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A method to obtain (approximate) analytical expressions for the radial distribution functions
in a multicomponent mixture of additive hard spheres that was recently introduced is used to
obtain the direct correlation functions and bridge functions in these systems. This method,
which yields results practically equivalent to the generalized mean spherical approximation
and includes thermodynamic consistency, is an alternative to the usual integral equation
approaches and requires as input only the contact values of the radial distribution functions
and the isothermal compressibility. Calculations of the bridge functions for a binary mixture
using the BoublõÂ k± Mansoori± Carnahan± Starling± Leland equation of state are compared to
parallel results obtained from the solution of the Percus± Yevick equation. We ® nd that the
conjecture recently proposed by GuzmaÂ n and del RõÂ o (1998, Molec. Phys. , 95, 645) , stating
that the zeros of the bridge functions occur approximately at the same value of the shifted
distance for all pairs of interactions, is at odds with our results. Moreover, in the case of
disparate sizes, even the Percus± Yevick bridge functions do not have this property. It is also
found that the bridge functions are not necessarily non-positive.

1. Introduction

Integral equation theories for the description of ther-
modynamic and structural properties of liquids usually
lead to qualitatively satisfactory results. Nonetheless, in
general they involve hard numerical labour as well as
criteria to formulate the closure relations that are not
clearcut. This is true even for the simplest and most
studied systems, namely the pure hard-sphere ¯ uid and
hard-sphere ¯ uid mixtures. Therefore, it is not sur-
prising that many attempts at providing general fea-
tures, symmetries, approximations or parametrizations
of the so-called bridge functions have been reported in
the literature [1± 11]. These bridge functions enter in the
closure relations and are de® ned as the sum of elemen-
tary diagrams (whose precise computation is a formid-
able and rather di� cult task) ; they account for some
molecular spatial correlations of higher order than
pair correlations. Of course the availability of the ana-
lytical results provided by the Percus± Yevick (PY)
theory [12] in the case of the pure hard-sphere ¯ uid
[13] and hard-sphere ¯ uid mixtures [14] allows one to
determine explicitly the bridge functions in this instance,
but they inherit the (theoretically) unpleasant lack of
thermodynamic consistency as well as the limited den-

sity range of applicability involved in the PY approxi-
mation.

In a related context, it is worth pointing out that in
the pioneering work of Rosenfeld and Ashcroft [15] it
was found that an important class of pair potentials
shared the property that their corresponding bridge
functions were remarkably similar to each other and
to the hard-sphere bridge function. This observation
led to the common form of the reference-hypernetted
chain theory [16], considered by many to be perhaps
the most accurate theory for the structural properties
of ¯ uids, in which the bridge functions of the system
of interest are equated to those of a hard-sphere
system. Thus, the search for accurate and relatively
simple approximations for the bridge functions of a
pure hard-sphere ¯ uid and hard-sphere ¯ uid mixtures
has been pursued in the last few years. Notable among
the results of this pursuit are the empirical parametriza-
tion due to MalijevskyÂ and LabõÂ k (ML) for the hard-
sphere ¯ uid and its recent extension to binary hard-
sphere mixtures [17]. These involve a careful and thor-
ough analysis of a large set of computer simulation data.
Some apparent regularities of the bridge functions in the
case of binary mixtures (present in the PY results and in
recent simulation data of MalijevskyÂ et al. [18]) has been
recently suggested by GuzmaÂ n and del RõÂ o [19]. If these
regularities were to hold in general, they would allow
one to simplify the ML parametrization and would
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serve as a starting point for considering hard-sphere
mixtures with three or more components. Due to the
scarcity of simulation data for mixtures, the suggestion
currently remains merely conjecture.

Notwithstanding the merits of all these theoretical
and semi-empirical e� orts, it is clear that, especially in
the case of mixtures, the scarcity of results and the rela-
tively slow progress re¯ ect the amount and di� culty of
the numerical work that has to be done to obtain them.
Therefore, one may reasonably wonder whether an
alternative theoretical approach, that at least avoided
the inherent di� culty of solving nonlinear integral
equations, would also provide information on the
bridge functions of the pure hard-sphere ¯ uid and
hard-sphere mixtures. It is the major aim of this paper
to provide an a� rmative answer to the foregoing
question.

In previous work [20, 21] we have introduced a
method to analytically derive (approximate) expressions
for the radial distribution functions and structure fac-
tors of ¯ uids and ¯ uid mixtures. This method rests on a
completely di� erent philosophy than the one involved in
integral equation theories and thus is totally void of the
di� culty associated with providing any particular clo-
sure. In the case of pure hard-sphere ¯ uids and hard-
sphere mixtures and in the lowest order of approxima-
tion, it yields the well known PY results. Furthermore
and by construction, our expressions in the next order of
approximation, which yields results practically equiva-
lent to those of the generalized mean spherical approx-
imation (GMSA) [22] but is much simpler to implement,
also embody thermodynamic consistency. As shown
below, by using such radial distribution functions in
connection with the Ornstein± Zernike (OZ) equation it
is rather straightforward to derive the direct correlation
functions and, in turn, the bridge functions of the
system, this latter for distances greater than the contact
distance.

The organization of the paper is as follows. In section
2 we outline the main ideas of our method to obtain the
radial distribution functions of an N-component mix-
ture of additive hard spheres. For this mixture the
BoublõÂ k± Mansoori ± Carnahan± Starling± Leland (BMCSL)
[23] equation of state and the Grundke± Henderson±
Lee± Levesque (GHLL) [24, 25] contact values of the
radial distribution functions, which yield the BMCSL
equation of state, are assumed to hold. If N is set
equal to one then the pure hard-sphere ¯ uid case readily
follows. Expressions for the direct correlation functions
are given there. Section 3 provides an analysis of the
bridge functions as well as a comparison with previous
work. We close the paper in section 4 with further dis-
cussion and some concluding remarks.

2. The radial distribution functions, the direct

correlation functions and the bridge functions of a

hard-sphere mixture

In this section we outline a method to obtain (approx-
imate) analytical expressions for the radial distribution
functions gij…r† of a multicomponent hard-sphere mix-
ture. It consists of an extension to mixtures of the
method previously applied to one-component systems
of hard spheres, sticky hard spheres and square wells
[20]. For details the reader may refer to [21].

An N-component mixture made of «i hard spheres (of
diameter ¼i) per volume unit may be characterized by
2N ¡ 1 parameters (for instance, the N ¡ 1 molar frac-
tions xi , the N ¡ 1 size ratios ¼i=¼1 and the packing
fraction ² ˆ …º=6†

P
i «i¼

3
i ) and involves N…N ‡ 1†=2

radial distribution functions gij…r†.
As happens in the PY and GMSA theories, it is

convenient to work in the Laplace space and de® ne

Gij…s† ˆ
…1

0
dr exp …¡sr†rgij…r†: …1†

There are two basic requirements that Gij…s† must
satisfy. First, since gij…r† ˆ 0 for r < ¼ij , with
¼ij ˆ ¼i ‡ ¼j… =2, and gij…¼‡

ij † ˆ ® nite, this implies that
(i) lims!1 s exp …s¼ij†Gij…s† ˆ ® nite. Second, the
isothermal compressibility µT ˆ ® nite, so that (ii)
lims!0 ‰Gij…s† ¡ s¡2Š ˆ ® nite. The approximation we
will use consists of assuming the following functional
form:

Gij…s† ˆ
exp …¡s¼ij†

2ºs2

X

k

L ik…s†‰…1 ‡ ¬s†I ¡ A…s†Š¡1
kj ; …2†

where I is the N £ N unit matrix,

L ij…s† ˆ L …0†
ij ‡ L …1†

ij s ‡ L …2†
ij s2 …3†

and

Aij…s† ˆ «i

X2

nˆ0

’n…s¼i†¼n‡1
i L …2¡n†

ij ; …4†

with

’n…x† ² x¡…n‡1†
Xn

mˆ0

…¡x†m

m!
¡ exp …¡x†

" #

: …5†

Condition (i) is veri® ed by construction. On the
other hand, condition (ii) yields two linear sets of N2

equations each, whose solution is straightforward,
namely
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L …0†
ij ˆ ¶ ‡ ¶ 0¼j ‡ 2¶0¬ ¡ ¶

X

k

«k¼kL …2†
kj ; …6†

L …1†
ij ˆ ¶¼ij ‡ ¶ 0

2
¼i¼j ‡ …¶ ‡ ¶ 0¼i†¬

¡
¶

2
¼i

X

k

«k¼kL …2†
kj ; …7†

where ¶ ² 2º=…1 ¡ ²† and ¶ 0 ² …¶=2†2 P
k «k¼2

k.

The parameters L …2†
ij and ¬ (which play a role similar

to that of the parameters Kij and z in the GMSA) are
arbitrary, so that conditions (i) and (ii) are satis® ed
regardless of their choice. In particular, if one chooses

L …2†
ij ˆ ¬ ˆ 0, our approximation coincides with the PY

solution. If , on the other hand, we ® x given values for
gij…¼‡

ij †, we get the relationship

L …2†
ij ˆ 2º¬¼ijgij…¼‡

ij †: …8†

Thus, only ¬ remains to be determined. Finally, if we ® x
µT , we obtain a closed equation for ¬ of degree 2N. It is
worth pointing out that in the particular case of a pure
hard-sphere ¯ uid (N ˆ 1) one gets a quadratic algebraic
equation for ¬, while for a binary mixture (N ˆ 2) the
explicit knowledge of Gij…s† only requires one to solve a
quartic equation, which also has an analytical solution.
A natural choice to close the scheme, which we will of
course consider in this paper, is to take the GHLL
values [24, 25] of gij…¼‡

ij †, as well as the corresponding
BMCSL [23] isothermal compressibility µT . But other
possibilities are available and one of them will also be
addressed later on. Once Gij…s† has been determined,
inverse Laplace transformation directly yields rgij…r†,
while the Fourier transforms ~hij…q† of the total correla-
tion functions hij…r† readily follow from the relation

~hij…q† ²
…

dr exp …{q·r†hij…r†

ˆ ¡2º
Gij…s† ¡ Gij…¡s†

s sˆ{q
; …9†

where { is the imaginary unit. In Fourier space and
introducing the quantities Ĥij…q† ˆ …«i«j†1=2~hij…q† and
Ĉij…q† ˆ …«i«j†1=2~cij…q† the OZ equation reads

Ĉ…q† ˆ Ĥ…q†· ‰I ‡ Ĥ…q†Š¡1
; …10†

so that after replacement of Ĥ…q† and subsequent inverse
Fourier transformation it is straightforward to get cij…r†.
The result gives cij…r† for r > ¼ij as the superposition of
N Yukawas (see the Appendix):

cij…r† ˆ
XN

`ˆ1

K…`†
ij

r
exp ¡z`…r ¡ ¼ij† ; …11†

where q ˆ §{z` with ` ˆ 1; . . . ;N are the zeros of
det ‰I ‡ Ĥ…q†Š and the amplitudes K…`†

ij are obtained by
applying the residue theorem as

K…`†
ij ˆ {z`

2º
exp …¡z`¼ij† lim

q!{z`

~cij…q†…q ¡ {z`†: …12†

Finally, we note that the bridge functions Bij…r† for
r > ¼ij are linked to gij…r† and cij…r† through

Bij…r† ˆ ln gij…r† ¡ gij…r† ‡ cij…r† ‡ 1: …13†

Equations (11) and (13) , after replacement of the results
for gij…r†, will be used below to investigate some proper-
ties of the bridge functions Bij…r† in pure hard-sphere
¯ uids and hard-sphere mixtures.

3. Comparison with other results

We begin with the pure hard-sphere ¯ uid, that is, we
now consider the case when N ˆ 1. For this system a
variety of closures to the OZ equation are available [2±
7], for instance

BPY…r† ˆ ln ‰1 ‡ ®…r†Š ¡ ®…r†; …14†

BHNC…r† ˆ 0 ; …15†

BVM…r† ˆ ¡
®…r†‰ Š2

2 1 ‡ a1®…r†f g ; …16†

BMS…r† ˆ 1 ‡ 2®…r†‰ Š1=2¡®…r† ¡ 1 ; …17†

BRY…r† ˆ ln 1 ‡
exp ‰1 ¡ exp …¡a2r†Š®…r†f g ¡ 1

1 ¡ exp …¡a2r†

¡ ®…r†; …18†

BBPGG…r† ˆ 1 ‡ a3®…r†‰ Š1=a3 ¡®…r† ¡ 1 ; …19†

where ®…r† ² g…r† ¡ c…r† ¡ 1 and the labels HNC, VM,
MS, RY and BPGG denote the hypernetted-chain [2],
Verlet modi® ed [3], Martynov± Sarkisov [4], Rogers±
Young [5] and Ballone± Pastore± Galli± Gazzillo [6]
closures, respectively, and the adjustable parameters
ai…i ˆ 1 ;2 ;3† have been estimated to take the values
a2 ˆ 0:160 [5], a1 ˆ 4=5 and a3 ˆ 15=8 [9]. It is at this
point interesting to analyse to what extent the bridge
functions calculated upon substitution in such closures
of our expressions for the radial distribution function
and direct correlation function di� er or are compatible
with the actual bridge function computed using equation
(13) . To this end, we introduce the quantity D B¤…r† ²
B¤…r† ¡ B…r†, where the asterisk refers to a given label.
Notice that in particular D BHNC…r† ˆ ¡B…r† and
D BPY…r† ˆ ln ‰1 ¡ c…r†=g…r†Š. In ® gure 1 we display the
behaviour of D B¤…r† as a function of the shifted distance
r ¡ ¼ for a packing fraction ² ˆ 0:49, i.e. close to the
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freezing transition. Clearly the main discrepancies
between both types of calculation show up near the
contact point, but one could reasonably argue that the
RY, the MS and the VM closures are rather compatible
with the result of the present approach in that region.

Figure 2 displays the results for the bridge function as
obtained with the PY theory, the parametrization of
MalijevskyÂ and LabõÂ k (ML) [17] and our formulation,
again for the packing fraction ² ˆ 0:49. As clearly seen
in the ® gure, the discrepancy between the results of the

parametrization and both ours and those of the PY
theory is rather signi® cant. Also, although not percep-
tible on the scale of the ® gure, we note that in our case
the ® rst maximum of the bridge function attains a posi-
tive value, whereas both the ML parametrization and
the PY theory always lead to non-positive values for
the bridge function. We will come back to this point
later on.

We now turn to binary mixtures. In ® gures 3 and 4
results for the di� erent bridge functions are shown for
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Figure 1. The di� erence D B¤…r† as a function of the shifted
distance r ¡ ¼ for a simple hard-sphere ¯ uid with ² ˆ 0:49
and ¼ ˆ 1, according to various closures: HNC (dash-
dotted line) , PY (solid line) , RY (dashed line), MS (dotted
line), VM (solid line with triangles) and BPGG (solid line
with circles).

Figure 2. Bridge function B…r† versus r ¡ ¼ for a simple hard-
sphere ¯ uid with ² ˆ 0:49 and ¼ ˆ 1. Solid line: present
method; dashed line: PY results; dotted line: ML parame-
trization.

Figure 3. Bridge functions Bij…r† versus r ¡ ¼ij for an equi-
molar binary mixture of hard spheres with ² ˆ 0:35 and
diameters ¼2 ˆ 0:6 and ¼1 ˆ 1. Solid lines: present
method; dashed lines: PY results. The curves for B11…r†
contain no symbols, those for B12…r† contain circles and
the ones for B22…r† contain triangles.

Figure 4. Bridge functions Bij…r† versus r ¡ ¼ij for a binary
mixture of hard spheres with ² ˆ 0:49, molar fraction
x1 ˆ 1=16 and diameters ¼2 ˆ 0:3 and ¼1 ˆ 1. The code
for the di� erent curves is as in ® gure 3.



two cases. In ® gure 3, which corresponds to the case
examined by GuzmaÂ n and del RõÂ o [19], it is an equi-
molar mixture with ² ˆ 0:35 and ¼2=¼1 ˆ 0:6 ; the
second mixture is de® ned by ² ˆ 0:49, x1 ˆ 1=16,
x2 ˆ 15=16 and ¼2=¼1 ˆ 0:3. We have also included in
these ® gures the results obtained with the PY approxi-
mation. The di� erences between the results of both
approaches are particularly important in the ® rst maxi-
mum of the bridge functions and once more in our case
we get some intervals of positive values. These ® gures
also illustrate the fact that the phase-shif t symmetry that
was recently conjectured by GuzmaÂ n and del RõÂ o [19] to
hold on the basis of the behaviour observed in ® gure 3,
is not even present in the PY theory, particularly at
short distances, and this becomes more evident as the
disparity in size ratio is increased, as shown in ® gure 4.

As another illustration, in ® gures 5 and 6 we display
results for a ternary mixture where ² ˆ 0:49, x1 ˆ x2 ˆ
1=102, x3 ˆ 100=102, ¼2=¼1 ˆ 0:3 and ¼3=¼1 ˆ 0:1.
Apart from exhibiting a more complicated structure
than in the case of binary mixturesÐ notice, for ex-
ample, the existence of a negative ® rst maximum for
B11 and B12 Ð again an important di� erence between
our results and those of the PY theory is that we may
get positive values for the bridge functions in some
regions.

Thus far we have only considered the GHLL prescrip-
tion for the contact values gij…¼‡

ij † and the isothermal
compressibility µT derived from the BMCSL equation

of state as the input in our method. One may reasonably
wonder whether the use of di� erent values for gij…¼‡

ij †
and/or µT would also yield similar results. In order to
assess the importance of other reasonable choices, we
have made calculations using the contact values gij…¼‡

ij †
obtained by extrapolation of simulation results [18] and
the value of µT derived from an equation of state for
mixtures (eCS) recently proposed by us [26]. To illus-
trate the results one gets with these choices, in ® gure 7
we compare the various calculations of the function
B11…r† for the case considered earlier in ® gure 4,
namely the binary mixture de® ned by ² ˆ 0:49,
x1 ˆ 1=16, x2 ˆ 15=16 and ¼2=¼1 ˆ 0:3. Except in the
region up to the ® rst maximum and near the second
minimum, the curves obtained with either the BMCSL
equation of state and with the second choice (eCS) using
our procedure are practically indistinguishable. Never-
theless, although the ® rst maximum with the eCS choice
is still positive, its amplitude is much smaller than the
one using the BMCSL equation of state, up to a point
where the positive character can hardly be ascertained
on the scale of the ® gure. It is also worth pointing out
that the value of ¬ is more sensitive to the choice of µT
than to the values of gij…¼‡

ij †. In fact, for this mixture one
gets ¬ ˆ 0:0189 using the BMCSL equation of state
while ¬ ˆ 0:0118 using our proposal (eCS) for the equa-
tion of state. A smaller value of ¬ means that c11…r† goes
to zero more rapidly which in turn implies a much
smaller (but still positive) value for the ® rst maximum
of B11…r† in the latter case.
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Figure 5. Bridge functions Bij…r† versus r ¡ ¼ij for a ternary
mixture of hard spheres with ² ˆ 0:49, molar fractions
x1 ˆ x2 ˆ 1=102 and diameters ¼3 ˆ 0:1, ¼2 ˆ 0:3 and
¼1 ˆ 1. Solid lines: present method; dashed lines: PY
results. The curves for B11…r† contain no symbols, those
for B12…r† contain circles and the ones for B13…r† contain
triangles.

Figure 6. Bridge functions Bij…r† versus r ¡ ¼ij for a ternary
mixture of hard spheres with ² ˆ 0:49, molar fractions
x1 ˆ x2 ˆ 1=102, and diameters ¼3 ˆ 0:1, ¼2 ˆ 0:3 and
¼1 ˆ 1. Solid lines: present method; dashed lines: PY
results. The curves for B22…r† contain no symbols, those
for B23…r† contain circles and the ones for B33…r† contain
triangles.



4. Discussion

The points arising from the results of the previous
sections deserve further elaboration. To begin with, it
is fair to say that our approach leads to a simple and
clearcut procedure for determining both the bridge func-
tions and the direct correlation functions in a multicom-
ponent hard-sphere mixture, requiring as the only input
the contact values of the radial distribution functions
that specify the actual equation of state of the mixture.
It should be pointed out that while the procedure is
capable of yielding the values of the direct correlation
functions for all distances, including those inside the
hard cores, in the case of the bridge functions it is lim-

ited to distances greater than the contact distance. This
is due to the fact that our method does not deal neither
with closures nor with the cavity functions. Neverthe-
less, this restriction may be disposed of , at least for the
case of the pure hard-sphere ¯ uid, by considering
approximate analytical forms of the cavity function
that are available in the literature [8, 24, 27]. In this
connection, we should mention that the form of the
cavity function derived by Zhou and Stell [8] has been
shown to be compatible with our g…r† in the sense that it
yields the same values for both g…¼‡† and dg…r†=drjrˆ¼‡

[28]. If the available simulation results for the radial
distribution functions for mixtures are scarce, those
for the bridge functions are to our knowledge non-exist-
ent. In the absence of such data to compare with the
results we have presented, it would be of course prema-
ture to reach de® nite conclusions. One could argue that
the accuracy of the bridge functions might be estimated
indirectly by comparing the radial distribution functions
calculated using the OZ equation with a given closure
and simulation results. In the present approach, how-
ever, this is unnecessary since we have explicit (analy-
tical) expressions for the radial distribution functions
from the very beginning, and these have already been
compared to simulation results both for the one-
component and two-component hard-sphere systems in
[20, 21].

It is clear that a key di� erence between our results for
the bridge functions and most of those previously
reported, is the fact that in our case these functions
may attain both positive and negative values. In connec-
tion with this issue one cannot overlook the fact that it
has often been assumed that the bridge functions should
be non-positive. This is certainly the case in the PY
theory and various parametrizations and approxima-
tions have included such an assumption. Nevertheless,
as Rast et al. [11] have recently pointed out, there seems
to be no rigorous reason or argument stating that it
should be so. In fact, any theory that leads to a positive
value of the direct correlation function c…r† at a distance
where g…r† ˆ 1 will produce a positive B…r† at that dis-
tance. For instance, taking the Monte Carlo data for
c…r† obtained by Groot et al. [29] and those of g…r†
given by Barker and Henderson [30], one ® nds that
B…r† ’ 0:2 for r ’ 1:85¼ and ² ˆ 0:445. In further sup-
port of the likely correctness of our results, one can
invoke the fact that in our case thermodynamic consis-
tency is an ingredient of the formulation while for
instance the PY theory does not share this property.
For the pure hard-sphere ¯ uid, the reasonable compat-
ibility between our bridge function and the one com-
puted using in particular the RY closure (which was
originally proposed to achieve thermodynamic consis-
tency) is very satisfactory in this respect. Further, the
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Figure 7. Bridge function B11…r† versus r ¡ ¼1 for a binary
mixture of hard spheres with ² ˆ 0:49, molar fraction
x1 ˆ 1=16 and diameters ¼2 ˆ 0:3 and ¼1 ˆ 1. Solid line:
present method using the GHLL contact values of gij…¼‡

ij †
and the compressibility µT derived from the BMCSL
equation of state; dotted line: present method using the
contact values of gij…¼‡

ij † obtained by extrapolation of the
simulation data in [18] (namely, g11 ˆ 10:23, g12 ˆ 4:69
and g22 ˆ 3:57) and the compressibility µT derived from
the equation of state eCS proposed in [26]; dashed line:
PY results.



fact that our gij…r† are in better agreement with simula-
tion results than those of the PY theory, particularly in
the region around the contact point [21], also favours
the present approach.

Concerning the ML parametrization for mixtures and
the apparent regularity of the shifted bridge functions
that was conjectured to hold in general in [19], we can
only add that unfortunately it does not do so. Indeed, it
would have been rather remarkable that the relatively
simple forms proposed for the bridge functions would
have been able to capture the rich and varied behaviours
that one would expect from the number of parameters
involved in the description of mixtures.

Finally, we want to point out that due to the similarity
of the bridge functions corresponding to di� erent poten-
tials and those of hard-spheres [15]Ð in fact the univers-
ality of the hard-sphere bridge functional has been
recently shown to be very reliable [10]Ð these results
are not only relevant for hard-sphere mixtures, but
they may also prove useful in connection with the inte-
gral equation approach in liquid theory for mixtures
with other interaction potentials.
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partial support of DGAPA-UNAM under Project IN-
117798. The work of two of us (SBY and AS) has been
partially supported by DGES (Spain) through grant No.
PB97-1501 and by the Junta de Extremadura± Fondo
Social Europeo through grant No. IPR98C019.

Appendix

From the Fourier transform ~cij…q† one can get the
direct correlation function in real space as

cij…r† ˆ
1

…2º†3

…
dq exp …¡{q· r†~cij…q† …A 1†

ˆ 1
4º2{r

…1

¡1
dq q exp …{qr†~cij…q†: …A 2†

It is now convenient to see q as a complex variable.
Thus, if r > ¼ij , it is possible to take a contour integra-
tion around the upper half plane in equation (A1).
According to equation (10) , the functions ~cij…q† have a
common set of poles, namely the zeros of
D…q† ² det ‰I ‡ Ĥ…q†Š. A careful inspection of the results
obtained from our method shows that the zeros of D…q†
are the roots of a polynomial in q2 of degree N. More
speci® cally, the zeros of D…q† are q ˆ §{z` , where the z`

(` ˆ 1 ; . . . ;N) are positive real numbers.
Application of the residue theorem yields

cij…r† ˆ {

2ºr

XN

`ˆ1

z` exp …¡z`r† lim
q!{z`

~cij…q†…q ¡ {z`†;

r > ¼ij ; …A 2†

which is equivalent to equations (11) and (12) . To be
more explicit, let us rewrite equation (10) as

Ĉ…q† ˆ I ¡ F¡1…q†; …A 3†

where F…q† ² I ‡ Ĥ…q†. Therefore, equation (13) is
equivalent to

K…`†
ij ˆ ¡

exp …¡z`¼ij†
4º…«i«j†1=2

lim
q!{z`

F¡1…q† ij…q
2 ‡ z2

` †: …A 4†
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