Awakening a Sleeping Beauty. The Chemical-Potential Route to the Equation of State

Andrés Santos

Departamento de Física, Universidad de Extremadura, Badajoz, Spain

XLIII Winter Meeting on Statistical Physics (Taxco, Mexico) - January 7-10 2014

Helmholtz free energy

- $F(T, V, N)=E-T S$ (Legendre transformation)

$$
=p V+\mu N
$$

- $\mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V+\mu \mathrm{d} N$

$$
=\frac{S}{k_{B} \beta^{2}} \mathrm{~d} \beta-p \mathrm{~d} V+\mu \mathrm{d} N, \quad \beta \equiv \frac{1}{k_{B} T} .
$$

- Derived thermodynamic quantities:

$$
E=\left(\frac{\partial \beta F}{\partial \beta}\right)_{V, N}, p=-\left(\frac{\partial F}{\partial V}\right)_{\beta, N}, \mu=\left(\frac{\partial F}{\partial N}\right)_{\beta, V}
$$

(Equilibrium) Statistical-mechanical roadmaps

(1) Partition function:

$$
\mathcal{Z}_{N}(\beta, V) \Rightarrow F(T, V, N)=-k_{B} T \ln \mathcal{Z}_{N}(\beta, V)
$$

(2) Radial distribution function:
$g(r) \Rightarrow$ thermodynamic quantities $\Rightarrow F(T, V, N)$.
Formally,
Roadmap \#1 三 Roadmap \#2, but...
Roadmap \#2 is more useful from a practical point of view because

- it is more intuitive,
- the most successful theoretical approximations are based on it,
- and $g(r)$ is an important physical quantity by itself.

Roadmap \#2. Thermodynamic routes

Same result?

Our aim

To "awake" the (sleeping) chemical-potential route

Collaborators

René D. Rohrmann,
National Scientific and Technical Research Council - Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE), Argentina

Elena Beltrán-Heredia, graduate student, University of Extremadura and University Complutense of Madrid (Spain)

Contents

(1) Background

- Radial distribution function $g(r)$
- Conventional thermodynamic routes
(2) Chemical-potential route
- Addition of an extra particle
- Final results
(3) Applications
- Percus-Yevick integral equation approximation
- Sticky hard spheres
- Additive hard-sphere (AHS) mixtures
- Fourth virial coefficient of AHS mixtures
(4) Conclusions

Physical interpretation of $g(r)$

If a given particle is taken to be at the origin, then the local average density at a distance r from that particle is $\rho g(r)$ (where $\rho=N / V$ is the global density)

Radial distribution function for a Lennard-Jones fluid at $T^{*}=0.71, \rho^{*}=0.844$.

- Formal definition (identical particles):

$$
g\left(r_{12}\right)=\frac{V^{-(N-2)}}{Q_{N}} \int \mathrm{~d}_{3} \cdots \int \mathrm{~d} \mathbf{r}_{N} e^{-\beta \Phi_{N}\left(\mathbf{r}^{N}\right)}
$$

- Configuration integral:

$$
Q_{N}(\beta, V)=V^{-N} \int \mathrm{~d} \mathbf{r}^{N} e^{-\beta \Phi_{N}\left(\mathbf{r}^{N}\right)}
$$

- Total potential energy:

$$
\Phi_{N}\left(\mathbf{r}^{N}\right)=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \phi\left(r_{i j}\right)=\frac{1}{2} \sum_{i \neq j} \phi\left(r_{i j}\right)
$$

- $\rho=N / V=$ number density, $\quad d=$ dimensionality of the system.

Energy, pressure, and isothermal compressibility

- Energy route:

$$
\langle E\rangle=\frac{\partial(\beta F)}{\partial \beta}=N\left[\frac{d}{2} k_{B} T+\frac{\rho}{2} \int \mathrm{~d} \mathbf{r} \phi(r) g(r)\right] .
$$

- Virial (or pressure) route:

$$
p=-\frac{\partial F}{\partial V}=\rho k_{B} T\left[1-\frac{\rho \beta}{2 d} \int \mathrm{~d} \mathbf{r} r \frac{\mathrm{~d} \phi(r)}{\mathrm{d} r} g(r)\right] .
$$

- Compressibility route:

$$
\kappa_{T}^{-1}=V \frac{\partial^{2} F}{\partial V^{2}}=\frac{\rho k_{B} T}{1+\rho \int \mathrm{d} \mathbf{r}[g(r)-1]}
$$

Chemical potential

$$
\beta \mu^{\mathrm{ex}}=-\frac{\partial \ln Q_{N}}{\partial N} \rightarrow \ln \frac{Q_{N}(\beta, V)}{Q_{N+1}(\beta, V)}
$$

- N-particle system: $i=1,2, \ldots, N$.

$$
\Phi_{N}\left(\mathbf{r}^{N}\right)=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \phi\left(r_{i j}\right)
$$

- ($N+1$)-particle system: $i=0,1,2, \ldots, N$.

$$
\Phi_{N+1}\left(\mathbf{r}^{N+1}\right)=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \phi\left(r_{i j}\right)+\sum_{j=1}^{N} \phi\left(r_{0 j}\right)
$$

"Charging" process

- We introduce a coupling parameter ξ such that its value $0 \leq$ $\xi \leq 1$ controls the strength of the interaction of particle $i=0$ to the rest of particles:

$$
\phi^{(\xi)}\left(r_{0 j}\right)= \begin{cases}0, & \xi=0 \\ \phi\left(r_{0 j}\right), & \xi=1\end{cases}
$$

- The associated total potential energy and configuration integral are

$$
\begin{gathered}
\Phi_{N+1}^{(\xi)}\left(\mathbf{r}^{N+1}\right)=\Phi_{N}\left(\mathbf{r}^{N}\right)+\sum_{j=1}^{N} \phi^{(\xi)}\left(r_{0 j}\right) \\
Q_{N+1}^{(\xi)}(\beta, V)=V^{-(N+1)} \int \mathrm{d} \mathbf{r}^{N+1} e^{-\beta \Phi_{N+1}^{(\xi)}\left(\mathbf{r}^{N+1}\right)} .
\end{gathered}
$$

- Thus,

$$
\beta \mu^{\mathrm{ex}}=\ln \frac{Q_{N}(\beta, V)}{Q_{N+1}(\beta, V)}=-\int_{0}^{1} \mathrm{~d} \xi \frac{\partial \ln Q_{N+1}^{(\xi)}(\beta, V)}{\partial \xi} .
$$

- Taking into account that

$$
\begin{aligned}
\frac{\partial \ln Q_{N+1}^{(\xi)}}{\partial \xi} & =-\frac{\rho \beta V^{-N}}{Q_{N+1}^{(\xi)}} \int \mathrm{d} \mathbf{r}^{N+1} e^{-\beta \Phi_{N+1}^{(\xi)}\left(\mathbf{r}^{N+1}\right)} \frac{\partial \phi^{(\xi)}\left(r_{01}\right)}{\partial \xi}, \\
g^{(\xi)}\left(r_{01}\right) & =\frac{V^{-(N-1)}}{Q_{N+1}^{(\xi)}} \int \mathrm{d} \mathbf{r}_{2} \cdots \int \mathrm{~d} \mathbf{r}_{N} e^{-\beta \Phi_{N+1}^{(\xi)}\left(\mathbf{r}^{N+1}\right)}
\end{aligned}
$$

- we get

$$
\frac{\partial \ln Q_{N+1}^{(\xi)}}{\partial \xi}=-\frac{\rho \beta}{V} \int \mathrm{~d} \mathbf{r}_{0} \int \mathrm{~d} \mathbf{r}_{1} g^{(\xi)}\left(r_{01}\right) \frac{\partial \phi^{(\xi)}\left(r_{01}\right)}{\partial \xi}
$$

- Finally [A.S., Phys. Rev. Lett. 109, 120601 (2012)],

$$
\mu=k_{B} T \ln \left(\rho \Lambda^{d}\right)+\rho \int_{0}^{1} \mathrm{~d} \xi \int \mathrm{~d} \mathbf{r} g^{(\xi)}(r) \frac{\partial \phi^{(\xi)}(r)}{\partial \xi}
$$

- where

$$
\Lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}} \text { (thermal de Broglie wavelength). }
$$

- The μ-route requires the pair correlation function of an impurity (or "solute") coupled to the rest of the particles (the "solvent") via a potential $\phi^{(\xi)}(r)$.
- The final result should be independent of the protocol

$$
0 \rightarrow \phi^{(\xi)}(r) \rightarrow \phi(r)
$$

followed in the charging process.

Extension to mixtures

- Number of particles of species $\alpha: N_{\alpha}$.
- Total number of particles: $N=\sum_{\alpha} N_{\alpha}$.
- Mole fraction of species α : $x_{\alpha}=N_{\alpha} / N, \sum_{\alpha} x_{\alpha}=1$.
- Interaction potential between a particle of species α and a particle of species γ : $\phi_{\alpha \gamma}(r)$.
- Radial distribution function for the pair $\alpha \gamma: g_{\alpha \gamma}(r)$
- Chemical-potential route [A.S. \& R.D. Rohrmann, Phys. Rev. E 87, 052138, (2013)] :

$$
\mu_{\nu}=k_{B} T \ln \left(\rho x_{\nu} \Lambda_{\nu}^{d}\right)+\rho \sum_{\alpha} x_{\alpha} \int_{0}^{1} \mathrm{~d} \xi \int \mathrm{~d} \mathbf{r} g_{\nu \alpha}^{(\xi)}(r) \frac{\partial \phi_{\nu \alpha}^{(\xi)}(r)}{\partial \xi}
$$

- Here, particle $i=0$ is coupled to a particle of species α via an interaction potential $\phi_{\nu \alpha}^{(\xi)}(r)$ such that

$$
\phi_{\nu \alpha}^{(\xi)}(r)= \begin{cases}0, & \xi=0 \\ \phi_{\nu \alpha}(r), & \xi=1\end{cases}
$$

PY equation

$$
y(r)=1+\rho \int \mathrm{dr}^{\prime}\left[g\left(r^{\prime}\right)-y\left(r^{\prime}\right)\right]\left[g\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)-1\right]
$$

where

$$
y(r) \equiv g(r) e^{\beta \phi(r)}: \text { cavity function. }
$$

- The PY equation admits an exact solution for
- Sticky hard spheres.
- Additive hard-sphere mixtures.

Square-well potential \rightarrow "Sticky" hard spheres (Baxter, 1968)

Square-well (SW) potential

Sticky-hard-sphere (SHS) potential

$$
\sigma^{\prime} \rightarrow \sigma, \quad \epsilon \rightarrow \infty
$$

$$
\alpha \equiv \frac{\sigma^{\prime}-\sigma}{\sigma} e^{\beta \epsilon}=\text { finite ("stickiness" parameter). }
$$

$$
e^{-\beta \phi_{\mathrm{SW}}(r)} \rightarrow e^{-\beta \phi_{\mathrm{SHS}}(r)}=\Theta(r-\sigma)+\alpha \sigma \delta(r-\sigma)
$$

The μ-route at work

- Coupling of the impurity to the solvent:

$$
e^{-\beta \phi^{(\xi)}(r)}=\Theta(r-\xi \sigma)+\alpha^{(\xi)} \xi \sigma \delta(r-\xi \sigma), \quad 0 \leq \alpha^{(\xi)} \leq \alpha
$$

- The function $\alpha^{(\xi)}$ defines the coupling protocol.
μ-route [R.D. Rohrmann \& A.S., unpublished (2014)]

$$
\beta \mu^{\mathrm{ex}}(\eta, \alpha)=\underbrace{-\ln (1-\eta)}_{0 \leq \xi \leq \frac{1}{2}}-d 2^{d} \eta \int_{\frac{1}{2}}^{1} \mathrm{~d} \xi M^{(\xi)}(\eta, \alpha)
$$

where

- $\eta=$ packing fraction,
- $M^{(\xi)}(\eta, \alpha) \equiv \frac{\partial\left(\alpha^{(\xi)}-1\right) \xi}{\partial \xi} \xi^{d-1} y^{(\xi)}(\xi \sigma)+\left.\frac{\alpha^{(\xi)} \xi}{\sigma^{d-2}} \frac{\partial\left[r^{d-1} y^{(\xi)}(r)\right]}{\partial r}\right|_{r=\xi \sigma}$.

Sketch of the charging process

Three different protocols

$$
\alpha^{(\xi)}= \begin{cases}(2 \xi-1)^{2} \alpha, & (\mathrm{~A}) \\ (2 \xi-1) \alpha, & (\mathrm{B}), \\ \sqrt{2 \xi-1} \alpha, & (\mathrm{C})\end{cases}
$$

- If the exact $y^{(\xi)}(r)$ were used, the result for μ would be independent of the protocol and, of course, would be exact.

PY approximation

- The known exact solution of the PY approximation for SHS mixtures $(d=3)$ [J.W. Perram \& E.R. Smith, Chem. Phys. Lett. 35 , 138 (1975)] allows one to obtain analytical expressions for

$$
\begin{aligned}
& \text { - } y^{(\xi)}(\xi \sigma), \\
& \text { - } \partial y^{(\xi)}(r) /\left.\partial r\right|_{r=\xi \sigma} \text {. }
\end{aligned}
$$

- From there, application of the μ-route yields

$$
\mu \Rightarrow F \Rightarrow Z \equiv \frac{p}{\rho k_{B} T} \text { (equation of state). }
$$

- Not surprisingly, the outcome depends on the protocol (and is different from that of the other three routes).

Results. Weak stickiness limit [R.D. Rohrmann \& A.S., unpublished (2014)]

$$
Z(\eta, \alpha)=Z_{\mathrm{HS}}(\eta)+Z_{1}(\eta) \alpha+Z_{2}(\eta) \alpha^{2}+\cdots
$$

	$Z_{\mathrm{HS}}(\eta)$	$Z_{1}(\eta)$
PY- v	$\frac{1+2 \eta+3 \eta^{2}}{(1-\eta)^{2}}$	$-\frac{12 \eta(1+2 \eta)}{(1-\eta)^{3}}$
PY- e	Undetermined	$-\frac{12 \eta(1+2 \eta)}{(1-\eta)^{3}}$
PY- c	$\frac{1+\eta+\eta^{2}}{(1-\eta)^{3}}$	$-\frac{3 \eta(2+\eta)^{2}}{(1-\eta)^{4}}$
PY- μ	$-9 \frac{\ln (1-\eta)}{\eta}-\frac{16-31 \eta}{2(1-\eta)^{2}}$	$-27 \frac{\ln (1-\eta)}{\eta}-\frac{3\left(18-37 \eta+49 \eta^{2}\right)}{2(1-\eta)^{3}}$

Sticky hard spheres

Results. Finite stickiness [R.D. Rohmann \& A.S., unpublished (2014)]

Reduced pressure for increasing stickiness: $\alpha=0$, $0.1,0.2,0.3,0.4,0.5,0.612,0.703,0.854$.
A: --•; B: 一.—; C:

Fourth virial coefficient.

Sticky hard spheres

Results. Comparison with simulations [R.D. Rohrmann \& A.S., unpublished (2014)]

Comparison of PY theoretical curves with Monte Carlo simulations [M.A. Miller \& D. Frenkel, J. Chem. Phys. 121, 535 (2004)] at $\alpha=0.555$.

Vapor-liquid coexistence curves. Here, $\tau=1 / 12 \alpha$.

Why the μ-route is more accurate than the virial and energy routes?

Hard spheres

Hard-sphere potential.

$$
\begin{aligned}
& \phi_{\alpha \gamma}(r)= \begin{cases}\infty, & r<\sigma_{\alpha \gamma}, \\
0, & r>\sigma_{\alpha \gamma} .\end{cases} \\
& \frac{\partial e^{-\beta \phi_{\alpha \gamma}}(r)}{\partial r}=\delta\left(r-\sigma_{\alpha \gamma}\right) .
\end{aligned}
$$

Additivity condition:

$$
\sigma_{\alpha \gamma}=\frac{\sigma_{\alpha}+\sigma_{\gamma}}{2} .
$$

Additive hard-sphere (AHS) mixtures

The μ-route at work

- Coupling of the impurity to the solvent:

$$
e^{-\beta \phi_{\nu \alpha}^{(\xi)}(r)}=\Theta\left(r-\sigma_{\nu \alpha}^{(\xi)}\right), \quad 0 \leq \sigma_{\nu \alpha}^{(\xi)} \leq \sigma_{\nu \alpha} .
$$

- Change of variable:

$$
\sigma_{\nu \alpha}^{(\xi)} \rightarrow \sigma_{0 \alpha} \Rightarrow \frac{\partial e^{-\beta \phi_{\nu \alpha}^{(\xi)}(\mathbf{r})}}{\partial \xi} \mathrm{d} \xi=-\delta\left(r-\sigma_{0 \alpha}\right) \mathrm{d} \sigma_{0 \alpha} .
$$

Chemical potential [A.S. \& R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)]

$$
\beta \mu_{\nu}=\ln \left(\rho x_{\nu} \Lambda_{\nu}^{d}\right)+d 2^{d} \rho v_{d} \sum_{\alpha} x_{\alpha} \int_{0}^{\sigma_{\nu \alpha}} \mathrm{d} \sigma_{0 \alpha} \sigma_{0 \alpha}^{d-1} y_{0 \alpha}\left(\sigma_{0 \alpha}\right)
$$

PY approximation

- The known exact solution of the PY approximation for AHS mixtures $(d=3)$ [J.L. Lebowitz, Phys. Rev. 133, A895 (1964)] allows one to obtain

$$
y_{\alpha \gamma}\left(\sigma_{\alpha \gamma}\right)=\frac{1}{1-\eta}+\frac{3}{2} \frac{\eta}{(1-\eta)^{2}} \frac{\sigma_{\alpha} \sigma_{\gamma} M_{2}}{\sigma_{\alpha \gamma} M_{3}}, \quad M_{n} \equiv \sum_{\alpha} x_{\alpha} \sigma_{\alpha}^{n}
$$

- From here, [A.S. \& R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)]

$$
\begin{aligned}
\beta \mu_{\nu}^{\mathrm{ex}}= & -\ln (1-\eta)+\frac{3 \eta}{1-\eta} \frac{M_{2}}{M_{3}}\left\{\sigma_{\nu}+\left[\frac{M_{1}}{M_{2}}+\frac{3 \eta}{2(1-\eta)} \frac{M_{2}}{M_{3}}\right] \sigma_{\nu}^{2}\right. \\
& \left.+\left[\frac{1}{3 M_{2}}+\frac{\eta}{1-\eta} \frac{M_{1}}{M_{3}}\right] \sigma_{\nu}^{3}\right\} .
\end{aligned}
$$

An extra source of thermodynamic inconsistency

- From thermodynamics,

$$
\mu_{\nu}=\left(\frac{\partial F}{\partial N_{\nu}}\right)_{T, V,\left\{N_{\gamma \neq \nu}\right\}} \Rightarrow \frac{\partial \mu_{\nu}}{\partial N_{\alpha}}=\frac{\partial \mu_{\alpha}}{\partial N_{\nu}}
$$

- However, in the PY approximation,

$$
\frac{\partial \mu_{\nu}}{\partial N_{\alpha}} \neq \frac{\partial \mu_{\alpha}}{\partial N_{\nu}}
$$

- How, then, can we obtain F from the μ-route?

Answer: Use the Gibbs free energy G instead!

$$
\sum_{\nu} N_{\nu} \mu_{\nu}=G=-V^{2} \frac{\partial(F / V)}{\partial V} \Rightarrow F \Rightarrow Z=\frac{p}{\rho k_{B} T}
$$

Results

$$
\begin{aligned}
Z= & \frac{1}{1-\eta}+\frac{3 \eta}{(1-\eta)^{2}} \frac{M_{1} M_{2}}{M_{3}}+\frac{3 \eta^{2}}{(1-\eta)^{3}} \frac{M_{2}^{3}}{M_{3}^{2}} \\
& -\frac{3 M_{2}^{3}}{2 M_{3}^{2}}\left[\frac{6-15 \eta+11 \eta^{2}}{(1-\eta)^{3}}+6 \frac{\ln (1-\eta)}{\eta}\right] .
\end{aligned}
$$

- The μ-route turns out to be more accurate than the virial route (as expected) but less than the compressibility route.
- Standard semi-empirical equation of state:

$$
Z_{\mathrm{BMCSL}}=\frac{1}{3} Z_{\mathrm{PY}-v}+\frac{2}{3} Z_{\mathrm{PY}-c} .
$$

- In the same spirit we can propose

$$
Z_{\mathrm{PY}-\mu c}=\lambda Z_{\mathrm{PY}-\mu}+(1-\lambda) Z_{\mathrm{PY}-c}, \quad \lambda \simeq 0.4
$$

Comparison with computer simulations (binary mixtures)

Compressibility factor Z as a function of the mole fraction x_{1} for an AHS binary mixture with a packing fraction $\eta=0.49$ and a size ratio $\sigma_{2} / \sigma_{1}=0.6$ (top panel) or $\sigma_{2} / \sigma_{1}=0.3$ (bottom panel).
The symbols are computer simulation values, while the lines stand for theoretical predictions. Here, $\lambda=\frac{37}{100}$ in $Z_{\mathrm{PY}-\mu c}$.

Comparison with computer simulations (one-component system)

Deviations of theoretical compressibility factors from molecular dynamics results for a one-component HS fluid. The symbols are computer simulation values, while the lines stand for theoretical predictions. Here, $\lambda=\frac{2}{5}$ and $\lambda=\frac{7}{18}$ in $Z_{\mathrm{PY}-\mu c, 1}$ and $Z_{\mathrm{PY}-\mu c, 2}$, respectively.

Virial expansion

$$
Z \equiv \frac{p}{\rho k_{B} T}=1+B_{2} \rho+B_{3} \rho^{2}+B_{4} \rho^{3}+\cdots
$$

- Exact results:

$$
\begin{gathered}
B_{2}=\frac{\pi}{6}\left(3 M_{1} M_{2}+M_{3}\right) \\
B_{3}=\left(\frac{\pi}{6}\right)^{2}\left(6 M_{1} M_{2} M_{3}+3 M_{2}^{3}+M_{3}^{2}\right)
\end{gathered}
$$

- B_{4} : Numerical results for binary mixtures
[S. Labík and J. Kolafa, Phys. Rev. E 80, 051122 (2009)].

PY equation

$$
y(r)=1+\rho \int \mathrm{dr}^{\prime}\left[g\left(r^{\prime}\right)-y\left(r^{\prime}\right)\right]\left[g\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)-1\right] .
$$

HNC equation

$$
\ln y(r)=\rho \int \mathrm{d} \mathbf{r}^{\prime}\left[g\left(r^{\prime}\right)-1-\ln y\left(r^{\prime}\right)\right]\left[g\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)-1\right]
$$

- Interestingly,

$$
\ln y(r) \rightarrow y(r)-1 \Rightarrow \mathrm{HNC} \rightarrow \mathrm{PY}
$$

Results [E. Beltrán-Heredia \& A.S., unpublished (2014)]

$$
\left.\begin{array}{c}
\mathrm{PY}-v \\
\mathrm{PY}-c \\
\mathrm{PNC}-v \\
\mathrm{HNC}-\mu
\end{array}\right\} \Rightarrow B_{4}=\left(\frac{\pi}{6}\right)^{3}\left[C_{4}^{(1)} M_{1} M_{2} M_{3}^{2}+C_{4}^{(2)} M_{2}^{3} M_{3}+\mathrm{C}_{4}^{(3)} M_{3}^{3}\right]
$$

Approximation-route	$C_{4}^{(1)}$	$C_{4}^{(2)}$	$C_{4}^{(3)}$	b_{4}
PY- v	9	6	1	16
PY- μ	9	$\frac{27}{4}$	1	$\frac{57}{4}=16.75$
PY- c	9	9	1	19
HNC $-v$	$\frac{27}{2}$	$\frac{27}{2}$	$\frac{3}{2}$	$\frac{57}{2}=28.5$
HNC μ	$\frac{27}{2}$	$\frac{27}{2}$	$\frac{11}{8}$	$\frac{227}{8}=28.375$
HNC $-c$	-	-	-	$\frac{563}{420} \simeq 13.388$

- $B_{4}^{\text {HNC-c }} \neq$ Function of $\left\{x_{i}\right\}$ and $\left\{\sigma_{i}\right\}$ only through the size moments $\left\{M_{n}\right\}$.

$$
\begin{aligned}
\left(\frac{\pi}{6}\right)^{-3} B_{4}^{\mathrm{HNC}-c}= & \left(\frac{\pi}{6}\right)^{-3} B_{4}^{\mathrm{PY}-c}+M_{1}\left(\frac{27}{40} M_{1}^{2} M_{6}+\frac{63}{40} M_{1} M_{2} M_{5}-\frac{9}{8} M_{1} M_{3} M_{4}-\frac{9}{280} M_{1} M_{7}\right. \\
& \left.-\frac{9}{8} M_{2}^{2} M_{4}-\frac{3}{2} M_{2} M_{3}^{2}+\frac{3}{20} M_{2} M_{6}-\frac{3}{4} M_{3} M_{5}-\frac{3}{28} M_{8}\right) \\
& -M_{2}\left(\frac{9}{4} M_{2}^{2} M_{3}+\frac{9}{40} M_{2} M_{5}+\frac{3}{4} M_{3} M_{4}+\frac{3}{280} M_{7}\right)-\frac{1}{8} M_{3} M_{6}-\frac{1}{84} M_{9}+\Delta,
\end{aligned}
$$

where, for a binary mixture (assuming $\sigma_{2} \leq \sigma_{1}$),

$$
\begin{aligned}
\Delta= & x_{1} x_{2} \frac{\left(\sigma_{1}-\sigma_{2}\right)^{5}}{105}\left(179 M_{1} M_{3}+174 M_{2}^{2}+25 M_{4}\right)-x_{1} x_{2} \frac{\left(\sigma_{1}-\sigma_{2}\right)^{6}}{420} \\
& \times\left[x_{1}^{2}\left(1039 \sigma_{1}^{3}+393 \sigma_{1}^{2} \sigma_{2}+75 \sigma_{1} \sigma_{2}^{2}+5 \sigma_{2}^{3}\right)-x_{2}^{2}\left(1039 \sigma_{2}^{3}+393 \sigma_{2}^{2} \sigma_{1}+75 \sigma_{2} \sigma_{1}^{2}+5 \sigma_{1}^{3}\right)\right]
\end{aligned}
$$

Composition-independent virial coefficients

Comparison with (exact) numerical results

$$
B_{4}=\sum_{i, j, k, \ell} x_{i} x_{j} x_{k} x_{\ell} B_{i j k \ell}
$$

Comparison with (exact) numerical results

$$
B_{1122}=\left(\frac{\pi}{6}\right)^{-3} \sigma_{1}^{-6} \sigma_{2}^{-3} B_{1122}
$$

$B_{1222}=\left(\frac{\pi}{6}\right)^{-3} \sigma_{1}^{-3} \sigma_{2}^{-6} B_{1222}$

Messages to take home

- The chemical-potential route deserves to be treated on the same footing as the other three standard routes.
- Even in one-component systems, the μ-route requires the impurity-solvent correlation function.
- In approximate theories, the μ-route may yield protocoldependent results and (in the case of mixtures) may violate the symmetry condition $\partial \mu_{\nu} / \partial N_{\gamma}=\partial \mu_{\gamma} / \partial N_{\nu}$.
- The μ-route can be useful as a test of the internal consistency of approximate theories and as a guide to construct improved theories.
- Within the PY approximation, the μ-route is typically the most accurate one for attractive interactions (SHS) but is less accurate than the compressibility route for repulsive interactions (HS).
- Future (not yet foreseen) applications can be expected.

Thanks for your attention!

