nature of the spin-
glass phase at experimental length scales”.

• R. Álvarez Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A.
Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Mari-
nari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D.
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Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schi-
fano, B. Seoane, A. Tarancon, R. Tripiccione and D. Yllanes, Phys.
Rev. Lett. 105, 177202 (2010). Eprint: arXiv:1003.2943. “Static ver-
sus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin
glass”.

• R. Álvarez Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A.
Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano, E. Mari-
nari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D.
Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schi-
fano, B. Seoane, A. Tarancon, P. Tellez, R. Tripiccione and D. Yllanes,
PNAS 109 6452 (2012). Eprint: arxiv:1202.5593. “Thermodynamic
glass transition in a spin glass without time-reversal symmetry”.

• M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-
Narvion, A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano,
F. Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A.
Muñoz Sudupe, D. Navarro, G. Parisi, M. Pivanti, S. Perez-Gaviro,
F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A.
Tarancon, P. Tellez, R. Tripiccione and D. Yllanes, Eur. Phys. J.
Special Topics 210, 33 (2012). “Reconfigurable computing for Monte
Carlo simulations: Results and prospects of the Janus project”.

7.2 An In-Depth View of the Microscopic Dy-

namics of Ising Spin Glasses at Fixed Tem-

perature

In this work (published in J. Stat. Phys 135, 1121, 2009) a detailed study of
the non-equilibrium dynamics of the three dimensional Ising spin glass model
has been performed. Thanks to the use of Janus, simulations of up to 1011

MCS have been executed, which is an impressive value that approaches us
to real experiments (remind that 1 MCS ∼ 1 ps, so 1011 MCS correspond to
0.1 seconds in real world). Simulations at different temperature have been
performed and in table 7.1 is a summary of the simulation details of these
simulations.

We will emphasize some of the observables studied in the work. Firstly,
besides the usual correlation functions, we will define the two-time, two-site
correlation function

C2+2(r, t, tw) =
1

N

∑
x

[cx(t, tw)cx+r(t, tw)− C2(t, tw)] (7.1)
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L T MC steps Ns

80 0.6 1011 96
80 0.7 1011 63
80 0.8 1011 96
80 0.9 2.8× 1010 32
80 1.1 4.2× 109 32
80 1.15 2.8× 1010 32
80 0.7 1010 768
40 0.8 2.2× 108 2218

Table 7.1: Simulation details. NS means the number of simulated samples.

With this function heterogeneous dynamics can be studied.
Moreover, bounds to qEA are also computed with the stationary part,

C∞(t) of the two times correlation function C(t, tw):

0.62 ≤ qEA(T = 0.6) ≤ 0.733 (7.2)

0.474 ≤ qEA(T = 0.7) ≤ 0.637 (7.3)

0.368 ≤ qEA(T = 0.8) ≤ 0.556 (7.4)

Finally, the thermoremanent magnetization can be studied with the two
times correlation function, C(t, tw), in fact, when t ≫ tw to a fixed value of
tw, then both can be identified. The results obtained are compatible with
experimental ones.

7.3 Nature of the spin-glass phase at experi-

mental length scales

In this work (published in J. Stat. Mech. P06026 (2010): [230]) a detailed
study of the equilibrium spin glass phase is performed. Besides, in Ref.
[229] and in this work the thermalization test explained in Section E.2.2 was
developed.

The probability distribution of the overlap has been studied to distinguish
whether the system behaves as a droplet or as in RSB solution. In Figures
7.1 and 7.2 this probability distribution of the overlap is plotted for several
sizes. Notice that the curves near q ∼ 0 have a plateau (different sizes curves
converge in this region) where P (q) > 0. This result supports the RSB
scenario.

With this quantity one can also compute qEA. At temperature T = 0.703
one finds that qEA = 0.538[11](6) and at temperature T = 0.805 one finds
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Figure 7.1: Probability distribution of the overlap at temperature T=0.625
Figure from J. Stat. Mech. P06026 (2010) [230].

Figure 7.2: Probability distribution of the overlap at temperature T=0.703
Figure from J. Stat. Mech. P06026 (2010) [230].

that qEA = 0.447[12](6). These values agree with the bounds from Eqs. (7.2),
(7.3) and 7.4).

Another way to check which scenario holds in the spin glass phase is
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studying the Binder cumulant

B(T ) =
⟨q4⟩
⟨q2⟩

2 (7.5)

In droplet scenario one expects that the Binder cumulant behaves like

B(T ;L) = 1 + aL−ζ (7.6)

whereas in the RSB scenario, one expects that it behaves like

B(T ;L) = c+ dL−1/ν̂ (7.7)

Both fits are quite fine, although the value of ζ is smaller than droplet pre-
dicts. Finally, one can build a kind of dictionary to connect non-equilibrium
and equilibrium simulations.

7.4 Static versus Dynamic Heterogeneities in

the D = 3 Edwards-Anderson-Ising Spin

Glass

In this work (published in Phys. Rev. Lett. 105 177202 in 2010), the behav-
ior of the heterogeneities (both static and dynamic ones) of a Ising spin glass
with binary nearest-neighbour couplings and periodic boundary conditions
at temperature T = 0.64Tc is studied. These heterogeneities are studied us-
ing their characteristic length ζ(t, tw), computed an integral estimator from
the quantity C2+2(r, t, tw)

The aging of the correlation length of the heterogeneities, ζ(t, tw), sug-
gests the existence of a phase transition. We will define the quantity Fq to
study it

Fq = Ĉ4(kmin|q) (7.8)

where Ĉ4(kmin|q) is the Fourier transform at wave vector k ̸= 0 of the con-
ditional correlation function C4 at fixed overlap q. Using finite size scaling
one can gets that

Fq = LD−θ(qEA)G(L1/ν̂(q − qEA)) (7.9)

Let be y = C4(kmin|q), the exponent of L. In the Figure 7.3, one can observe
crossovers in Fq/L

y for a couple of values of y, which shows the existence of
a phase transition. Let qL,y be the point where, fixed y, a pairs of curves
of lattices (L,2L) cross. Computing qL,y for several values of y allows us to
calculate qEA = 0.52(3) and 1/ν̂ = 0.39(5)
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Figure 7.3: Crossovers of Fq/L
y for a couple of values of y: y = 2.35 (top)

and y = 2 (bottom). The insets show in detail the crossing regions. Figure
from Phys. Rev. Lett. 105 177202.

7.5 Thermodynamic glass transition in a spin

glass without time-reversal symmetry

One of the main goals in spin glasses is to determine whether the Almeida-
Thouless line exists, because RSB scenario predicts that it does exist but
droplet scenario does not. In this paper (published in PNAS 109 6452-6456
in 2012 and in arxiv:1202.5593), a phase transition is searched and found in
a four dimensional Ising spin glass in a field. In fact, the RSB scenario holds
in the mean field approximation which is valid from infinite dimensions to
the upper critical dimension DU (remind that DU = 6). In this paper, the
existence of the phase transition in presence of a magnetic field is shown in
four dimensions, which are below the upper critical dimension.

We will define G(r) spatial autocorrelation function, Ĝ(k) the propaga-
tor in Fourier space and ξ2 the second-moment correlation length computed
from an Ornstein-Zernike expansion truncated in the quadratic term in k.
The usual way to search phase consists in studying whether ξ2/L has some
intersections for different sizes L. In this case, any intersection takes place
(as one can observe in the top panel of Figure 7.4), so it seems that the phase
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Figure 7.4: Top: plot of the ξ2 correlation length versus temperature at
h = 0.15. Any intersection is found. Bottom: plot of R12 versus temperature
at h = 0.15. One can observe now intersections. Figure from PNAS 109
6452-6456.

transition does not exist. However, this absence of intersections is due to the
anomalous behaviour of the propagator in the k = 0 mode (ξ2 does depend
of Ĝ(0)). We will define a new quantity that avoid this k = 0 problem:

R12 = Ĝ(k1)/Ĝ(k2), (7.10)

where k1 = (2π/L, 0, 0) and k2 = (0, 2π/L, 0). Now, in the bottom panel
of the figure 7.4 one can observe that intersections does exist, so a phase
transition happens. To compute its critical parameters, one has to perform
a bit technical analysis where one needs to assume that all the points of the
Almeida-Thouless line belong to the same universality class. In the Table
7.2, the critical parameters of a couple of external magnetic fields are shown.

h = 0.3 h = 0.15
Tc(h) 0.906(40)[3] 1.229(30)[2]
ν 1.46(7)[6]
η −0.30(4)[1]

Table 7.2: Critical parameters for different values of external magnetic fields.
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7.6 Reconfigurable computing for Monte Carlo

simulations: Results and prospects of the

Janus project

Janus is a supercomputer based on FGPA’s that has been essential to develop
this thesis. This paper (published in Eur. Phys. J. Special Topics 210, 33 in
2012) is a kind of review of Janus with a brief summary of its scientific results.
Using the Heat-Bath (HB) algorithm, one can compute the probability of one
spin in the site k be +1. It depends only on its nearest neighbours because the
difference between E(σk = +1) and E(σk = −1) is due to the interactions of
the spin in the site k with its nearest neighbours whereas the rest of the sum
to compute the energy, E, is exactly the same. Therefore, this probability is

P (σk = +1) =
e−E(σk=+1)/T

e−E(σk=+1)/T + e−E(σk=−1)/T
=

eϕk/T

eϕk/T + e−ϕk/T
(7.11)

which can be identify as a local field

ϕk =
∑
m

Jkmσm (7.12)

where m means the nearest neighbours of the site k. Therefore, to update
a spin k using HB algorithm, one should compute this probability, generate
a random number uniformly distributed in [0, 1] and, then, choose the spin
σk = +1 if the random number is smaller than P (σk = +1) or σk = −1
if the random number is bigger than P (σk = −1). Besides, one has to
deal with all the spins of the whole lattice to complete a Monte Carlo Step
(MCS). Fortunately, several characteristics of these operations (that one has
to compute to perform a MCS) allow us to accelerate the simulation. The
local field can only take several values, so one can compute them at the
beginning of the simulation and store them in a look-up table (LUT) in the
FPGA where the simulation is performed. Besides, one can deal with binary
variables instead of the actual physical ones so one can compute magnitudes
like ϕk using logical operations instead of arithmetic ones, which are quite
faster. For example, let Sk and Ĵkm be the binary variables of the spin σk

and the coupling Jkm. Then

Sk =
1− σk

2
(7.13)

Ĵkm =
1− Jkm

2
(7.14)

Fk ≡
∑
m

Ĵkm ⊗ Sm =
(2D − ϕk)

2
(7.15)
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where ⊗ means the XOR operation and D is the dimension of the lattice.
Moreover, the simulation can be accelerated with parallelism. The easiest

way to perform this parallelism is simulating different samples and replicas of
the same sample in different FPGA’s. However, parallelism is also useful in
a single FPGA, for example, updating several spins at the same time. Let us
imagine a chessboard scheme, if one wants to update a spin in a white site,
one only needs spins in black sites. Therefore, one can store all the white sites
of a lattice (an even the black sites of a replica) and update them parallely
because all of them depends only on the black sites (on the white ones of the
replica). In Janus, we have up to 800 update cells and every cell updates one
spin every clock cycle. Every update cell receives the 2D nearest neighbour
and couplings bit variables and one random number (generated by a 32 bits
Parisi-Rapuano generator). Then it computes the local field, compares it
with the random number and updates the spin. Therefore, we achieve up to
800 updates per second in every FPGA. For more details, please see Appendix
A.
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Chapter 8

Conclusions

In this thesis, Disordered Potts Model (DPM) and Edwards-Anderson Ising
Spin Glass Model (ISGM) have been studied, both in three dimensions. In
DPM (with the mean of the couplings J0 = 0) we have found spin glass phase
transitions for p = 5 and p = 6 states which take place at βc ∼ p. We also
computed the critical exponents to characterize the phase transition, where,
our main result in this model is found: as p increases, the phase transition
tends to a first order one. However, we did not find any sign of a phase
transition to a ferromagnetic phase at low temperatures, as predicted by
mean field theory, in the whole range of temperatures studied, although this
model allows its existence.

As far as ISGM is concerned, an in depth analysis have been performed.
The behaviour of systems in equilibrium and non-equilibrium (this one even
in presence of an external magnetic field) has been studied.

Firstly, we analysed the sample-to-sample fluctuations of the overlap dis-
tribution in order to check whether the system exhibits stochastic stability
and ultrametricity. To check the first one, we tested whether Eq. (3.20) holds
and we found a small discrepancy. Fortunately, it seems to be due to finite
size effects and tends to disappear as L grows. Regarding ultrametricity, we
did not manage to reach any clear conclusion about it, although it seems to
improve as the size of the system grows.

Furthermore, the phase transition of ISGM has been also studied with the
analysis of the zeros of the partition function. In fact, we have studied the
zeros in ϵ of an ISGM with a small perturbation ϵQ, where Q is the overlap.
At the critical temperature, the behavior of the zeros and the integrated den-
sity of zeros have been studied. The η exponents found in both studies are
compatible with previous results of Ref. [212]. Moreover, we have checked
the behaviour of the integrated density of zeros with the expected slope at
the origin computed with the value of qEA from the literature [200] with a
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satisfactory result. Besides, the low temperature phase have also been ana-
lyzed and the results obtained are compatible with those from the literature
achieved with more traditional techniques.

Regarding non-equilibrium behavior, we have found evidences of the ex-
istence of a glassy phase transition in three dimensions in presence of an
external magnetic field. Although we cannot determine if a thermodynamic
transition happens. The main evidence is the behavior of the autocorrelation
time τ , which grows from several order of magnitude as temperature is de-
creased. This effect suggests the existence of two different phases and fitting
its curve the critical temperature can be computed. Besides, fits of W and
q from low temperatures support the hypothesis of this phase transition and
even the expected critical temperatures are compatible.

Rejuvenation and memory have also been studied (in absence of an ex-
ternal magnetic field) using a quite large system L = 256. Unfortunately we
have not been able to reproduce the dip experiment.
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Conclusiones

En esta tesis se ha estudiado el Modelo de Potts Desordenado (DPM) y
el Modelo de Vidrios de Esṕın de tipo Ising de Edwards-Anderson (ISGM),
ambos en tres dimensiones. En el DPM (con valor medio de los acoplamientos
J0 = 0) hemos encontrado una transición a una fase de vidrio de esṕın para
p = 5 y p = 6 estados que tiene lugar a βc ∼ p. También hemos calculado
los exponentes cŕıticos para caracterizar la transición de fase, donde hemos
encontrado nuestro resultado más importante en este modelo: conforme crece
p, la transición tiende hacia una de primer orden. Sin embargo, no hemos
hallado signos de transición a una fase ferromagnética a bajas temperaturas,
como predice la teoŕıa de campo medio, en todo el rango de temperaturas
estudiado, aunque este modelo permite su existencia.

En lo que respecta al ISGM, se ha llevado a cabo un profundo análisis de
él. Se ha estudiado el comportamiento de sistemas en equilibrio y fuera del
equilibrio (este último incluso en presencia de un campo magnético externo).

En primer lugar, analizamos las fluctuaciones entre muestras de la dis-
tribución del overlap para comprobar si el sistema exhibe estabilidad es-
tocástica y ultrametricidad. Para comprobar la primera de ellas, compro-
bamos si se verificaba la Ec. (3.20) y hallamos una pequeña discrepancia.
Afortunadamente, parece ser debida a efectos de tamaño finito y tiende a
desaparecer conforme crece L. Respecto a la ultrametricidad, no hemos con-
seguido alcanzar ninguna conclusión clara, aunque parece que mejora con-
forme crece el tamaño del ret́ıculo.

Además, se ha estudiado la transición de fase del ISGM analizando los
ceros de la función de partición. De hecho, hemos estudiado los ceros en ϵ
de un ISGM con una pequeña perturbación ϵQ, donde Q es el overlap. En
la temperatura cŕıtica, se ha estudiado el comportamiento de los ceros y la
densidad integrada de ceros. Los exponentes η hallados en ambos análisis
son compatibles con los resultados previos de la Ref. [212]. Es más, hemos
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contrastado el comportamiento de la densidad integrada de los ceros con la
pendiente esperada en el origen calculada con el valor de qEA obtenido de
la literatura [200] con un resultado satisfactorio. Se ha analizado también
la fase de baja temperatura y los resultados obtenidos son compatibles con
los que se pueden encontrar en la literatura calculados con técnicas más
tradicionales.

Respecto al comportamiento fuera del equilibrio, hemos hallado eviden-
cias de una transición v́ıtrea en tres dimensiones en presencia de un campo
magnético externo. Aunque no hemos podido determinar si se lleva a cabo
una transición termodinámica. La principal evidencia es el comportamiento
del tiempo de autocorrelación τ , que crece varios órdenes de magnitud cuando
se incrementa la temperatura. Este efecto sugiere la existencia de dos fases
diferentes y ajustando su curva se puede calcular la temperatura cŕıtica.
Además, los ajustes realizados de W y q a bajas temperaturas apoyan la
hipótesis de esta transición de fase e incluso las temperaturas cŕıticas esper-
adas son compatibles.

También se ha estudiado el rejuvenecimiento y la memoria (en ausencia
de campo magnético externo) usando un sistema bastante grande L = 256.
Desafortunadamente no hemos conseguido reproducir el experimento dip.
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Janus

Spin glasses are systems with a extremely slow dynamics, so one has to
perform very long simulations to let the system reach the equilibrium. As
a consequence, the computation power is extremely important. Even if one
performs simulations out of equilibrium, one has to simulate a large amount
of MCS (recall that one MCS is equivalent to 1 ps in real experimental time)
and large lattices to avoid finite size effects, so these simulations are also very
CPU time demanding. Therefore the design of a special purpose machine
is a good option to deal with this problem. Besides, the characteristics
of spin glasses simulations suggest that a special purpose computer may
be even more interesting than in other traditional problems. For instance,
the dynamical variables only take a small quantity of values (in Edwards-
Anderson model, they only take two possible values) and many quantities
can be computed with binary logical operations. Furthermore, these systems
allows us to perform parallelization which may be optimized better in a
special purpose computer.

Due to these advantages that a special purpose computer may present
over traditional computer, designing of dedicated machines to this purpose
is not new, in fact the present machine, Janus, is a kind of third genera-
tion of these dedicated computers. The first generation was RTN [222] which
was built in Zaragoza in 1991 and was based on transputer processors. The
second generation was SUE [223] which was built in Zaragoza in 2000. This
machine was based on FPGAs (Field Programmable Gate Array) and the
update speed was 217 ps/spin. Finally, Janus was built by a collaboration of
the universities of Ferrara and Roma 1 la Sapienza in Italy and Extremadura,
Complutense of Madrid and Zaragoza in Spain (this collaboration is the so-
called Janus collaboration) in 2008. Janus is also based on FPGAs, although
a more modern version than the one used in SUE. We will present a brief
summary of the hardware architecture, how Janus is programmed and op-
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timizations performed (if the reader wants a more exhaustive information,
please see references [224, 225, 226]and, finally, the new generation of dedi-
cated machine that the Janus Collaboration is developing, Janus II.

A.1 Hardware architecture

Janus is a dedicated computer based on FPGAs. The FPGAs used in Janus
are Xilinx Virtex-4 LX200. Every board of Janus has 16 FPGA dedicated
to simulations, called SP (from Scientific Processor) and 1 FPGA dedicated
to data transfer and to control the SPs, called IOP (from Input/Output pro-
cessor). Every node (SP or IOP) is housed in a small board plugged into
the the main motherboard, so maintenance (for example, replacing nodes
that are out of order) is quite easy. A PC host controls the board with
a Gigabit-Ethernet connection (see Figure A.1 for a representation of this
configuration and Figure A.2 for a actual picture of a Janus board). Every
PC host controls two boards and Janus has 16 boards (8 PCs) in total, so
one can use 256 SPs to simulate. The SPs of a board are connected each
other with a nearest-neighbour toroidal network (see Figure A.3) and with
the IOP. The main clock of Janus is 62.5 MHz, although several parts of the
machine need faster clocks like the Gigabit-Ethernet interface in the IOP.

A.2 Programming in Janus. Optimizations

When one wants to perform a simulation in Janus, one has to develop a
program in the PC host. Only the spin updates will be made on the SPs,
so the rest of the simulation program like parallel tempering (although it
may also be performed in a Janus board [230]) has to be implemented in
the PC host. Besides, this program that runs in the PC must send to the
SP parameters of the simulation like the number of MCS to simulate, the
initial configuration of the spins if it is not randomly and so on. Obviously,
it also reads the configuration after the MCS simulated to measures physical
observables or just to store it. This program has to be made by the end user,
but a set of C libraries has been developed to make easier this communication
part of the program.

Furthermore, one must program the SPs themselves. FPGAs have a set
of logical gates that can be connected, activated or disactivated, that is, one
can program the hardware itself (using VHDL language, for example). This
useful property allow us to simulate different models, sizes, etc. just choosing
the suitable firmware of the SP. Once these firmwares are developed, the end
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Figure A.1: Configuration of a Janus board

user has just to select which one he needs, using our C libraries to program
the SPs with that firmware in a quite easy way again. Although the firmware
developed for every model has different details implementation to the rest
of models, we will comment some general details and optimizations of these
firmwares. Perhaps, the main optimization one can achieve in spin glasses is
parallelization. Let us imagine a chessboard where every square represents
one site of the lattices, that is, one spin. To update a white spin, one only
needs to know 2D (where D is the dimension of the system) black spins (see
figure A.4) due to the fact that only nearest neighbours contribute in the
Hamiltonian of these models. Therefore, to update the whole lattice one can
make two steps, fist updating all the spins of one colour and later update
all the spins of the other colour. Then, one can update parallely the spins
in every step, in fact we have achieved up to 1024 parallel engine updates
in Janus. A engine is a cell in the FPGA that updates one spin. It receives
the data of the spins and couplings of the nearest neighbours (remind that
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Figure A.2: A Janus board

Figure A.3: Nearest-neighbour toroidal network of the SPs of a Janus board

they belong to the other colour) and a random number. However a new
bottleneck appears, we need a new fresh random number in every update we
do for every engine. We have used the Parisi-Rapuano [227] that is based on
a so-called wheel (let I an element of this wheel) of at least 32 bits and the
following operations

I(k) = I(k − 24) + I(k − 55) (A.1)

R(k) = I(k)⊗ I(k − 61) (A.2)
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where R(k) is the random number generated. This algorithm to generate
random numbers can be easily implemented in a logic circuit and, even one
can obtain several random numbers at the same clock cycle, although the
logical circuit gets more complicated. In spite of this parallel generation
of random numbers, several different Parisi-Rapuano generators (with their
own wheel) are necessary.

Janus PC (2007-2008) PC (2011-2012)
16 3000 170

Table A.1: Time necessary for update one spin in a 3D-Ising spin glass model
(in ps/spin). Both PC simulations have been performed with SMSC strategy.
For the test of 2007-2008, when Janus was being developed, a Intel Core2Duo
(64 bits) 1.6 GHz processor was used. In the test of nowadays technology a
dual socket quad-core eight core Intel Sandy Bridge board was used. In this
case the time depends on the size of the lattice, we present here the time of
a L = 80 lattice.

Figure A.4: Update of a white spin. One only needs black spins

As an example of the improve of the simulating speed achieved with Janus
is shown in the table A.1 where the time to update in one spin in Janus is
compared with traditional PC, both processors that were available when
Janus were design and more modern ones. One can observe that even after 4
years, Janus is still one order of magnitude faster than multi-core processors.
Simulating Potts model, situation was even better because Janus is three
order of magnitude faster than processors available when it was designed,
the time of update in Janus is 64 ps/spin while in a PC was 117 ns/spin in
a four state 3D Potts glassy model.
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A.3 Janus II

The next generation of dedicated computer is currently being designed by the
Janus Collaboration. Several tests have been performed to decide the kind of
processor that fits best to our purpose (GPU, FPGA, etc.). Finally, FPGAs
have been chosen again, although a more recent version. Besides using a
new version of FPGA, faster and with more memory than the one used in
Janus I, several changes have been designed to improve the parallelization
of simulations and to make easier that researches of different groups can use
Janus II. Perhaps, the main improvement of Janus II is that the boards will be
linked each other, so the two dimensional nearest neighbour toroidal network
will become in a three dimensional one. Therefore, one can parallelize bigger
lattices.



Appendix B

Finite Size Scaling and the
Quotient Method

One of the more important problems that appears when one studies numer-
ically a spin glass is that we are only able to simulate small lattices, but in
nature we actually have far bigger system, in fact, we approximate a real
system as L → ∞, that is, the thermodynamic limit. We can deal with this
problem using the finite size scaling. The finite size hypothesis tells us that
the behavior of the system is determined by the ratio L/ξ(∞, t), where L is
the linear size of the lattice, ξ(∞, t) is the correlation length of the infinite
system, and t = (T − Tc)/Tc is the so-called reduced temperature. If this
quantity is large, we will be in the thermodynamic limit, and if it is small,
we will be in the FSS regime.

If O is an observable that diverges in the thermodynamic limit as

⟨O(∞, t)⟩ ∝ |t|−x0 (B.1)

the finite size scaling Ansatz predicts that the mean value of the observable
O behaves as

⟨O(L, t)⟩
⟨O(∞, t)⟩

= f̂0(L/ξ(∞, t) +O(ξ−ω, L−ω)) (B.2)

where f̂0 is a smooth function. One could use this equation with two different
sizes of the system, L and sL and obtain

⟨O(sL, t)⟩
⟨O(L, t)⟩

= F̂0(L/ξ(L, t) +O(ξ−ω, L−ω)) (B.3)

where F̂0 is also a smooth function. As ⟨O(L, t)⟩ and L/ξ(L, t) can be mea-
sured, one could fit the function F̂0 and extrapolate ⟨O(∞, t)⟩. However,
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this quantity will have three sources of error, the error on the measure of
⟨O(L, t)⟩ and L/ξ(L, t) and the error on the fit of F̂0. Because of this prob-
lem, a different method may be used.

We will use the so-called quotient method. Firstly we will rewrite the
finite size scaling Ansatz, Eq. (B.2), in a more useful way, using ξ(∞, t) ∝
|t|−ν (that is, the exponent xξ = ν) and Eq. (B.1)

⟨O(L, t)⟩ ∝ f̂0(L/ξ(∞, t)) |t|−
x0ν
ν = f̂0(L/ξ(∞, t))ξ(∞, t)

x0
ν (B.4)

hence, one can rewrite the expression as

⟨O(L, t)⟩ = L
x0
ν

[
f0(L/ξ(∞, t)) +O(ξ−ω, L−ω))

]
(B.5)

Using this equation for the correlation length, one can find ξ(∞, t) as a
function of ξ(L, t), so finally the expression of the finite size scaling Ansatz
is

⟨O(L, t)⟩ = L
x0
ν

[
F0(L/ξ(L, t)) +O(ξ−ω, L−ω))

]
(B.6)

One can form the quotient of the mean of the observable O between two
different sizes of the lattice, L1 = L and L2 = sL (where one usually chooses
s = 2)

QL
0 =

⟨O(sL, t)⟩
⟨O(L, t)⟩

(B.7)

and evaluate it at the temperature βL
c where

ξ(sL, t)

sL
=

ξ(L, t)

L
(B.8)

The result is
QL

0

∣∣
β=βL

c
= sx0/ν +O(L−ω) (B.9)

from which we can compute the exponents ratios x0/ν, but one has to be
careful because βL

c is not exactly βc

βL
c − βc ∝

1− s−ω

s1/ν − 1
L−ω− 1

ν (B.10)



Appendix C

Gaussian magnetic fields

In a spin glass glass with quenched random couplings, the physical relevant
information only depends on the first two moments of the distribution of
the site-depending magnetic field. Despite that, using a Gaussian distribu-
tion of the magnetic fields is more realistic and allow us to simplify with
analytic calculation some observables, in fact it allows us to simulate only
two replicas of the system instead of four. Besides, some relations between
the observables could be obtained. However a Gaussian magnetic field is
more CPU-demanding than a binary one because we have to deal with real
numbers instead of integer ones. As we performed our simulations mainly
in JANUS (see A for more information about it), this difference is of huge
importance, because we have to perform simulations with integer values of
the magnetic fields. However, we can use the Gauss-Hermite quadrature,
C.1, to approximate the behaviour of a system with Gaussian magnetic field
with a system with a magnetic field that only can take some integer values.

C.1 Gauss-Hermite quadrature

One can approximate the result of a the integral that depends of the Gaussian
distribution by using the Gauss-Hermite quadrature [167] that allows us to
use a field that only takes some discrete values∫

e−x2

f(x)dx ≈
n∑

i=1

ωif(xi) (C.1)

where xi are the roots of the Hermite polynomial, Hn(x), the weights, wi,
are given by

wi =
2n−1n!

√
π

n2 [Hn−1(xi)]
2 (C.2)
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and n is the number of points used in the approximation. This approximation
is useful because if we have a Gaussian magnetic field and we want to compute
the average of some observable, [O]h, we should calculate

[O]h =

∫
P (h)O(h)dh =

∫
1√
2πσ

e−h2/2σO(h)dh (C.3)

where σ = Hext. If we can use C.1 approximation to calculate C.3, we could
use a magnetic field that takes n integer values in our simulations with a
probability distribution given by wi. However, the integrals of C.1 and C.3
are different, so we have to do the easy change of variable y2 = x2

2σ2 . With
this change of variable, C.1 becomes∫

1√
2
√
πσ

√
2σe−y2/2σf(

√
2σy)dy ≈

n∑
i=1

ωif(
√
2σyi) (C.4)

hence, simplifying it, we obtain

1

π

∫
e−y2/2σ2

f(
√
2σy)dy ≈

n∑
i=1

ωif(
√
2σyi) (C.5)

C.2 Simplification of χSG

With C.5 we are able to approximate a Gaussian magnetic field simulating
just integer values. Besides, using a Gaussian magnetic field (or, in fact,
this approximation) we can simplify the expression of some observables, for
example the spin glass susceptibility, χSG. Let us write the naive expression
of the susceptibility

χSG =
1

V

∑
ij

[⟨σiσj⟩ − ⟨σi⟩⟨σj⟩]2 (C.6)

expanding the square

χSG =
1

V

∑
ij

⟨σiσj⟩A⟨σiσj⟩B + ⟨σi⟩A⟨σj⟩B⟨σi⟩C⟨σj⟩D

− 2⟨σiσj⟩A⟨σi⟩B⟨σj⟩C (C.7)

where A, B, C and D are real replicas of the system. We will express C.7 in
term of the overlap and one finally obtains that

χSG =
∑
ij

⟨qAB
i qAB

j ⟩+ ⟨qAC
i qBD

j ⟩ − 2⟨qAB
i qAC

j ⟩ (C.8)
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where qAB means the overlap between the replicas A and B, qBD the overlap
between the replicas B and D, and so on. Therefore one would need to
simulate four replicas to calculate this observable. However, thanks to a
Gaussian (or its approximation) magnetic field, we are going to demonstrate
that we will only need two replicas. We will define the following susceptibility

χSG =
1

3
A6 +

A10

2βh2
0

+
1

6

{
A18

β2h4
0

− 1− q − δx,0[q]h
β2h2

0

}
(C.9)

where
A6 = G1 (C.10)

A10 = βh2
0 {G1 − 2G2 + q} (C.11)

and
A18 = β2h4

0 {G1 − 6G2 + 6G3 + (1− 2q)}+ δx,0h
2
0[q]h (C.12)

where

G1 =
1

V

∑
ij

⟨σiσj⟩2 (C.13)

G2 =
1

V

∑
ij

⟨σiσj⟩⟨σi⟩⟨σj⟩ (C.14)

G3 =
1

V

∑
ij

⟨σi⟩2⟨σj⟩2 (C.15)

Firstly, we will demonstrate that C.9 is the same observable as C.7. Replacing
C.10, C.11 and C.12 in C.9 one finds that

χSG =
1

3
G1 +

1

2

βh2
0

βh2
0

{G1 − 2G2 + q}+ 1

6

{
β2h4

0

β2h4
0

(G1 − 6G2 + 6G3 + 1)

− 2q +
1

β2h4
0

δx,0h
2
0[q]h − 1− q − δx,0[q]h

β2h2
0

}
(C.16)

and operating

χSG =
1

3
G1 +

1

2
G1 −G2 +

1

2
q +

1

6
G1 −G2 + g3 +

1

6
− 1

3
q +

1

β2h2
0

1

6
δx,0[q]h

− 1

6
− 1

6
q − 1

β2h2
0

1

6
δx,0[q]h = G1 − 2G2 +G3 (C.17)

Now, we will demonstrate that one can calculate those three quantities
that appears in the expression C.9 of the χSG, A6, A10, and A18 simulating
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only two replicas, thanks to the Gaussian magnetic field. As A6 = G1, it is
obvious that it can be calculated with only two replicas, but A10 and A18 are
not so trivial. We will assume that

A10 = [hj⟨σiσj⟩⟨σi⟩]h (C.18)

A18 = [hihj⟨σiσj⟩]h (C.19)

then, one can calculate χSG with only two replicas.
We will demonstrate C.18, that is, we will demonstrate that A10 defined as
C.18 is the same quantity defined in C.11:

A10 =

∫
dhje

−h2
j/2h

2
0hj⟨σiσj⟩⟨σi⟩

=

∫
(−h2

0) dhj
d

dhj

(
e−h2

j/2h
2
0

)
⟨σiσj⟩⟨σi⟩ (C.20)

Now, we will integrate by parts,

A10 = −h2
0e

−h2
j/2h

2
0⟨σiσj⟩⟨σi⟩

∣∣∣∞
−∞

+ h2
0

∫
dhje

−h2
j/2h

2
0
d

dhj

⟨σiσj⟩⟨σi⟩ (C.21)

where the first term vanishes. It is easy to demonstrate that the derivative
of the thermal average of every observable, O, that does not depend on hj

with respect to this magnetic field, hi, is

d

dhj

⟨O⟩ = β (⟨Oσj⟩ − ⟨O⟩⟨σj⟩) (C.22)

So, in our case

d

dhj

(⟨σiσj⟩⟨σi⟩) = β
(
⟨σiσj⟩2 − 2⟨σiσj⟩⟨σi⟩⟨σj⟩+ ⟨σi⟩2

)
(C.23)

where we have used that σ2
j = 1, so ⟨σiσ

2
j ⟩ = ⟨σi⟩. Then,

A10 = h2
0

∫
dhje

−h2
j/2h

2
0
d

dhj

⟨σiσj⟩⟨σi⟩

= h2
0

∫
dhje

−h2
j/2h

2
0β (⟨σiσj⟩2 − 2⟨σiσj⟩⟨σi⟩⟨σj⟩+ ⟨σi⟩2)

= βh0

{
G1 − 2G2 + [q]h

}
(C.24)
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Finally, we have to demonstrate that A18 defined as in C.19 is the same
quantity defined in C.12. Due to the fact that in C.12 we have a Kronecker
delta, we will study two different cases, when i ̸= j and when i = j.

A18 =

∫
dhie−h2

i /2h
2
0

∫
dhje

−h2
j/2h

2
0⟨σi⟩⟨σj⟩hihj (C.25)

a) Case i ̸= j:
Let us named

Ij =

∫
dhje

−h2
i /2h

2
0⟨σj⟩hj (C.26)

Rewriting C.25 one has

A18 =

∫
dhie−h2

i /2h
2
0Ij (C.27)

Now we integrate it by parts and the result of the integrate is

A18 = −h2
0e

−h2
i /2h

2
0⟨σi⟩Ij

∣∣∞
−∞ + h2

0

∫
e−h2

i /2h
2
0
d

dhi

⟨σi⟩Ijdhi

= h2
0

∫
dhidhje−h2

i /2h
2
0
d

dhi

(⟨σi⟩⟨σj⟩hj) (C.28)

since i ̸= j,

A18 = h2
0

∫
dhidhje−h2

i /2h
2
0e−h2

j/2h
2
0hj

d

dhi

(⟨σi⟩⟨σj⟩) (C.29)

Now, we integrate by parts again and the result of the integrate is

A18 = −h4
0e

−h2
j/2h

2
0e−h2

i /2h
2
0
d

dhj

(⟨σi⟩⟨σj⟩)
∣∣∣∣∞
−∞

+ h4
0

∫
dhidhje

−h2
j/2h

2
0e−h2

i /2h
2
0

d2

dhidhj

(⟨σi⟩⟨σj⟩) (C.30)

that is

A18 = h4
0

[
d2

dhidhj

(⟨σi⟩⟨σj⟩)
]
h

(C.31)

Now, we will calculate the second derivative by using twice the equation
C.22

d2

dhidhj

(⟨σi⟩⟨σj⟩) = β2
[
⟨σiσ

2
j ⟩⟨σi⟩+ ⟨σ2

i ⟩⟨σ2
j ⟩ − 2⟨σi⟩2⟨σ2

j ⟩

− 2⟨σ2
i ⟩⟨σ2

j ⟩+ ⟨σ2
i σj⟩⟨σj⟩ −6⟨σiσj⟩⟨σi⟩⟨σj⟩

+ 6⟨σi⟩2⟨σj⟩2 + ⟨σiσj⟩2
]

(C.32)
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Since σ2
i = σ2

j = 1

A18 = β2h4
0[1− ⟨σi⟩2 − ⟨σj⟩2 − 6⟨σiσj⟩⟨σi⟩⟨σj⟩+ 6⟨σi⟩2⟨σj⟩2 + ⟨σiσj⟩]h

= β2h4
0

[
1− 2[q]h − 6G2 + 6G3 +G1

]
(C.33)

b) Case i = j In this case, the equation C.25 becomes

A18 =

∫
dhh2e−h2/2h2

0⟨σi⟩2 (C.34)

we will integrate by parts and the result is

A18 = −h2
0e

−h2/2h2
0h⟨σi⟩2

∣∣∞
−∞ + h2

0

∫
dhe−h2/2h2

0⟨σi⟩2

+ h2
0

∫
dhe−h2/2h2

0h
d

dh
⟨σi⟩2 (C.35)

The first of this integrals is trivial, it is the average of ⟨σi⟩2 over the
magnetic field. To compute the second one, we will integrate it by parts,
so one has

A18 = h2
0 [⟨σi⟩2]h − h2

0e
−h2/2h2

0
d

dh
⟨σi⟩2

∣∣∣∣∞
−∞

+ h4
0

∫
dhe−h2/2h2

0
d2

dh2
⟨σi⟩2

= h2
0 [⟨σi⟩2]h + h4

0

[
d2

dh2
⟨σi⟩2

]
h

(C.36)

Now we have to calculate the second derivative of ⟨σi⟩2 with respect to h
using C.22 twice

d2

dh2
⟨σi⟩2 = β2

(
2− 8⟨σi⟩2 + 6⟨σi⟩4

)
(C.37)

so, finally we have

A18 = h2
0 [⟨σi⟩2]h + h4

0 [β
2 (2− 8⟨σi⟩2 + 6⟨σi⟩4)] = h2

0 [q]h

+ β2h4
0

[
2− 6G2(i = j)− 2[q]h + 6G3(i = j)

]
(C.38)

where we have used that G1(i = j) = 1. Therefore, for every i,j, the
general expression of A18 is

A18 = β2h4
0

(
G1 − 6G2 + 6G3 + 1− 2[q]h

)
+ δijh

2
0[q]h (C.39)
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C.3 Relation between the overlap and the mag-

netic energy

As it is explained in section 4, one can define several observables like the
overlap

q(tw) =
1

V

∑
i

σ
(1)
i (tw)σ

(2)
i (tw) (C.40)

the magnetic energy

Emag(tw) =
1

V

∑
i

hiσi(tw) (C.41)

and

W = 1− TEmag

h2
0

(C.42)

Besides, at the equilibrium W and q must satisfy

W = ⟨q⟩ (C.43)

Now, we will demonstrate the relation C.43, integrating by parts. Firstly,
one can rewrite C.42 using C.41. Besides, we will make explicit the average
over the disorder due to couplings disorder (overline) and magnetic disorder
([· · · ]h).

W = 1−
T [
∑

i hi⟨σi⟩]h
V h2

0

= 1−
T
∑

i

∫
dh√
2πh0

hi⟨σi⟩e−h2
i /2h

2
0

V h2
0

(C.44)

This integrate can be solved integrating by parts, so the result of the integrate
in C.44 is∫

dh√
2πh0

hi⟨σi⟩e−h2
i /2h

2
0 =

−h2
0√

2πh0

e−h2
i /2h

2
0⟨σi⟩

∣∣∣∣∞
−∞

+ h2
0

∫
dh√
2πh0

d

dh
(⟨σi⟩) e−h2

i /2h
2
0 (C.45)

where the first term vanishes. One can compute the derivative using C.22

d

dh
(⟨σi⟩) = β

(
1− ⟨σi⟩2

)
(C.46)

where we have used that σ2
i = 1. Therefore the integrate in C.44 can be

expressed as∫
dh√
2πh0

hi⟨σi⟩e−h2
i /2h

2
0 = h2

0β

(
1−

∫
dh√
2πh0

β⟨σi⟩2e−h2
i /2h

2
0

)
(C.47)
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and replacing it in C.44

W = 1−
Tβh2

0

∑
i

(
1−

∫
dh√
2πh0

β⟨σi⟩2e−h2
i /2h

2
0

)
V h2

0

= [⟨q⟩]h (C.48)

so the relation C.43 at equilibrium is demonstrated.



Appendix D

Lee-Yang zeros

A new tool to study phase transitions was introduced in 1952 by T. D.
Lee and C. N. Yang [172] [173] while they were studying the behavior of a
lattice gas (although this model is equivalent to an Ising model in a magnetic
field [4]). They demonstrated that the zeros of the partition function, Z,
are located on the unit circle in the complex activity plane. Besides, the
distribution of these zeros provides us with information about the existence
of a phase transition. If the zeros do converge onto the real axis at a given
βc when the number of spins, N , tends to ∞, the free energy, F , will not
remain analytic and the system undergoes a phase transition at βc, whereas
if the zeros do not converge onto the real axis, F will remain analytic and
the phase transition does not exist.

We will use an Ising model on a graph of N sites and one link joining
every pair of nodes (every site could have at most two links). Therefore, the
number of nearest neighbours is z = 2, so one can compute the total number
of links

L =
Nz

2
(D.1)

The partition function is

Z =
1

2N

∑
σi=±1

exp

β
∑
(ij)

σiσj +
∑
i

hiσi

 (D.2)

where
∑
(ij)

denotes a sum over all links and hi is the magnetic field at the site

i. Defining two new variables

ρi = e−2hi (D.3)

τ = e−2β (D.4)
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Notice that, due to the fact that β ∈ (0,∞), τ is real and 0 < τ < 1. One
can rewrite the partition function as

Z =
1

2N
exp

(
βL+

∑
i

hi

)
P (τ, ρi) (D.5)

where P is

P =
∑
σi±1

exp

β∑
(ij)

(σiσj − 1) +
∑
i

hi (σi − 1)

 (D.6)

One can realise that P is a polynomial in ρi and τ . Now, the problem of
finding the zeros of the partition function has become a problem of finding
the zeros of the polynomial P . If ρ and τ are both real and positive, P never
vanishes, so we will assume that ρ is complex.

Now, we will report how to construct the polynomial P of a general graph.
Firstly, we will construct it in the easiest cases: graphs with two and three
sites. Later we will demonstrate that we can construct P of a general graph
from these simple cases. Let P12 be the polynomial of a two sites graph, and
P123 the one of a three sites graph. It is easy to compute that

P12 = 1 + τ(ρ1 + ρ2) + (ρ1ρ2) (D.7)

P123 = (1 + ρ1τ)(1 + ρ3τ) + ρ2(τ + ρ1)(τ + ρ3) (D.8)

Now, we will demonstrate that we can calculate P123 just joining two graphs
with two sites, that is, if one know P12, one can compute P123 without using
Eq. (D.6). Obviously, if we have two separate subsets of the graph, P
factorizes, so one can write P = P (1)P (2) and this property does not depend
on the numbers of sites, N (1) and N (2) of every subset. Let a be a site of the
first subset and b a site of the second one. It is trivial to write P (1) and P (2)

as

P (1) = A+ + ρaA−

P (2) = B+ + ρbB− (D.9)

where A+ and B+ are the contributions when the spins are up, that is σa = 1
and σb = 1; and A− and B− are the contributions when the spins are down,
that is σa = −1 and σb = −1. Therefore, one can compute the polynomial
P as

P = P (1)P (2) = A+B+ + ρaA−B+ + ρbA+B− + ρaρbA−B− (D.10)
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Now, one can identify the site a and the site b, so one will have just one
connected graph, this process is called contraction process. Let ρab be the
new activity variable of the new site and P (12) the polynomial of the new
contracted graph. Using Eq. (D.10), one can compute P (12), but, obviously,
as now sites a and b are the same site, terms with factor A+B− or A−B+
have no sense and Eq. (D.10) becomes

P (12) = A+B+ + ρabA−B− (D.11)

One can check that, for instance, P123 can be computed using Eq. (D.11)
and two graphs with two sites. The first graph has the sites 1 and 2a and
the second graph has the sites 2b and 3. Using Eq. (D.7) one can write that

P
(1)
12 = (1 + τρ1) + (τ + ρ1)ρ2a ≡ A+ + ρ2aA− (D.12)

P
(2)
12 = (1 + τρ3) + (τ + ρ3)ρ2b ≡ B+ + ρ2bB− (D.13)

Identifying the sites 2a and 2b and calling the new activity variable ρ2, one
can use Eq. (D.11) and the result is the same that we calculated in Eq.
(D.8).

Moreover, this contraction precess also works in a connected graph. There-
fore, one can identify two different sites of the graph, a and b, as a unique
site ab. Before identifying the two sites, the polynomial P is

P = A++ + A−+ρa + A+−ρb + A−−ρaρb (D.14)

but after identifying them, Eq. (D.14) becomes

P (ab) = A++ + ρabA−− (D.15)

We will check this property computing the polynomial of a four nodes graph
and using it to calculate the polynomial of a cyclic three nodes graph by
identifying the extreme sites. Firstly, the polynomial P of a four sites graph
is

P1234 = 1 + τ {ρ1 [1 + ρ2 (1 + ρ3)] + ρ4 [1 + ρ3 (1 + ρ2)]} (D.16)

+ τ 2 [ρ1ρ4 (1 + ρ2 + ρ3) + ρ2 (1 + ρ3) + ρ3]

+ τ 3 (ρ1ρ3 + ρ2ρ4) + ρ1ρ2ρ3ρ4

so, identifying the two outer nodes, 1 and 4, one obtains

Pcyclic = 1 + τ 2 (ρ1 + ρ2 + ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3) + ρ1ρ2ρ3 (D.17)

Therefore, we have demonstrated that one can construct every graph (with
the only condition that every site must have at most two links) by joining
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two sites graphs. Thus, we will study the zeros of the polynomial of a two
sites graph and later we will generalize the result. As we defined P12 in Eq.
(D.7), its roots have the form

ρ1 =
1 + τρ2
τ + ρ2

(D.18)

This expression defines a one to one relation between ρ1 and ρ2. As τ is real,
the unite circle is invariant. And due to the fact that 0 < τ < 1, this relation
exchanges the points inside the unit circle with the ones outside it. Then
it is obvious that if |ρ1| < 1 and |ρ2| < 1 or both are smaller than 1, the
polynomial does not vanish. This property can be generalize to every graph
because it survives the contraction process. Let a and b be the sites that we
will identify, and fixing all of the rest of ρi to be inside the unit circle. The
polynomial P has the form

P = A++ + ρ (A+− + A−+) + ρ2A−−

since P ̸= 0 if |ρa| < 1 and |ρb| < 1, |A++| ≥ |A−−|. Besides, Eq. (D.15)
indicates that P (ab) = A++ + ρabA−− so we realise that P (ab) can not vanish
if all of the roots of the partition function are inside the unit circle. The
system has a symmetry under inversion of the magnetic field of every site
(h → −h ⇒ ρ → ρ−1). We will sets now all ρi to the same value (ρi ≡ ρ ∀i),
that is, we will have a uniform external magnetic field. Then the previous
symmetry tells us Z(h) = Z(−h), so from Eq. (D.5) we have that

eNhP (τ, ρ) = e−NhP (τ, ρ−1) ⇒ P (τ, ρ) = ρNP (τ, ρ−1) (D.19)

Therefore if all the roots of the polynomial P lie inside the unit circle or all of
them are outside it, the partition function can not vanish, so it only vanishes
if the roots are in unit circle.

Now, we will write the free energy, F , using Eq. (D.5)

F =
1

N
log(Z) =

zβ

2
+ h− log(2) + lim

N→∞

1

N
logP (τ, ρ) (D.20)

The polynomial P can be factorized in its roots

P =
N∏
a=1

(
1− ρ

ρa(τ)

)
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So, the free energy can be rewritten as

F =
1

N
log(Z) =

zβ

2
+ h− log(2) +

1

N

N∑
a=1

log

(
1− ρ

ρa(τ)

)
One can define an angular density of the zeros µ(φ) with the properties

µ(φ) = µ(−φ) ≥ 0 (D.21)∫ π

−π

dφµ(φ) = 1 (D.22)

where Eq. (D.21) is due to the symmetry of the system on h. Therefore, we
finally find that the free energy is

F =
1

N
log(Z) =

zβ

2
+ h− log(2) +

∫ π

−π

dφµ(φ) log

(
1− ρ

ρa(φ)

)
(D.23)

Now, we will study the magnetization, M , that is the first derivative of the
free energy, when the external field h → 0

M =
∂F

∂h
= 1 +

∫ π

−π

dφµ(φ)
∂

∂h

[
log
(
1− ρe−iφ

)]
(D.24)

as our expressions are in function of ρ instead of h, we will change the deriva-
tive

∂

∂h
=

∂ρ

∂h

∂

∂ρ
= −2ρ

∂

∂ρ
(D.25)

and, using Eq. (D.21) we finally find that

M = 1 + 2

∫ π

−π

dφµ(φ)
ρe−iφ

1− ρe−iφ
=

∫ π

−π

dφµ(φ)
1 + ρe−iφ

1− ρe−iφ

=

∫ π

−π

dφµ(φ)
1− ρ2 − 2isin(φ)

1− 2ρcos(φ) + ρ2

=

∫ π

−π

dφµ(φ)
1− ρ2

1− 2ρcos(φ) + ρ2
(D.26)

where the term with the sin(φ) vanishes because it is an odd function but
we are integrating in an even interval. One can observe that when h → 0,
that is, ρ → 1, the magnetization tends to 0 except when cos(φ) = 1 which
indicates us the existence of a phase transition.

As we present at the beginning of this appendix, a phase transition hap-
pens if cos(φ) = 1, that is, if zeros converge onto the real positive axis when
N → ∞. Besides, with a contour integrate (applying residues), one can
obtain that for τ < τc

M± = lim
h→±0

M = ±2µ(0) (D.27)
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Appendix E

Thermalization in disordered
systems

When one simulates with statistical systems in the equilibrium, one has to be
sure that the system has actually reached the equilibrium before analysing
it, that is, if the system is thermalized. Therefore, one has two different
problems, specially with systems with a so slow dynamics as spin glasses: the
first is how one can accelerate the thermalization of the system to achieve
that it reaches the equilibrium as faster as possible; and the second problem
is how one can know if the system is really thermalized. There are several
algorithms to help with the first problem, for example the parallel tempering
algorithm which will be explained in this thesis, because is the algorithm
that we have used in our simulations. Besides, one can deal with the second
problem with several thermalization tests, in this thesis, logarithmic data
binning and random-walk in temperatures will be explained.

E.1 Parallel Tempering Algorithm

Due to the fact that the free energy of a spin glass at low temperatures is ex-
tremely rugged, if you fix the system at a low temperature (smaller than the
critical one) and let it evolve in a usual Monte Carlo simulation, its dynam-
ics will be very slow because it may fall into the valley of a local minimum
which the time that the system needs to escape is too large. Therefore, the
simulating time need to reach the equilibrium is too long and makes the sim-
ulation impossible. To solve this problem, in parallel tempering algorithm
[228] one simulate several copies of the system at different temperatures (low
and high ones) and try to exchange its temperatures after a few MC steps.
The higher temperature should be a temperature in the paramagnetic phase
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where the system evolves quickly and the lowest temperature should be a
temperature that we expect that gives us relevant information, because it is
very time-demanding. This election is useful because when a configuration
that is at a low temperature is changed to a high temperature, it will forget
the local minimum where it stayed at the low temperature. Therefore, the
algorithm works accurately if every configuration visits frequently temper-
atures up and below the critical one. For example, in Figure E.1, one can
observe this behavior.
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Figure E.1: Evolution of the index of the β where a given configuration
stays. Notice that . Data from Potts (Section 2) simulations: a sample with
p = 5 and L = 12.

Let NT be the number of temperatures (or copies of every sample) that
we are simulating and let {β1, · · · , βi, βi+1, · · · , βNT

} be the set of actual
inverse of the temperatures one has. In a parallel tempering update, one
tries to exchange the configuration that are a certain temperature βi and
the configuration at the following βi+1 (sequentially from the lowest to the
highest temperature), so a given configuration may change of temperature
several times in a unique update. Let X and X ′ be the configurations, the
probability with one accepts the exchange is

P = min {1, (βi − βi+1) [E(X ′)− E(X)]} (E.1)

Therefore, one has to set the following parameters to perform a simulation
with parallel tempering: the set of temperatures to simulate and the number
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of MC steps between every parallel tempering update. To choose the set of
temperatures (the highest and lowest one are chosen as it is explained before)
the histograms of the energy at two neighbours temperatures should overlap
to achieve that the acceptance of the exchange is large enough. The number
of MC steps between parallel tempering updates is easier to set, because
a few MC steps are usually enough in spin glasses to the system forgets.
For example, in Janus, where a parallel tempering update is far more time-
consuming than a MC step (because parallel tempering is usually perform in
the PC that controls the simulation, so one has the typical delays due to the
communications) the election 10 MC steps between parallel tempering has
been frequently chosen.

E.2 Thermalization tests

E.2.1 Logarithmic Data Binning

When a statistical system is in equilibrium it may change its microstate, but
the macrostate (the actual information one has) does not change, that is,
if one measures an observable in a system in equilibrium, the value of the
observable will not change although the system is in a different microstate
(obviously, the value of the observable really changes due to statistical fluc-
tuations within the error of our measures). This property can be used to
determine whether or not the system is in the equilibrium. We will divide
the total simulating time in blocks bn =

(
tsim
2n+1 ,

tsim
2n

)
where tsim is the total

time of the simulation. Therefore in the first block b0 one has the last half
of the measurements, in the second block one has the last half of the rest of
the measurements (that is, the second quarter of them) and so on. Then,
one performs thermal average of an observable in every block and if a few of
the first blocks have the same average (within the error), that is, if they are
in a plateau, it indicates that the system is thermalized. If the system is not
thermalized, one should extend the simulation (of all the samples) until the
system satisfy this criterion.

E.2.2 Random Walk in Temperature

The previous method has the disadvantage that we have to extend the sim-
ulation of all the samples if the system is not thermalized although some of
them may be actually thermalized but a few hard to thermalize sample are
far to get the equilibrium. Therefore, one would like to determine if a single
sample is thermalized to extend only those samples unthermalized and, then,
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one can save computing time. This method, which was introduced in [229]
and perfected in [230], allows us to detect the samples that must be extended.
If one is using a parallel tempering algorithm (see section E.1), every configu-
ration must cover the whole temperature range, changing several times from
lowest to highest temperature. Let us consider the set of NT inverse tem-
peratures {β(0), . . . , β(NT−1)}, so one has NT configurations (in fact, one will
have more systems because one usually needs to simulate several replicas)
evolving in parallel with parallel tempering. Let β(i)(t) be the inverse tem-
perature of the configuration i at time t. Now, one has to consider a function,
f(i), defined on the index of inverse temperatures i ∈ (0, . . . , NT − 1) which
should be monotonic and must change its sign in the critical temperature,
that is, if βi > βc > βi+1, the function f(i) must change its sign between i
and i+ 1. The last condition that f(i) must satisfy is that

NT−1∑
i=0

f(i) = 0 (E.2)

which in equilibrium is equivalent to ⟨f⟩ = 0, due to the fact that the proba-
bility that the configuration i is at a certain temperature of the set is uniform

P (βi) =
1

NT

(E.3)

One is allowed to chose every arbitrary function that satisfies these condi-
tions. If the set of temperatures is symmetrical, that is, one has the same
number of temperatures higher and lower than the critical one, the simplest
function is a linear one.

Now, one can define the correlation function

C(t) =
1

N − |t|

N−|t|∑
s=1

f(is)f(is+t) (E.4)

where N is the total simulation time. Besides, the normalized quantity can
also be defined

ρ(t) =
C(t)

C(0)
(E.5)

and with this quantity, one can compute the integrated autocorrelation time

τint =

∫ Λint

0

dtρ(t) (E.6)

where Λint = ωtint is a self-consistent window. Besides, one can average over
the NT configurations evolving in the parallel tempering.
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This algorithm even allows us to compute the exponential autocorrela-
tion time, which has more physical importance although it is usually far
more complicated to compute. The correlation function can be extended on
exponentially decaying modes

ρ(t) =
∑
j

Aje
−t/τexp,j , where

∑
j

Aj = 1 (E.7)

Then, the exponential autocorrelation time, τexp is the maximum of these
τexp,j. To compute τexp one has to fit the experimental data of ρ(t) to a
function like E.7. Since one has a large amount of different samples, one
should make so many fits that an automatic algorithm must be developed.
Firstly, one should choose a simply function f(i) (the relative sizes of Aj

depends on this choice) and average f over consecutive measures (this bins
must be far shorter than τ) to remove the fast modes. Then, one can fit the
experimental data to a function with only two modes, using the information
of τint to set automatically the initial values of the parameters of the fit,
because of the fact that τexp and τint have usually the same order of magnitude
(in fact, if E.7 has only one mode, τexp = τint).
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Appendix F

Behaviour of a disordered first
order phase transition

In this appendix, the expected values of the “effective critical exponents”
of a disordered first order phase transition will be computed [231]. In the
following we will consider a diluted model with dilution p. Firstly, we will
demonstrate an upper bond in the divergences of the specific heat and the
connected susceptibilities. Let A be an observable, following Ref. [232], one
can obtain

d⟨A⟩
dp

≤ a

√
⟨A2⟩LD/2 (F.1)

where D is the dimension of the system. We will assume that

√
⟨A2⟩ and

⟨A⟩ are of the same order of magnitude. Then, it is easy to rewrite the Eq.
(F.1) as

d log ⟨A⟩
dp

≤ LD/2 (F.2)

The logarithmic derivative contains information about the width of the crit-
ical region on a finite system. For example, in a susceptibility peak, the
difference between the spin dilution and its thermodynamic limit is of the
same order of magnitude of L−D/2. Besides, one can define an effective ex-
ponent ν which tells us that this difference is of the same order of magnitude
of L−1/ν , so one can write that

ν ≥ 2

D
(F.3)
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A similar argument is also valid for the derivative with respect to the mag-
netic field, so the logarithmic derivative of an observable A (in fact its mean
value) with respect to the magnetic field diverges at most as fast as LD/2,
which is the upper bound of the specific heat and connected susceptibilities.

Now, we will compute the “effective exponents” for a first order phase
transition on a finite size system in presence of disorder. In this kind of phase
transition, two different phases coexist. We will assume that the lattice size
is far larger than the correlation length of every phase. Let us label with
the subscript ′+′ quantities of the high temperature phase and with the
subscript ′−′ quantities of the low temperate one. Then, we will define some
interesting quantities: let T ∗ be the temperature at which the correlation
length divided by the lattice size is constant, that is

ξ(L1, t)

L1

=
ξ(L2, t)

L2

(F.4)

where t ≡ (T − T ∗) /T ∗; let Q be the latent heat, defined as Q = E+ − E−;
let gE4 be the binder cumulant of the energy defined as

gE4 =
1

2

(
3− ⟨E4⟩

⟨E2⟩
2

)
(F.5)

and finally let Cv be the specific heat. Then, following Ref. [233] in a first
order phase transition without disorder, one can get

T ∗(L)− Tc = a(Q)L−D (F.6)

Cv(T
∗) = c1(Cv+, Cv−) + c2(Q)LD (F.7)

1− gE4 (T
∗) = g1(E+, E−) + g2(E+, E−, Cv+, Cv−)L

−D (F.8)

where a(Q), C2(Q) and g1(E+, E−) vanish if Q = 0. However, we have
demonstrated the existence of an upper bound for the divergences of the
specific heat in presence of disorder, so in a disordered first order phase
transition, Eq. (F.6) should be rewritten as

T ∗(L)− Tc = b(Q)L−D/2 (F.9)

Therefore, if one assumes that the observables diverges as fast as possible,
one can get the following “effective critical” exponents.

1

ν
=

D

2
(F.10)

α

ν
=

D

2
(F.11)

γ

ν
=

D

2
(F.12)

(F.13)
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Finally, using

η = 2− γ

ν
(F.14)

one obtains that in d = 3, ν = 2/3 and η = 1/2.
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[101] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, Phys.
Rev. Lett. 52, 1156 (1984) “Nature of the Spin-Glass Phase”.
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Muñoz Sudupe A, Navarro D, Parisi G, Perez-Gaviro S, Ruiz-Lorenzo
J J, Schifano S F, Sciretti D, Tarancon A, Tripiccione R and Yllanes
D (Janus Collaboration) 2009 J. Stat. Phys. 135 1121

[200] Baños R A, Cruz A, Fernandez L A, Gil-Narvion J M, Gordillo-
Guerrero A, Guidetti M, Maiorano A, Mantovani F, Marinari E,
Martin-Mayor V, Monforte-Garcia J, Muñoz Sudupe A, Navarro D,
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Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schi-
fano, B. Seoane, A. Tarancon, R. Tripiccione and D. Yllanes, J. Stat.
Mech. P06026 (2010). “Nature of the spin-glass phase at experimental
lenght scales”.

[231] A. Maiorano, V. Martin-Mayor, J. J. Ruiz-Lorenzo and A. Taran-
con, Phys. Rev. B 76, 064435 (2007). “Weak first-order transition in
the three-dimensional site-diluted Ising antiferromagnet in a magnetic
field”.

[232] J. T. Chayes, L. Chayes, D.S. Fisher and T. Spencer, Phys. Rev. Lett.
57, 2999 (1986). “Finite-Size Scaling and Correlation Lengths for Dis-
ordered Systems”.

[233] M. S. S. Challa, D. P. Landau and K. Binder, Phys. Rev. B 34,
1841 (1986), “Finite-size effects at temperature-driven first-order tran-
sitions”.



232 BIBLIOGRAPHY



List of Figures

1.1 Susceptibilidad del CuMn con un protocolo de enfriamiento
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