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ABSTRACT 

The set of coupled Boltzmann equations for a binary mixture of 
"colored" Maxwell molecules in a steady shear flow state has been 
solved. Color diffusion is generated in the system by means of an 
external field. The velocity moments can be expressed in terms of the 
solution of a quartic equation. In particular, the color ·conductivity 
and the shear viscosity coefficients have been obtained as nonlinear 
functions of the shear rate and the field strength. 

1. INTRODUCTION 

One of the main objectives in kinetic theory is the search for 

exact solutions of the nonlinear Boltzmann equation. Those solutions 

are generally hard to find, especially due to the mathematical 

difficulties embodied in the Boltzmann collision term. The interest 

for exact solutions has been greatly stimulated by the discovery of an 

explicit solution for Maxwell molecules in a spatially homogeneous 

situation, the so-called BKW-mode.1 In the case of inhomogeneous 

states, the most physically interesting solutions correspond to planar 

shear flow at uniform temperature and density (usually referred to as 

"uniform shear flow")2 and steady heat flow at constant pressure. 3 

Both solutions refer to Maxwell molecules and are constructed in terms 

of the velocity moments of the distribution function. 
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4 Recently, the hierarchy of moments of the Boltzmann equation for 

a binary mixture of Maxwell molecules has been exactly solved in the 

homogeneous color conductivity problem. Particles of both species are 

distinguished by a "color charge", but otherwise they are mechanically 

equivalent. The solution corresponds to a nonequilibrium homogeneous 

stationary state driven by an external force which accelerates 

particles of different colors along opposite directions, keeping the 

temperature constant. To the best of our knowledge, the only previous 

solution of the Boltzmann equation for a multicomponent system was 

obtained by Ernst and Hendriks for a 20 homogeneous and isotropic 

system of so-called "very hard particles". 5 

In this paper, we extend the previous color problem to an 

inhomogeneous situation. More concretely, the system as a whole is 

under uniform shear flow, so that the mean velocity has a linear 

profile. In addition, as in the homogeneous color case, an external · 

field induces mutual diffusion in the system. Thus, there are two 

independent nonequilibrium parameters: the shear rate and the field 

strength. As a consequence, this problem exhibits a strong coupling 

between mass and momentum transport. The main generalized transport 

coefficients (shear viscosity and color conductivity) depend on both 

nonequilibrium parameters and are the quantities we are going to focus· 

on. It is worth noticing that the solution we report here reduces to 
2 4 the cases of pure shear flow and pure color in the respective 

limits. 

This paper is organized as follows. For the sake of completeness, 

the homogeneous color conductivity state is briefly described in Sect. 

2. Section 3 is concerned with color conductivity under uniform shear 

flow. Exact expressions for the color conductivity, the shear 

viscosity, and the viscometric functions are explicitly obtained. Some 

final remarks are included in Sect. 4. 

2. HOMOGENEOUS COLOR CONDUCTIVITY STATE 

Let us consider a binary mixture constituted of mechanically 

equivalent particles of "color" 1 and "color" 2. The system is driven 
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to a steady homogeneous nonequilibrium state by the action of a 

constant external force that accelerates particles of different colors 

in opposite directions. This force plays the role of a chemical 

potential gradient. Further, a drag force is included to keep the 

temperature constant. This state has been simulated by molecular 
6 dynamics in dense systems. 

In a dilute system, all the physical information is contained in 

the velocity distribution functions f (f), r=l, 2. These functions 
r 

obey a coupled set of two Boltzmann equations: 

F cii 
!!.._ . (-

1 
- f <ii) = J[f ,f I + J[f ,f I ai m 1 1 1 1 2 

(1) 

and a similar equation for f 
2

• Here, m is the mass of a particle, 

f=f 1 +f 2 is the total distribution function, J is the Boltzmann 

collision operator, which in standard notation reads 7 

J[f , f I = Jdf JdQ I f-f I uCj f-f I • 0 )[ f Cf' )f (f' )-f (f)f (f )) 
rs 1 1 Ir slr sl (2) 

and F (f) is the external force producing color diffusion: 
r 

F <i> 
r 

-k Tt -a~ 
B r 

(3) 

In Eq. (3), T is the temperature, t is a constant vector and a is a 
r 

thermostat parameter identical for all the particles. 

The first moments of f are given by 
r 

n = dv f (v) , J
~ ~ 

r r (4) 

(5) 
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and 

P = dv m v v f (v) , J ~ ~ ~ ~ 

=r r 

(6) 

where n 
r 

is the number density, j is the particle flux, and ~ is the 
r 

pressure tensor. In general, the coupled set of two Boltzmann 

equations does not seem to be solvable. However, the corresponding 

b Solved l·n a recursive way if one restricts moment equations can e 

oneself to Maxwell molecules (particles interacting via a potential 

cp(r)=Kr-4). In this case, the first moments of the collision term are 

given by 

Jdi Jlf ,f I = o , 
r s 

(7) 

Jdi °i Jlf ,f I 
r s 

-;\(n j -n j) 
s r r s 

(8) 

Jd°i m ~ ~ J[f ,f 1 
r s 

;\' [ ( n p +n p +~mJ .J ll-(n P +n P ) 
sr rs3 rs= s=r r=s 

+m(J j +J j ) 1 - ;\(n P - n P ) 
s r r s s=r r=s 

(9) 

1/2 and 1 tr P is the partial Here, ;\=l.19n(K/m) , ;\'=0.777 A, pr-3 =r 

hydrostatic pressure. 

The most relevant transport properties have been obtained in Ref. 

Only quote· the results that will be referred to in the 4. Here, we 
next Section, namely the particle fluxes and the pressure tensor of 

the whole system. The particle fluxes are given by 

-7 k 8T • • -7 
Jr = - -- a- (c ) n c , mn;\ r r 

where n=n +n is the total number density, 
1 2 

* * *-2 *2 1/2 a- (c ) = c [(1+2c ) -1] 

(IO} 

(ll) 
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is a dimensionless color conductivity coefficient and 

~· c (~ ~ n 1)1/2 t 
3 mn 2 ;i.2 n 2 1 

407. 

(12) 

is a dimensionless measure of the field strength. The dimensionless 
• pressure tensor of the whole system, P =P/p, where P=P +P and 

•• •iF= • =r1=2 
p-1 tr P=nk T, is diagonal: P =P l+CP

11
-P ) ~~. with P

11
=3-2P and 

3 = B J.= J. J. 

I ;\ *2 * * -1 
[I + z X'" c a- (c )] (13) 

Proceeding in a similar way, higher order moments can also be· 

obtained. In particular, the energy flux of the whole system vanishes 
• • 4 

in the equimolar case and is of third order m c In order to get 

insight into the qualitative features of the velocity distribution 

function, information theory has been used to construct an approximate 

distribution from the knowledge of the moments up to the pressure 
• tensor. Such a distribution is exact up to second order in c . Also, 

• it reduces to the exact form in the limit I c 1-7<», which corresponds to 

a situation where all the particles of the same species move with the 

same velocity. Thus, one can expect the information theory 

distribution to give a fair picture of the actual distribution for 

* moderate values of c . 

3. COLOR CONDUCTIVITY UNDER SHEAR FLOW 

The situation we have described in the previous Section 

corresponds to a homogeneous state which becomes that of equilibrium 

when the external field is switched off. Here, our aim is to extend 

the color conductivity problem to an inhomogeneous situation. More 
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concretely, we assume that the whole system is in a steady shear flow 

state characterized by the following hydrodynamic fields 

n = const. , (14) 

T = const. , (15) 

u=ar,a=aoo 
I U J U ~ • 

(16) 

In Eq. (16), a is the constant shear rate and ~ is the mean velocity 

defined by 

n u = dv v f . -7 J-7-7 (17) 

Under these conditions, the system is arbitrarily far from equilibrium 

even if the color field vanishes. This particular situation (uniform 

shear flow) has been extensively studied theoretically,
2

'
8 

as well as 

· 9 c · et az.10 have recently performed a by computer simulations. ummmgs 

molecular dynamics simulation of the color conductivity state in 

presence of shear flow. 
we start from the stationary inhomogeneous Boltzmann 

equation: 

"F -7 , -7 a ( 1 , -7>) v.Vf (r,v) + - . - f (r,v 
1 a~ m 1 

J[f ,fl • 
1 

(18) 

and similarly for f 
2

• It is convenient to introduce the peculiar 

velocity V=~-6. Henceforth, the particle fluxes and the pressure 

tensors are understood to be defined by Eqs. (5) and (6), 

respectively, with ~ replaced by V. One of the main advantages of the 

uniform shear flow state is that the distribution functions become 

uniform in the Lagrangian reference frame: f/~.~)~f/V). In order to 

keep this property under the color external field, we define it by 
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changing ~ into V in Eq. (3). Thus, Eq. (18) reduces to 

8 oc kBT 
- av Cm V

1 
+ a v

1 
+ -- c ) f 

I lj m 1,1 I 
(19) 

From this equation and its counterpart for f 
2

, one easily gets the 

equation for the total distribution f: 

8 oc - - lC- V +a V )f av
1 

m 1 11 1 

k T ri 
- -

8
- ~ c (f- ~f )) 

m n
2 

1,1 n
1 

1 
J[f,f) . (20) 

Upon writing Eq. (20), we have taken into account that n t +n 't =0, as 
,- 1 1 2 2 

a consequ·ence of the conservation of total momentum. On the other 

hand, the parameter oc must be determined self-consistently by 

requiring the conservation of total energy. In this sense, it must be 

pointed out that the nonlinear character of Eqs. (19) an~ (20) is not 

only due to the collision terms, but also to the presence of oc. The 

parameters measuring the deviation from equilibrium are the shear rate 

a and the strength c
1 

of the external field. As a matter of fact, this 

problem reduces to the homogeneous color conductivity case when a=O 

and to the pure shear flow when "t =O. 
1 

The set of coupled equations (19) and (20) can be solved 

recursively by the moment method when one considers the particular 

interaction of Maxwell molecules. In this case, a moment of a given 

order of the collisipn term only involves moments of order less than 

or equal to the given one. Further, from now on we restrict ourselves 

to a color field orthogonal to the gradient direction, i.e. c =0. 
l,y 

Consequently, j =0. 
l,y 

Multiplying both sides of Eq. (19) by V and integrating, one gets 

k T 
B 

m 
nt +~J =-;>.nJ

1 1 1 m 1 
(21) 

where use has been made of Eq. (8) with ~ replaced by V in the left 

side. Similarly, from Eq. (20) one obtains 
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(22) 

denotes the transpose operation and Eq. (9) has been 
where the dagger 
used. The solution of Eq. (21) is given by Eq. (10), where now 

* (23) 
er = ---., 

l+ro: 

* . Eqs. (10) and (23) into Eq. 
with o: sa/(mnlt.') and r=;>..' /A. Inserting 

(22), one gets 

* 1 p =--. 
lJ 1 +o: 

( 0 -
l j 

• • 
(a + a l+ 

l j Jl 

2 * * 
.2a1kaJk 

(l+o: ) 
--. 
1 +o: 

(24) 

• * 
where a =a o o , 

~· a* =a/(2A' n) being the reduced shear rate, and c 
lJ ix jy 

is defined in Eq. (12). In the shear 
flow problem, it is adequate to 

introduce 

functions 

( *> d viscometric the generalized shear viscosity 11 an 

(>11 'II ). According to Eq. (24), they are given by 
1' 2 

'II = 
l 

• * p -P 
yy xx 

*2 
a 

"'z = 

• 
* P xy 1 

11 - - ~.- = --.-2 
a (l+o: ) 

(25) 

(26) 

(27) 

It must be noticed that in Eqs. (23)-(27) we still have to 

* as a function of a* and c *. In order t*o c.lose* the 
determine o: 

"d the consistency condition P +P +P =3. problem, we must cons1 er xx yy zz 
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• 11 
This gives rise to the following quartic equation for o: : 

*2 
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• * 2 * 2 *2 * c * 2 
o: (l+o: l (l+ro: l = 3 a (l+ro: l + 27 (l+o: l (28) 

• In the particular case of homogeneous color state (a =O), Eq. (28) 

factorizes into two quadratic equations, whose physically meaningful 

solution is 

(29) 

* When this equation is substituted into Eqs. (23) and (24), with a =O, 

we reobtain the results given in Sect. 2. Furthermore, Eq. (29) allows 

* us to get the c -dependence of the shear viscosity in the limit of 
• vanishing shear rate. Since °' =:o, Eq. (25) shows that 

* • * • • • 
11 (a =0,c )::11 (a =O,c =O)=l. 

• On the other hand, in absence of color field (c =O), Eq. (28) 

reduces to a cubic equation, whose real solution is 

* * * 4 . 2 I -1 *2 
o: (a ,c =0) = 3 smh 16 cosh (1+9a )) (30) 

• Substitution of this equation into Eqs. (24)-(27), with c =O, leads to 

the well-known uniform shear flow results for Maxwell molecules. 2• 12 

In addition, the color conductivity coefficient in the limit of zero 

field strength can be obtained from Eq. (23). We see that 
• • • • • • 

er (a ,c =O):>er (a =0,c =0)=1. 

Let us consider now the opposite limits, namely (i) large shear 

rate, but finite color field, and (ii) large color field, but finite 

shear rate. Asymptotic analysis of Eq. (28) shows that 

(31) 
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FIG. 1: Plot of the reduced color conductivity (er ) versus the 

*2 
of the reduced field strength (c ) for several values 

• • • shear rate: a =O (--), a =1 (- - -), a =2 (----- ). 
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FIG. 2: Plot of the reduced shear viscosity (11 ) versus 

*2 
the reduced shear rate (a ) for several values of 

the square of 

the field 

• • • strength: c =O (--), c =l (- - -), c =2 (----- ). 
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• • • • c [ 1 *-1 1 *-2 2V2 3 *2 *-3 
a: (a ,c ) = ~ 1-\72 c +4 c ~ '¥ a c 

+ OCc - l . • 4] (32) 

• • According to Eqs. (31) and (32), the behavior of a for large a is 
• hardly sensitive to the value of c , and vice versa. 

In general, the solution of Eq. (28) is much more complicated to 

into Eqs. write explicitly and is given in the Appendix. Its insertion 

(23) and (25) gives the color conductivity and the shear viscosity, 
• several values of a . respectively,,_ 

• *2 
Figure 1 shows er versus c for 

·. 
At a given color field strength, we observe that the mass transport is 

inhibited as the shear rate increases. Nevertheless, this influence of 
• the shear rate rapidly decays as c increases. An analogous conclusion 

can be drawn from Fig. 2, where the shear viscosity is plotted versus 
*2 • 

a for several values of c . The presence of the color field hinders 

the momentum transport, this effect being more notorious in the region 

of small shear rates. 

4. CONCLUDING REMARKS 

In this paper, we have studied the coupling between mass and 

momentum transport in a binary mixture of mechanically identical 

Maxwell molecules "described by the Boltzmann equation. Particles of 

each species are distinguished by a label or "color". The situation 

corresponds 

characterized 

to 

by 

a 

a 

steady 

constant 

inhomogeneous 

total density 

state macroscopically 

and pressure, a mean 

velocity along the x-direction with a constant gradient along the 

y-direction, and nonzero particle fluxes in the Lagrangian reference 

frame. Mutual diffusion is generated by a constant external force 

acting on particles of different colors in opposite directions. In 

addition, a nonconservative drag force is included to maintain the 

temperature constant. Therefore, the system is driven out of 
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equilibrium by the shearing as well as by the color field. This state 

includes the uniform shear flow2 and the homogeneous color 
4 

conductivity problem as particular cases. 

The hierarchy of moment equations can be solved in a recursive 

way. Here, we have been concerned with the particle fluxes and the 

total pressure tensor, although higher order moments can also be 

obtained. For the sake of simplicity, we have restricted ourselves to 

a color field 

expressions for 

orthogonal to 

the color 

the flow velocity 

conductivity and 

gradient. Exact 

shear viscosity 

coefficients have been obtained. They are nonlinear functions of both 

the shear rate and the field strength. The results show that both 

transport coefficients are smaller than the corresponding values given 

by the linear theory (Navier-Stokes regime). Competition between the 

shearing and the color field produces inhibition of mass and momentum 

transport. In other words, the shear flow gives rise to a decreasing 

of the color conductivity and the presence of the color field induces 

a decreasing of the shear viscosity. 

It must be emphasized that our results hold for any molar 

fraction ratio. We expect to extend the analysis also to arbitrary 

mass ratio. On the other hand, it does not seem possible to explicitly 

get the distribution function from the Boltzmann equation. In this 

context, it would be interesting to study the problem by using kinetic 

models.13 

APPENDIX 

In this Appendix, we list the expressions leading to the physical 

root of Eq. (28). Following the standard method to solve a quartic 

equation, 14 we find 

(Al) 
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where 

B 
I 

•2 2 1/2 27+1-(2c -47+1+47 w) 
27 

In Eqs. (A2) and (A3), w is given by 

2 1011/z . [l . -1( c )] 1 (c•z 7+2) w = - 3 smh 3 smh --- - - __ 
1013/2 3 272 T 

otherwise. In these equations, 

C= 

0 
•z 2 

[
c 1-7) -+-
272 7 

3-27 •2 2--a 
7 

. 415 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

The solution (Al) has been chosen with the criterion that it reduces 

to Eqs. (29) and (30) in the appropriate limits. 
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