THE SECOND AND THIRD SONINE COEFFICIENTS OF A FREELY COOLING GRANULAR GAS REVISITED

Andrés Santos and José María Montanero Universidad de Extremadura, Badajoz (Spain)

Outline

 The freely cooling granular gas. Sonine coefficients.
 Brief review of previous results.
 Linear approximations. Comparison with DSMC results.
 Conclusions. Basic state of a granular fluid: Freely cooling or Homogeneous Cooling State (HCS)

This state is:

✓ Homogeneous.

✓Isotropic.

✓The granular temperature monotonically decreases in time (Haff's law).

 \checkmark ... But the distribution function of the rescaled velocities reaches a stationary form (self-similarity solution).

✓ And it is unstable! (avoid long times and/or large dimensions).

Free cooling under microgravity (Tatsumi, Murayama, Hayakawa, and Sano, unpublished)

(Videoclips courtesy of S. Tatsumi)

Minimal model of a granular gas: A gas of (smooth) *inelastic* hard spheres

Several circles (Kandinsky, 1926)

Minimal model of a granular gas: A gas of (smooth) *inelastic* hard spheres

- Mass *m*
- Diameter σ
- Coefficient of normal restitution α
- *a*=1 for elastic collisions

(After T.P.C. van Noije & M.H. Ernst)
Direct collision:
$$\mathbf{v}_1^* = \mathbf{v}_1 - \frac{1+\alpha}{2} (\mathbf{v}_{12} \cdot \hat{\sigma}) \hat{\sigma}, \quad \mathbf{v}_2^* = \mathbf{v}_2 + \frac{1+\alpha}{2} (\mathbf{v}_{12} \cdot \hat{\sigma}) \hat{\sigma}$$

Restituting collision: $\mathbf{v}_1^{**} = \mathbf{v}_1 - \frac{1+\alpha}{2\alpha} (\mathbf{v}_{12} \cdot \hat{\sigma}) \hat{\sigma}, \quad \mathbf{v}_2^{**} = \mathbf{v}_2 + \frac{1+\alpha}{2\alpha} (\mathbf{v}_{12} \cdot \hat{\sigma}) \hat{\sigma}$

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

Collisions conserve momentum, but not kinetic energy:

$$\Delta E = \frac{1}{2}m(v_1^{*2} + v_2^{*2} - v_1^2 - v_2^2)$$

= $-\frac{m}{2}(1 - \alpha^2)(\mathbf{v}_{12} \cdot \hat{\sigma})^2$

"Granular" temperature:
$$T = \frac{m}{d} \langle (\mathbf{v} - \mathbf{u})^2 \rangle, \quad \mathbf{u} = \langle \mathbf{v} \rangle$$
$$\frac{\partial T}{\partial t} \Big|_{\text{coll}} = -\zeta T, \quad \zeta \sim 1 - \alpha^2$$
"Cooling" rate

The Enskog-Boltzmann equation (molecular chaos)

Lundery Do

(1844-1906)

(Cartoon by Bernhard Reischl, University of Vienna)

David Enskog (1884-1947)

Enskog-Boltzmann equation (HCS)

 $\partial_t f(\mathbf{v}_1, t) = J[\mathbf{v}_1 | f(t), f(t)]$ Collision operator

 $J[\mathbf{v}_1|f(t), f(t)] = \chi \sigma^{d-1} \int d\mathbf{v}_2 \int d\widehat{\sigma} \,\Theta(\mathbf{v}_{12} \cdot \widehat{\sigma})(\mathbf{v}_{12} \cdot \widehat{\sigma}) \\ \times \left[\alpha^{-2} f(\mathbf{v}_1^{**}, t) f(\mathbf{v}_2^{**}, t) - f(\mathbf{v}_1, t) f(\mathbf{v}_2, t) \right]$

$$\mathbf{v}_1^{**} = \mathbf{v}_1 - \frac{1+\alpha}{2\alpha} (\mathbf{v}_{12} \cdot \hat{\boldsymbol{\sigma}}) \hat{\boldsymbol{\sigma}}, \quad \mathbf{v}_2^{**} = \mathbf{v}_2 + \frac{1+\alpha}{2\alpha} (\mathbf{v}_{12} \cdot \hat{\boldsymbol{\sigma}}) \hat{\boldsymbol{\sigma}}$$

HCS

Thermal speed: $v_0(t) \equiv \sqrt{2T(t)/m} \equiv \sqrt{\frac{2}{d} \langle v^2 \rangle_t}$ = $\frac{v_0(0)}{1+\zeta(0)t/2}$ Haff's law

Scaled distribution: $f(\mathbf{v}, t) = nv_0^{-d}(t)F(c), \quad \mathbf{c}(t) = \frac{\mathbf{v}}{v_0(t)}$

High-velocity tail: $F(c) \sim e^{-Ac}$

Sonine coefficients

Thermal velocities:
$$F(c) = \pi^{-d/2} e^{-c^2} \left[1 + \sum_{k=2}^{\infty} a_k L_k^{(\frac{d-2}{2})}(c^2) \right]$$

$$\langle c^4 \rangle = \frac{d(d+2)}{4} (1+a_2), \quad \langle c^6 \rangle = \frac{d(d+2)(d+4)}{8} (1+3a_2-a_3)$$

Accurate determination of a_2 (and a_3) is important to characterize the deviation of F(c) for $c \sim 1$ from the Maxwellian \Rightarrow Transport coefficients

A brief (and incomplete) review of previous results

Soldshtein & Shapiro (1995): <u>First estimate of a_2 (linear</u> aproximation neglecting a_2^2 , a_3 , a_4 , ...) for d=3. Algebraic <u>mistake</u>.

≻van Noije & Ernst (1998): <u>Mistake corrected. Expression for</u> <u>general d.</u>

>Brey, Ruiz-Montero & Cubero (1996): <u>DSMC validation of</u> <u>vNE98's result for a_2 (*d*=3). DSMC computation of a_3 (*d*=3).</u>

Sarzó & Dufty (1999): <u>Linear approximation for a_2 (d=3) in a binary mixture.</u>

➢ Montanero & Santos (2000): <u>Ambiguity of the linear</u> approximation for a_2 and expression alternative to vNE98's. <u>DSMC computation of a_2 and a_3 (*d*=3).</u> ➢ Brilliantov & Pöschel (2000): <u>Cubic equation for a_2 (neglecting</u> a_3, a_4, \ldots) in the case *d*=3.

A brief (and incomplete) review of previous results (cont.)

≻Huthmann, Orza & Brito (2000): <u>Assume that $a_k = O(\lambda^k)$. MD computation of a_2 (d=2).</u>

Montanero & Garzó (2002): <u>DSMC validation of GD99's result</u> for a_2 (d=3) in a binary mixture.

Coppex, Droz, Piasecki & Trizac (2003): Extensive analysis on the ambiguity of the linear approximation for a_2 . Alternative approach to estimate a_2 . DSMC computation of a_2 (d=2).

Shifting the provided the prov

Noskowicz, Bar-Lev, Serero & Goldhirsch (2007): <u>Computer-aided method to evaluate (numerically)</u> $a_{\underline{k}}$. Fitted expression for $\underline{a_2}$ ($\underline{d=3}$). Confirmation of the divergence of the Sonine expansion.

Journal of Fluid Mechanics Digital Archive, Volume 282, January 1995, pp 75-114

$$a_2^{\text{GS}} = \frac{16(1-\alpha)(1-2\alpha^2)}{401-337\alpha+190(1-\alpha)\alpha^2}$$
81 17 30
(d=3)

(

$$a_2 = \frac{16(1-\alpha)(1-2\alpha^2)}{9+24d+8\alpha d - 41\alpha + 30(1-\alpha)\alpha^2}$$

Fig. 1. Fourth cumulant a_2 versus α for homogeneous cooling solution in a freely evolving fluid

3664 OCTOBER 1996

54, NUMBER 4

VOLUME

PHYSICAL REVIEW E

FIG. 6. Values of the sixth velocity moments in the HCS as a function of the restitution coefficient.

FIG. 1. Plot of the coefficients c_i versus the restitution coefficient $\alpha \equiv \alpha_{11} = \alpha_{22} = \alpha_{12}$ for $n^* = 0$, $\sigma_{11} = \sigma_{22} = \sigma_{12}$, $x_1/x_2 = 1$, and $m_1/m_2 = 2$. The solid line refers to c_1 while the dashed line corresponds to c_2 . The dotted line is the common value in the single component case.

Granular Gases 2008, Schloss Thurnau,

FIG. 2. The second Sonine coefficient a_2 as a function of the coefficient of restitution ϵ (full line). The dashed line shows a_2^{NE} in the first order approximation by van Noije and Ernst [3] according to Eq. (16). The approximation (17) is shown by circles.

Fig. 2. Plot of the coefficients c_i versus the restitution coefficient α for $n^* = 0$, $\delta = 1$, w = 1 and $\mu = 2$. The solid line and the circles refer to c_1 while the dashed line and the squares correspond to c_2 . The dotted line and the triangles refer to the common value in the single component case. The lines are the theoretical predictions and the symbols correspond to the simulation results

Springer-Verlag 2000

 \odot

189 - 199

á

Granular Matter

2 a_2 1.5 a_3 1 a, 0.5 a_{5} a_6 0 -0.5 0.4 0.6 0.8 1.0 e, 0.6 0.7 0.8 0.9 1 e

Fig. 6. Stationary values a_2, \ldots, a_6 calculated to order $\mathcal{O}(\lambda^6)$ as a function of e_n

Fig. 10. Coefficient a_2 versus the coefficient of restitution e_n . The solid line is the theoretical prediction of Eq. (26) and the circles are the values calculated from MD simulations with their corresponding error bars

Fig. 3: A plot of the low-order result (solid line) and the result of [16] (hatched line) compared to the converged value of a_2 (asterisks) vs. α .

Can we derive theoretical expressions for *a*₂ and *a*₃with an optimal compromise between simplicity and accuracy?

Try linear approximations!

(d=3)

(d=2)

Fig. 5. The eight possible fourth cumulant a_2 obtained from Eq. (11), corresponding to the two-dimensional homogeneous free cooling. We define $\eta = (d + 2\chi(1 + a_2))$, then rewrite the equation $\mu_4 = \eta\mu_2$ according to the eight possible different combinations mentioned in the legend, before doing the linear Taylor expansion around $a_2 = 0$. The first curve is the plot of the function a_2 obtained by van Noige and Ernst [4], whereas the second one—obtained by Montanero and Santos [8] —is very close to the exact results shown by crosses.

Fig. 4. Plot of the simulation values of $a_2(\bigcirc), (\mu_2 - \mu_2^{(0)})/\mu_2^{(1)}$ (\triangle) and $(\mu_4 - \mu_4^{(0)})/\mu_4^{(1)}(\bigtriangledown)$ versus α in the case of the Gaussian thermostat. The solid and dashed lines are the theoretical estimates (5) and (40), respectively

Fig. 2 – Left: the coefficient a_3 over the coefficien Right: high-order Sonine coefficients as functions c

 $f(\mathbf{v},t) = nv_0^{-d}(t)F(c), \quad \mathbf{c}(t) = \frac{\mathbf{v}}{v_0(t)}$

$$\partial_t f(\mathbf{v}, t) = J[\mathbf{v}|f(t), f(t)] \Rightarrow \left[-\frac{\mu_2}{d} \frac{\partial}{\partial \mathbf{c}} \cdot \mathbf{c} F(\mathbf{c}) = I[\mathbf{c}|F, F] \right]$$

 $I[\mathbf{c}_{1}|F,F] = \int d\mathbf{c}_{2} \int d\hat{\sigma} \,\Theta(\mathbf{c}_{12} \cdot \hat{\sigma})(\mathbf{c}_{12} \cdot \hat{\sigma}) \Big[\alpha^{-2} F(\mathbf{c}_{1}^{**}) F(\mathbf{c}_{2}^{**}) - F(\mathbf{c}_{1}) F(\mathbf{c}_{2}) \Big]$ Collisional moments: $\mu_{p} \equiv -\int d\mathbf{c} \, c^{p} I[\mathbf{c}|F,F]$

Moment hierarchy:
$$\begin{cases} (a)\mu_p = \frac{p}{2}\mu_2 \frac{\langle c^p \rangle}{\langle c^2 \rangle}, & p \ge 4, \\ (b)\frac{\mu_p}{\langle c^p \rangle} = \frac{p}{2}\frac{\mu_2}{\langle c^2 \rangle}, & p \ge 4. \end{cases}$$

Linearizations

 $\mathcal{L}_{a_2}\{\mu_2\} = A_0(\alpha) + A_2(\alpha)a_2, \quad \mathcal{L}_{a_2,a_3}\{\mu_2\} = A_0(\alpha) + A_2(\alpha)a_2 + A_3(\alpha)a_3$ $\mathcal{L}_{a_2}\{\mu_4\} = B_0(\alpha) + B_2(\alpha)a_2, \quad \mathcal{L}_{a_2,a_3}\{\mu_4\} = B_0(\alpha) + B_2(\alpha)a_2 + B_3(\alpha)a_3$ $\mathcal{L}_{a_2}\{\mu_6\} = C_0(\alpha) + C_2(\alpha)a_2, \quad \mathcal{L}_{a_2,a_3}\{\mu_2\} = C_0(\alpha) + C_2(\alpha)a_2 + C_3(\alpha)a_3$

Approximations

Class-I: Neglect a_3 in moment eq. for μ_4 (but not in moment eq. for μ_6) Class-II: Treat a_2 and a_3 on the same footing (BP06)

Approach (a) $\mathcal{L}\{\mu_p - \frac{p}{2}\mu_2\frac{\langle c^p \rangle}{\langle c^2 \rangle}\} = 0$ Approach (b) $\mathcal{L}\{\frac{\mu_p}{\langle c^p \rangle} - \frac{p}{2}\frac{\mu_2}{\langle c^2 \rangle}\} = 0$

Linear approximations

Label	Equations	<i>a</i> ₂	aз
Ia	$L_2^{\text{Ia}} \equiv \mathcal{L}_{a_2} \left\{ \mu_4 - 2\mu_2 \langle c^4 \rangle / \langle c^2 \rangle \right\} = 0$ $L_3^{\text{IIa}} \equiv \mathcal{L}_{a_2,a_3} \left\{ \mu_6 - 3\mu_2 \langle c^6 \rangle / \langle c^2 \rangle \right\} = 0$	vNE98	new

IIa

Ih

$$L_{2}^{\text{IIa}} \equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{4} - 2\mu_{2} \langle c^{4} \rangle / \langle c^{2} \rangle \right\} = 0$$

$$L_{3}^{\text{IIa}} \equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{6} - 3\mu_{2} \langle c^{6} \rangle / \langle c^{2} \rangle \right\} = 0$$
BP06 BP06

Ib
$$\begin{aligned} L_2^{\text{Ib}} &\equiv \mathcal{L}_{a_2} \left\{ \mu_4 / \langle c^4 \rangle - 2\mu_2 / \langle c^2 \rangle \right\} = 0 \\ L_3^{\text{IIb}} &\equiv \mathcal{L}_{a_2,a_3} \left\{ \mu_6 / \langle c^6 \rangle - 3\mu_2 / \langle c^2 \rangle \right\} = 0 \end{aligned} \qquad \text{MS00 new} \end{aligned}$$

$$IIb \qquad \begin{array}{l} L_2^{\text{IIb}} \equiv \mathcal{L}_{a_2,a_3} \left\{ \mu_4 / \langle c^4 \rangle - 2\mu_2 / \langle c^2 \rangle \right\} = 0 \\ L_3^{\text{IIb}} \equiv \mathcal{L}_{a_2,a_3} \left\{ \mu_6 / \langle c^6 \rangle - 3\mu_2 / \langle c^2 \rangle \right\} = 0 \end{array} \qquad \text{new} \qquad \text{new} \end{array}$$

$$L_{2}^{\text{Ib}} \equiv \mathcal{L}_{a_{2}} \left\{ \mu_{4} / \langle c^{4} \rangle - 2\mu_{2} / \langle c^{2} \rangle \right\} = 0 \qquad \text{MS00 new}$$
$$L_{3}^{\text{IIa}} \equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{6} - 3\mu_{2} \langle c^{6} \rangle / \langle c^{2} \rangle \right\} = 0 \qquad \text{MS00 new}$$

Comparison with DSMC simulations

Granular Gases 2008, Schloss Thurnau, 8-12 September 2008 1.0

Comparison with DSMC simulations

Assessment of the linear approximations

$$\begin{split} L_{2}^{\text{Ia}} &\equiv \mathcal{L}_{a_{2}} \left\{ \mu_{4} - 2\mu_{2} \langle c^{4} \rangle / \langle c^{2} \rangle \right\} = 0, \quad L_{2}^{\text{Ib}} &\equiv \mathcal{L}_{a_{2}} \left\{ \mu_{4} / \langle c^{4} \rangle - 2\mu_{2} / \langle c^{2} \rangle \right\}, \\ L_{2}^{\text{Ia}} &\equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{4} - 2\mu_{2} \langle c^{4} \rangle / \langle c^{2} \rangle \right\}, \quad L_{2}^{\text{Ib}} &\equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{4} / \langle c^{4} \rangle - 2\mu_{2} / \langle c^{2} \rangle \right\}, \\ \hline \\ I_{3}^{\text{Ia}} &\equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{6} - 3\mu_{2} \langle c^{6} \rangle / \langle c^{2} \rangle \right\}, \quad L_{3}^{\text{Ib}} &\equiv \mathcal{L}_{a_{2},a_{3}} \left\{ \mu_{6} / \langle c^{6} \rangle - 3\mu_{2} / \langle c^{2} \rangle \right\} \\ \hline \\ \hline \\ \hline \\ \frac{1}{2} \int_{0}^{0} \int_{0}^{0}$$

Conclusions & Questions

- The (hybrid) linear approximation Ih (*L*₂^{Ib}=0, *L*₃^{IIa}=0) provides simple and accurate estimates for the general α-dependence of *a*₂ and *a*₃.
- However, if one needs a more precise estimate of a_3 in the region $0.6 \le \alpha < 1$, the best choice is IIa=BP06 (L_2 IIa=0, L_3 IIa=0).
- Even though a_2^2 , a_3 , a_4 , ... are not negligible if $\alpha \leq 0.6$, they "conspire" to play a negligible role in $\mu_4/\langle c^4 \rangle 2\mu_2/\langle c^2 \rangle$. Can we learn something of F(c) by exploiting this?
- Frustration: Will we ever be able to get a closed form (even in terms of special functions, etc.) for *F*(*c*)?

Thank you for your attention!

	0.8	0.6	0.4	0.2
	-0.0141	0.0207	0.0760	0.1274
	0.8950	1.6101	2.1354	2.4625
	0.9000	1.6105	2.1356	2.4639
	0.8824	1.6434	2.2976	2.7762
$\mathcal{L}_{a_2} \{ \mu_2(1+a_2) \}$	0.8873	1.6436	2.2956	2.7705
	4.414	8.213	11.494	13.881
$\mathcal{L}_{a_2}\left\{\mu_{4} ight\}$	4.421	8.188	11.404	13.686
$\mu_4/(1+a_2)$	4.477	8.047	10.682	12.312
$\mathcal{L}_{a_2} \left\{ \mu_4 / (1 + a_2) \right\}$	4.487	8.027	10.658	12.294