Contents	Background	Chemical-potential route	Applications	Conclusions

Awakening a Sleeping Beauty. The Chemical-Potential Route to the Equation of State

Andrés Santos

Departamento de Física, Universidad de Extremadura, Badajoz, Spain

XLIII Winter Meeting on Statistical Physics (Taxco, Mexico) - January 7-10 2014

Contents	Background	Chemical-potential route	Applications	Conclusions

Helmholtz free energy

• F(T, V, N) = E - TS (Legendre transformation)

$$= pV + \mu N.$$

•
$$dF = -SdT - pdV + \mu dN$$

$$= \frac{S}{k_B \beta^2} \mathsf{d}\beta - p \mathsf{d}V + \mu \mathsf{d}N, \quad \beta \equiv \frac{1}{k_B T}.$$

• Derived thermodynamic quantities:

$$E = \left(\frac{\partial\beta F}{\partial\beta}\right)_{V,N}, \ p = -\left(\frac{\partial F}{\partial V}\right)_{\beta,N}, \ \mu = \left(\frac{\partial F}{\partial N}\right)_{\beta,V}$$

Contents	Background 000	Chemical-potential route	Applications 000000000000000000000000000000000000	Conclusions 00
(Equilibrium) Statistical-mechanical roadmaps				
-				

Partition function:

 $\mathcal{Z}_N(\beta, V) \Rightarrow F(T, V, N) = -k_B T \ln \mathcal{Z}_N(\beta, V).$

Radial distribution function:

 $g(r) \Rightarrow$ thermodynamic quantities $\Rightarrow F(T, V, N)$.

Formally,

```
Roadmap \#1 \equiv Roadmap \#2,
```

but . . .

Roadmap #2 is more useful from a practical point of view because

- it is more intuitive,
- the most successful theoretical approximations are based on it,
- and g(r) is an important physical quantity by itself.

Contents	Background 000	Chemical-potential route	Applications 000000000000000000000000000000000000	Conclusions 00
Roa	dmap #2. T	hermodynamic rout	es	
		$\overline{\langle E \rangle} =$	$\frac{\partial(\beta F)}{\partial\beta} \longrightarrow F(T, V, I)$	N)
	energy	p	$=-\frac{\partial F}{\partial V} \longrightarrow F(T,V,V)$	N)

Contents	Background 000	Chemical-potential route 00000	Applications 000000000000000000000000000000000000	Conclusio 00
Our	aim			
	<u>í</u>			

To "awake" the (sleeping) chemical-potential route

Background

Chemical-potential route 00000

Collaborators

René D. Rohrmann, National Scientific and Technical Research Council – Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE), Argentina

Elena Beltrán-Heredia, graduate student, University of Extremadura and University Complutense of Madrid (Spain)

Contents	Background 000	Chemical-potential route	Applications 000000000000000000000000000000000000	Conclusions 00

Background

- Radial distribution function g(r)
- Conventional thermodynamic routes
- 2 Chemical-potential route
 - Addition of an extra particle
 - Final results

3 Applications

- Percus-Yevick integral equation approximation
- Sticky hard spheres
- Additive hard-sphere (AHS) mixtures
- Fourth virial coefficient of AHS mixtures

4 Conclusions

Contents	Background	Chemical-potential route	Applications	Conclusions	
	000	00000	000000000000000000000000000000000000000	00	
Radial distribution function $q(r)$					

Physical interpretation of g(r)

If a given particle is taken to be at the origin, then the *local* average density at a distance r from that particle is $\rho g(r)$ (where $\rho = N/V$ is the *global* density)

Radial distribution function for a Lennard–Jones fluid at $T^*=0.71,\,\rho^*=0.844.$

Contents	Background	Chemical-potential route	Applications	Conclusions	
	000	00000	000000000000000000000000000000000000000	00	
Radial distribution function $g(r)$					

• Formal definition (identical particles):

$$g(r_{12}) = \frac{V^{-(N-2)}}{Q_N} \int \mathrm{d}\mathbf{r}_3 \cdots \int \mathrm{d}\mathbf{r}_N \, e^{-\beta \Phi_N(\mathbf{r}^N)}$$

• Configuration integral:

$$Q_N(\beta, V) = V^{-N} \int \mathrm{d}\mathbf{r}^N \, e^{-\beta \Phi_N(\mathbf{r}^N)}$$

• Total potential energy:

$$\Phi_N(\mathbf{r}^N) = \sum_{i=1}^{N-1} \sum_{j=i+1}^N \phi(r_{ij}) = \frac{1}{2} \sum_{i \neq j} \phi(r_{ij}).$$

 $\bullet \ \rho = N/V = {\rm number \ density}, \quad d = {\rm dimensionality \ of \ the \ system}.$

Contents	Background	Chemical-potential route	Applications	Conclu
	000	00000	000000000000000000000000000000000000000	00

Conventional thermodynamic routes

Energy, pressure, and isothermal compressibility

• Energy route:

$$\langle E \rangle = \frac{\partial(\beta F)}{\partial \beta} = N \left[\frac{d}{2} k_B T + \frac{\rho}{2} \int d\mathbf{r} \, \phi(r) g(r) \right].$$

• Virial (or pressure) route:

$$p = -\frac{\partial F}{\partial V} = \rho k_B T \left[1 - \frac{\rho \beta}{2d} \int d\mathbf{r} \, r \frac{\mathrm{d}\phi(r)}{\mathrm{d}r} g(r) \right]$$

• Compressibility route:

$$\kappa_T^{-1} = V \frac{\partial^2 F}{\partial V^2} = \frac{\rho k_B T}{1 + \rho \int \mathrm{d}\mathbf{r} \ [g(r) - 1]}$$

Contents	Background 000	Chemical-potential route	Applications	Conclusions 00
Addition of an e	extra particle			

Chemical potential

$$\beta \mu^{\mathsf{ex}} = -\frac{\partial \ln Q_N}{\partial N} \to \ln \frac{Q_N(\beta, V)}{Q_{N+1}(\beta, V)}.$$

• N-particle system: $i = 1, 2, \ldots, N$.

$$\Phi_N(\mathbf{r}^N) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \phi(r_{ij}).$$

• (N+1)-particle system: $i = 0, 1, 2, \dots, N$.

$$\Phi_{N+1}(\mathbf{r}^{N+1}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \phi(r_{ij}) + \sum_{j=1}^{N} \phi(r_{0j}).$$

Contents	Background	Chemical-potential route	Applications	Conclusions
		00000	000000000000000000000000000000000000000	
Addition of an ex	tra particle			

"Charging" process

 We introduce a coupling parameter ξ such that its value 0 ≤ ξ ≤ 1 controls the strength of the interaction of particle i = 0 to the rest of particles:

$$\phi^{(\xi)}(r_{0j}) = \begin{cases} 0, & \xi = 0, \\ \phi(r_{0j}), & \xi = 1. \end{cases}$$

 The associated total potential energy and configuration integral are

$$\begin{split} \Phi_{N+1}^{(\xi)}(\mathbf{r}^{N+1}) &= \Phi_N(\mathbf{r}^N) + \sum_{j=1}^N \phi^{(\xi)}(r_{0j}), \\ Q_{N+1}^{(\xi)}(\beta, V) &= V^{-(N+1)} \int \mathrm{d}\mathbf{r}^{N+1} \, e^{-\beta \Phi_{N+1}^{(\xi)}(\mathbf{r}^{N+1})} \end{split}$$

Contents	Background	Chemical-potential route	Applications	Conclusions
		00000		
Addition of a	in extra particle			

• Thus,

$$\beta \mu^{\mathsf{ex}} = \ln \frac{Q_N(\beta, V)}{Q_{N+1}(\beta, V)} = -\int_0^1 \mathsf{d}\xi \, \frac{\partial \ln Q_{N+1}^{(\xi)}(\beta, V)}{\partial \xi}$$

• Taking into account that

$$\frac{\partial \ln Q_{N+1}^{(\xi)}}{\partial \xi} = -\frac{\rho \beta V^{-N}}{Q_{N+1}^{(\xi)}} \int d\mathbf{r}^{N+1} e^{-\beta \Phi_{N+1}^{(\xi)}(\mathbf{r}^{N+1})} \frac{\partial \phi^{(\xi)}(r_{01})}{\partial \xi},$$
$$g^{(\xi)}(r_{01}) = \frac{V^{-(N-1)}}{Q_{N+1}^{(\xi)}} \int d\mathbf{r}_{2} \cdots \int d\mathbf{r}_{N} e^{-\beta \Phi_{N+1}^{(\xi)}(\mathbf{r}^{N+1})},$$

• we get

$$\frac{\partial \ln Q_{N+1}^{(\xi)}}{\partial \xi} = -\frac{\rho\beta}{V} \int \mathsf{d}\mathbf{r}_0 \int \mathsf{d}\mathbf{r}_1 \, g^{(\xi)}(r_{01}) \frac{\partial \phi^{(\xi)}(r_{01})}{\partial \xi}$$

Contents	Background	Chemical-potential route	Applications	Conclusions
	000	○○○●○	000000000000000000000000000000000000	00
Final results				

• Finally [A.S., Phys. Rev. Lett. 109, 120601 (2012)],

$$\mu = k_B T \ln \left(\rho \Lambda^d \right) + \rho \int_0^1 \mathsf{d}\xi \int \mathsf{d}\mathbf{r} \, g^{(\xi)}(\mathbf{r}) \frac{\partial \phi^{(\xi)}(\mathbf{r})}{\partial \xi}$$

where

$$\Lambda = \frac{h}{\sqrt{2\pi m k_B T}} \text{ (thermal de Broglie wavelength)}.$$

- The μ-route requires the pair correlation function of an *impurity* (or "solute") coupled to the rest of the particles (the "solvent") via a potential φ^(ξ)(r).
- The final result should be independent of the protocol

$$0 \to \phi^{(\xi)}(r) \to \phi(r)$$

followed in the charging process.

Contents	Background	Chemical-potential route	Applications	Conclusions
		0000		
Final results				

Extension to mixtures

- Number of particles of species α : N_{α} .
- Total number of particles: $N = \sum_{\alpha} N_{\alpha}$.
- Mole fraction of species α : $x_{\alpha} = N_{\alpha}/N$, $\sum_{\alpha} x_{\alpha} = 1$.
- Interaction potential between a particle of species α and a particle of species γ : $\phi_{\alpha\gamma}(r)$.
- Radial distribution function for the pair $\alpha\gamma$: $g_{\alpha\gamma}(r)$
- Chemical-potential route [A.S. & R.D. Rohrmann, Phys. Rev. E 87, 052138, (2013)]:

$$\mu_{\nu} = k_B T \ln \left(\rho x_{\nu} \Lambda_{\nu}^d \right) + \rho \sum_{\alpha} x_{\alpha} \int_0^1 \mathrm{d}\xi \int \mathrm{d}\mathbf{r} \, g_{\nu\alpha}^{(\xi)}(r) \frac{\partial \phi_{\nu\alpha}^{(\xi)}(r)}{\partial \xi}$$

• Here, particle i=0 is coupled to a particle of species α via an interaction potential $\phi^{(\xi)}_{\nu\alpha}(r)$ such that

$$\phi_{\nu\alpha}^{(\xi)}(r) = \begin{cases} 0, & \xi = 0, \\ \phi_{\nu\alpha}(r), & \xi = 1. \end{cases}$$

Contents	Backg
	000

Chemical-potential route

Applications

Conclusions

Percus–Yevick integral equation approximation

ound

PY equation

$$y(r) = 1 + \rho \int d\mathbf{r}' \left[g(r') - y(r') \right] \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right],$$

where

$$y(r) \equiv g(r)e^{\beta\phi(r)}$$
: cavity function.

• The PY equation admits an exact solution for

- Sticky hard spheres.
- Additive hard-sphere mixtures.

$$\sigma' \rightarrow \sigma, \quad \epsilon \rightarrow \infty,$$

 $\alpha \equiv \frac{\sigma' - \sigma}{\sigma} e^{\beta \epsilon} = \text{finite ("stickiness" parameter).}$

$$e^{-\beta\phi_{\rm SW}(r)} \rightarrow e^{-\beta\phi_{\rm SHS}(r)} = \Theta(r-\sigma) + \alpha\sigma\delta(r-\sigma).$$

Contents	Background 000	Chemical-potential route	Applications	Conclusions 00
Sticky hard sp	oheres			
The <i>u</i>	-route at v	work		

• Coupling of the *impurity* to the solvent:

$$e^{-\beta\phi^{(\xi)}(r)} = \Theta(r-\xi\sigma) + \alpha^{(\xi)}\xi\sigma\delta(r-\xi\sigma), \quad 0 \le \alpha^{(\xi)} \le \alpha.$$

• The function $\alpha^{(\xi)}$ defines the coupling protocol.

 μ -route [R.D. Rohrmann & A.S., unpublished (2014)]

$$\beta \mu^{\mathrm{ex}}(\eta, \alpha) = \underbrace{-\ln\left(1-\eta\right)}_{0 \le \xi \le \frac{1}{2}} - d2^d \eta \int_{\frac{1}{2}}^{1} \mathsf{d}\xi \, M^{(\xi)}(\eta, \alpha)$$

where

•
$$\eta = \text{packing fraction},$$

• $M^{(\xi)}(\eta, \alpha) \equiv \frac{\partial (\alpha^{(\xi)} - 1)\xi}{\partial \xi} \xi^{d-1} y^{(\xi)}(\xi\sigma) + \frac{\alpha^{(\xi)}\xi}{\sigma^{d-2}} \left. \frac{\partial [r^{d-1}y^{(\xi)}(r)]}{\partial r} \right|_{r=\xi\sigma}.$

Contents	Background 000	Chemical-potential route	Applications	Conclusion 00
Sticky hard sp	heres			
Sket	tch of the <i>ch</i>	arging process		
ſ	$\xi = 0.5$	$\xi = 0.6$	$\xi = 0.7$	
	O C			
	OO	\circ	00	
ſ				
	\bigcirc C			
l	\underline{OO}			
	$\xi = 1$	$\xi = 0.9$	$\xi = 0.8$	

Contents	Background	Chemical-potential route	Applications	Conclusions
			000000000000000000000000000000000000000	
Sticky hard spher	es			

Three different protocols

• If the exact $y^{(\xi)}(r)$ were used, the result for μ would be *independent* of the protocol and, of course, would be exact.

Contents	Background	Chemical-potential route	Applications	Conclusions
			000000000000000000000000000000000000000	
Sticky hard sphere	s			

PY approximation

- The known exact solution of the PY approximation for SHS mixtures (d=3) [J.W. Perram & E.R. Smith, Chem. Phys. Lett. 35, 138 (1975)] allows one to obtain analytical expressions for
 - $y^{(\xi)}(\xi\sigma)$, • $\partial y^{(\xi)}(r)/\partial r\big|_{r=\xi\sigma}$.
- From there, application of the μ -route yields

$$\mu \Rightarrow F \Rightarrow Z \equiv \frac{p}{\rho k_B T}$$
 (equation of state).

• Not surprisingly, the outcome depends on the protocol (and is different from that of the other three routes).

Contents	Background 000	Chemical-potential route	Applications	Conclusions
Sticky hard sphere	es			

Results. Weak stickiness limit [R.D. Rohrmann & A.S., unpublished (2014)]

$$Z(\eta, \alpha) = Z_{\mathsf{HS}}(\eta) + Z_1(\eta)\alpha + Z_2(\eta)\alpha^2 + \cdots$$

	$Z_{HS}(\eta)$	$Z_1(\eta)$
PY- v	$\frac{1+2\eta+3\eta^2}{(1-\eta)^2}$	$-rac{12\eta(1+2\eta)}{(1-\eta)^3}$
PY-e	Undetermined	$-\frac{12\eta(1+2\eta)}{(1-\eta)^3}$
PY-c	$\frac{1+\eta+\eta^2}{(1-\eta)^3}$	$-\frac{3\eta(2+\eta)^2}{(1-\eta)^4}$
$PY\text{-}\mu$	$-9\frac{\ln(1-\eta)}{\eta} - \frac{16-31\eta}{2(1-\eta)^2}$	$-27\frac{\ln(1-\eta)}{\eta} - \frac{3(18-37\eta+49\eta^2)}{2(1-\eta)^3}$

Contents	Background 000	Chemical-potential route	Applications	Conclusions 00
Sticky hard spher	es			

Contents	Background 000	Chemical-potential route	Applications	Conclusions
Sticky hard sphere	?S			

Results. Comparison with simulations [R.D. Rohrmann & A.S., unpublished (2014)]

Comparison of PY theoretical curves with Monte Carlo simulations [M.A. Miller & D. Frenkel, J. Chem. Phys. **121**, 535 (2004)] at $\alpha = 0.555$.

Contents	Background	Chemical-potential route	Applications	Conclusions
			000000000000000000000000000000000000000	
Sticky hard sphere	es			

Why the μ -route is more accurate than the virial and energy routes?

Contents	Background 000	Chemical-potential route	Applications	Conclusion: 00
Additive hard-	-sphere (AHS) mixture	2S		
Har	d spheres			
φ _{αγ} (r)		$\phi_{\alpha\gamma}(r) = \begin{cases} \infty, & r < \sigma \\ 0, & r > \sigma \end{cases}$	αγ, αγ.

Contents	Background 000	Chemical-potential route	Applications	Conclusions 00				
Additive hard-sphere (AHS) mixtures								
The μ -	-route at v	vork						

• Coupling of the *impurity* to the solvent:

$$e^{-\beta\phi_{\nu\alpha}^{(\xi)}(r)} = \Theta(r - \sigma_{\nu\alpha}^{(\xi)}), \quad 0 \le \sigma_{\nu\alpha}^{(\xi)} \le \sigma_{\nu\alpha}.$$

• Change of variable:

$$\sigma_{\nu\alpha}^{(\xi)} \to \sigma_{0\alpha} \Rightarrow \frac{\partial e^{-\beta\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})}}{\partial\xi} \mathsf{d}\xi = -\delta(r - \sigma_{0\alpha})\mathsf{d}\sigma_{0\alpha}.$$

Chemical potential [A.S. & R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)]

$$\beta \mu_{\nu} = \ln \left(\rho x_{\nu} \Lambda_{\nu}^{d} \right) + d2^{d} \rho v_{d} \sum_{\alpha} x_{\alpha} \int_{0}^{\sigma_{\nu\alpha}} \mathsf{d}\sigma_{0\alpha} \, \sigma_{0\alpha}^{d-1} y_{0\alpha}(\sigma_{0\alpha}).$$

Contents	Background	Chemical-potential route

Applications

Conclusions

Additive hard-sphere (AHS) mixtures

PY approximation

• The known exact solution of the PY approximation for AHS mixtures (d=3) $_{\rm [J.L.\ Lebowitz,\ Phys.\ Rev.\ 133,\ A895\ (1964)]}$ allows one to obtain

$$y_{\alpha\gamma}(\sigma_{\alpha\gamma}) = \frac{1}{1-\eta} + \frac{3}{2} \frac{\eta}{(1-\eta)^2} \frac{\sigma_{\alpha} \sigma_{\gamma} M_2}{\sigma_{\alpha\gamma} M_3}, \quad M_n \equiv \sum_{\alpha} x_{\alpha} \sigma_{\alpha}^n.$$

• From here, [A.S. & R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)]

$$\beta \mu_{\nu}^{\text{ex}} = -\ln(1-\eta) + \frac{3\eta}{1-\eta} \frac{M_2}{M_3} \left\{ \sigma_{\nu} + \left[\frac{M_1}{M_2} + \frac{3\eta}{2(1-\eta)} \frac{M_2}{M_3} \right] \sigma_{\nu}^2 + \left[\frac{1}{3M_2} + \frac{\eta}{1-\eta} \frac{M_1}{M_3} \right] \sigma_{\nu}^3 \right\}.$$

Contents	Background	Chemical-potential route	Applications
	000	00000	000000000000000000000000000000000000000

Additive hard-sphere (AHS) mixtures

An extra source of thermodynamic inconsistency

• From thermodynamics,

$$\mu_{\nu} = \left(\frac{\partial F}{\partial N_{\nu}}\right)_{T,V,\{N_{\gamma\neq\nu}\}} \Rightarrow \frac{\partial \mu_{\nu}}{\partial N_{\alpha}} = \frac{\partial \mu_{\alpha}}{\partial N_{\nu}}.$$

• However, in the PY approximation,

$$\frac{\partial \mu_{\nu}}{\partial N_{\alpha}} \neq \frac{\partial \mu_{\alpha}}{\partial N_{\nu}}.$$

How, then, can we obtain F from the μ-route?
 Answer: Use the Gibbs free energy G instead!

$$\sum_{\nu} N_{\nu} \mu_{\nu} = G = -V^2 \frac{\partial (F/V)}{\partial V} \Rightarrow F \Rightarrow Z = \frac{p}{\rho k_B T}.$$

Contents	Background 000	Chemical-potential route	Applications	Conclusions
Additive hard-spl	nere (AHS) mixtures			

Results

$$Z = \frac{1}{1-\eta} + \frac{3\eta}{(1-\eta)^2} \frac{M_1 M_2}{M_3} + \frac{3\eta^2}{(1-\eta)^3} \frac{M_2^3}{M_3^2} - \frac{3M_2^3}{2M_3^2} \left[\frac{6-15\eta+11\eta^2}{(1-\eta)^3} + 6\frac{\ln(1-\eta)}{\eta} \right].$$

- The μ-route turns out to be more accurate than the virial route (as expected) but less than the compressibility route.
- Standard semi-empirical equation of state:

$$Z_{\mathsf{BMCSL}} = \frac{1}{3} Z_{\mathsf{PY}-v} + \frac{2}{3} Z_{\mathsf{PY}-v}.$$

• In the same spirit we can propose

$$Z_{\mathsf{PY}-\mu c} = \lambda Z_{\mathsf{PY}-\mu} + (1-\lambda) Z_{\mathsf{PY}-c}, \quad \lambda \simeq 0.4$$

Background

Chemical-potential route 00000

Applications

Conclusions

Additive hard-sphere (AHS) mixtures

Comparison with computer simulations (binary mixtures)

Compressibility factor Z as a function of the mole fraction x_1 for an AHS binary mixture with a packing fraction $\eta = 0.49$ and a size ratio $\sigma_2/\sigma_1 = 0.6$ (top panel) or $\sigma_2/\sigma_1 = 0.3$ (bottom panel). The symbols are com-

puter simulation values, while the lines stand for theoretical predictions. Here, $\lambda = \frac{37}{100}$ in $Z_{\text{PY-}\mu c}$.

Background

Chemical-potential route

Applications

Conclusions

Additive hard-sphere (AHS) mixtures

Deviations of theoretical compressibility factors from molecular dynamics results for a one-component HS fluid. The symbols are computer simulation values, while the lines stand for theoretical predictions. Here, $\lambda = \frac{2}{5}$ and $\lambda = \frac{7}{18}$ in $Z_{\text{PY-}\mu c,1}$ and $Z_{\text{PY-}\mu c,2}$, respectively.

kground

Chemical-potential route

Applications

Conclusions

Fourth virial coefficient of AHS mixtures

Virial expansion

$$Z \equiv \frac{p}{\rho k_B T} = 1 + B_2 \rho + B_3 \rho^2 + B_4 \rho^3 + \cdots$$

• Exact results:

$$B_2 = \frac{\pi}{6} \left(3M_1M_2 + M_3 \right),$$

$$B_3 = \left(\frac{\pi}{6}\right)^2 \left(6M_1M_2M_3 + 3M_2^3 + M_3^2 \right)$$

• B₄: Numerical results for *binary* mixtures

[S. Labík and J. Kolafa, Phys. Rev. E 80, 051122 (2009)].

\sim	t١	n	t	D	
				2	

ground

Chemical-potential route

Applications

Conclusions

Fourth virial coefficient of AHS mixtures

PY equation

$$y(r) = 1 + \rho \int d\mathbf{r}' \left[g(r') - y(r') \right] \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right].$$

HNC equation

$$\ln y(r) = \rho \int d\mathbf{r}' \, \left[g(r') - 1 - \ln y(r') \right] \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right].$$

Interestingly,

$$\ln y(r) \to y(r) - 1 \Rightarrow \mathsf{HNC} \to \mathsf{PY}.$$

Contents	Background	Chemical-potential route

Applications

Conclusions

Fourth virial coefficient of AHS mixtures

Results [E. Beltrán-Heredia & A.S., unpublished (2014)]

$$\left. \begin{array}{c} \stackrel{\mathrm{PY},v}{}_{\mathrm{PY},c} \\ \stackrel{\mathrm{PY},\mu}{}_{\mathrm{HNC},v} \\ \stackrel{\mathrm{HNC},\nu}{}_{\mathrm{HNC},\mu} \end{array} \right\} \Rightarrow B_4 = \left(\frac{\pi}{6}\right)^3 \left[C_4^{(1)} M_1 M_2 M_3^2 + C_4^{(2)} M_2^3 M_3 + C_4^{(3)} M_3^3 \right].$$

Approximation-route	$C_{4}^{(1)}$	$C_{4}^{(2)}$	$C_{4}^{(3)}$	b_4
PY- v	9	6	1	16
$PY extsf{-}\mu$	9	$\frac{27}{4}$	1	$\frac{57}{4} = 16.75$
PY-c	9	9	1	19
HNC-v	$\frac{27}{2}$	$\frac{27}{2}$	$\frac{3}{2}$	$\frac{57}{2} = 28.5$
HNC- μ	$\frac{\overline{27}}{2}$	$\frac{\overline{27}}{2}$	$\frac{\overline{11}}{8}$	$\frac{227}{8} = 28.375$
HNC- c	_	_	_	$\frac{5623}{420} \simeq 13.388$

Contents	Background	Chemical-potential route	Applications	Conclusions	
			000000000000000000000000000000000000000		
Fourth virial coef	ficient of AHS mixture	s			

• $B_4^{\text{HNC-}c} \neq \text{Function of } \{x_i\} \text{ and } \{\sigma_i\} \text{ only through the size moments } \{M_n\}.$

$$\begin{split} \left(\frac{\pi}{6}\right)^{-3} B_4^{\mathsf{HNC}\text{-}c} &= \left(\frac{\pi}{6}\right)^{-3} B_4^{\mathsf{PY-c}} + M_1 \left(\frac{27}{40} M_1^2 M_6 + \frac{63}{40} M_1 M_2 M_5 - \frac{9}{8} M_1 M_3 M_4 - \frac{9}{280} M_1 M_7 \\ &\quad - \frac{9}{8} M_2^2 M_4 - \frac{3}{2} M_2 M_3^2 + \frac{3}{20} M_2 M_6 - \frac{3}{4} M_3 M_5 - \frac{3}{28} M_8 \right) \\ &\quad - M_2 \left(\frac{9}{4} M_2^2 M_3 + \frac{9}{40} M_2 M_5 + \frac{3}{4} M_3 M_4 + \frac{3}{280} M_7 \right) - \frac{1}{8} M_3 M_6 - \frac{1}{84} M_9 + \Delta, \end{split}$$

where, for a *binary* mixture (assuming $\sigma_2 \leq \sigma_1$),

$$\begin{split} &\Delta = & x_1 x_2 \frac{(\sigma_1 - \sigma_2)^5}{105} \left(179 M_1 M_3 + 174 M_2^2 + 25 M_4 \right) - x_1 x_2 \frac{(\sigma_1 - \sigma_2)^6}{420} \\ & \times \left[x_1^2 (1039 \sigma_1^3 + 393 \sigma_1^2 \sigma_2 + 75 \sigma_1 \sigma_2^2 + 5 \sigma_2^3) - x_2^2 (1039 \sigma_2^3 + 393 \sigma_2^2 \sigma_1 + 75 \sigma_2 \sigma_1^2 + 5 \sigma_1^3) \right]. \end{split}$$

round (

Chemical-potential route

Applications

Conclusions

Fourth virial coefficient of AHS mixtures

Composition-independent virial coefficients

Comparison with (exact) numerical results

$$B_4 = \sum_{i,j,k,\ell} x_i x_j x_k x_\ell B_{ijk\ell}$$

kground

Chemical-potential route

Applications

Conclusions

Fourth virial coefficient of AHS mixtures

Comparison with (exact) numerical results

Contents	Background	Chemical-potential route	Applications	Conclusions
				•0

Messages to take home

- The chemical-potential route deserves to be treated on the same footing as the other three standard routes.
- Even in one-component systems, the μ -route requires the impurity-solvent correlation function.
- In approximate theories, the μ -route may yield protocoldependent results and (in the case of mixtures) may violate the symmetry condition $\partial \mu_{\nu} / \partial N_{\gamma} = \partial \mu_{\gamma} / \partial N_{\nu}$.
- The μ -route can be useful as a test of the internal consistency of approximate theories and as a guide to construct improved theories.
- Within the PY approximation, the μ-route is typically the most accurate one for attractive interactions (SHS) but is less accurate than the compressibility route for repulsive interactions (HS).
- Future (not yet foreseen) applications can be expected.

ontents Backgr 000 Chemical-potential route

Applications

Conclusions

Thanks for your attention!

