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Abstract
Three explicit difference schemes for solving fractional diffusion and fractional
diffusion-wave equations are studied. We consider these equations in both the
Riemann–Liouville and the Caputo forms. We find that the Gorenflo et al (2000 J. Comput.
Appl. Math. 118 175) and the Yuste–Acedo (2005 SIAM J. Numer. Anal. 42 1862) methods
when applied to fractional diffusion equations are equivalent when BDF1 coefficients are used
to discretize the fractional derivative operators, but that this is not the case for fractional
diffusion-wave equations. The accuracy and stability of the three methods are studied.
Surprisingly, the third method, that of Ciesielski–Leszczynski (2003 Proc. 15th Conf. on
Computer Methods in Mechanics), although closely related to the Gorenflo et al method, is
the least accurate, especially for short times. The stability analysis is carried out by means
of a procedure close to the standard von Neumann method. We find that the stability bounds
of the three methods are the same.

PACS numbers: 02.70.Bf, 05.10.−a, 02.60.−x

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The usefulness of the fractional derivative formalism, and
in particular, of the fractional diffusion and fractional
diffusion-wave equations, in addressing scientific problems
is becoming ever more generally recognized in the scientific
community as a consequence of the success of its application
in fields as wide ranging as economics, biology, engineering,
physics, etc. For example, one of the authors (SBY) has
employed the fractional formalism to study the problem
of the reaction kinetics when the reactive particles are
subdiffusive [1–4]. Many more examples can be found in
monographs [5–8].

The success of this formalism in practical applications
depends strongly on the existence of exact or approximate
solutions which can be calculated or computed efficiently.
Fortunately, there exist many analytical methods of obtaining
these solutions [7–13]. However, as also is the case in
the non-fractional (classical) formalism, many problems can
still only be suitably tackled by resorting to numerical

methods. This makes the definition and evaluation of these
methods of great importance. Although in the last few
years many methods of solving fractional partial differential
equations have been proposed and analyzed (see [14–23] and
references therein), there is still much to be done, especially
in evaluating and comparing their strengths and weaknesses.
Here, we present results on three recently proposed explicit
finite difference methods (the GMMP method [24], the
CL method [25] and the YA method [26]) investigating
their accuracy and stability. Explicit methods have some
nice features that make them especially useful and widely
employed [26, 27]: they are flexible, relatively simple and
computationally undemanding, and can be easily generalized
to spatial dimensions higher than one. However, in some
cases, they can be unstable. This makes it crucial to ascertain
under which conditions, if any, these methods are stable.

The equation we use as test bed is

∂γ u

∂tγ
=

∂2u

∂x2
, (1)
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where
∂γ

∂tγ
f (t) ≡

1

0(n − γ )

∫ t

0
dτ

1

(t − τ)1+γ−n

dn f (τ )

dτ n
, (2)

n − 1 < γ < n, (n = integer)

is the fractional derivative in Caputo’s sense. For 0 < γ 6 1
one has the fractional diffusion equation, or subdiffusion
equation, in which we use the initial condition u(x, 0) =

f (x). For 1 < γ 6 2 one has the fractional diffusion-wave
equation for which we add the further initial condition:
∂u(x, t)/∂t |t=0 = g(x). It should be noted that although
the GMMP and YA methods were originally designed for
fractional diffusion equations, their extension to fractional
diffusion-wave equations is straightforward.

Expressing the Caputo derivative in terms of the
Riemann–Liouville derivative (which, for practical purposes,
is valid under fairly general conditions; for more details see
[7, 8, 28])

0 Dγ
t f (t) ≡

1

0(n − γ )

dn

dtn

∫ t

0
dτ

f (τ )

(t − τ)1+γ−n
, (3)

n − 1 < γ < n, (n = integer)

one finds that the subdiffusion equation becomes

∂

∂t
u(x, t) = 0 D1−γ

t
∂2

∂x2
u(x, t), 0 < γ 6 1, (4)

whereas

∂2

∂t2
u(x, t) = 0 D2−γ

t
∂2

∂x2
u(x, t), 1 < γ 6 2 (5)

is another way of writing the subdiffusion-wave equation. The
YA method was originally devised for equation (4), but can
easily be extended to deal with equation (5).

In order to carry out the numerical comparisons, we will
consider a problem defined in the interval 06 x 6 π , with
absorbing boundary conditions, u(x =0, t)=u(x =π, t) = 0,
and where the initial condition is u(x, 0) = f (x) = sin x
for the fractional diffusion problem, and u(x, 0) = f (x) =

sin x and ∂u(x, t)/∂t |t=0 = g(x) = 0 for the diffusion-wave
problem. This problem is chosen because its exact solution is
known [10] and easy to calculate:

u(x, t) = Eγ (−tγ ) sin(x), (6)

where Eγ is the Mittag–Leffler function [7, 8].

2. The numerical methods

In what follows, we will use the notation x j = j1x , tm =

m1t , and u(x j , tm) ' U (m)
j , where U (m)

j stands for the
numerical estimate of the exact solution u(x, t) for x = x j and
t = tm .

The GMMP and CL methods differ in the form in which
they discretize the Caputo derivative, namely,

∂γ f

∂tγ

∣∣∣∣
tm

' (1t)−γ

m∑
r=0

ωγ
r

[
f (tm−r ) − f (0) − f ′(0)tm

]
(7)

for the GMMP method, and

∂γ f

∂tγ

∣∣∣∣
tm

' (1t)−γ

m∑
r=0

ωγ
r f (tm−r )

−
f (0)

0(1 − γ )
t−γ
m −

f ′(0)

0(2 − γ )
t1−γ
m (8)

for the CL method [25, 29]. We shall use the notation tm =

m1t . For the GMMP and CL methods, the subdiffusion
case (0 < γ < 1) is recovered by deleting the term in which
f ′(0) appears. In the fractional difference methods, the
Riemann–Liouville derivative is approximated by using a
discretization formula of order p:

0 Dγ
t f (tm) = (1t)−γ

m∑
r=0

ωγ
r f (tm−r ) + O(1t)p. (9)

There are several valid sets of coefficients ω
γ

k : see [26, 30],
for example. The BDF1 set, for which p = 1,

ω
γ

k = (−1)k

(
γ

k

)
(10)

was the only one considered by Gorenflo et al in [24]. In this
case, the equation (9) is known as the Grünwald–Letnikov
formula.

Using (9) in equations (1), (4) and (5), and discretizing
the second-order space derivative by the usual three-point
centered formula

∂2

∂x2
u(x j , tm) =

u(x j+1, tm) − 2u(x j , tm) + u(x j−1, tm)

(1x)2

+ O(1x)2 (11)

one obtains three difference schemes for subdiffusion
equations with discretization errors of order O(1t)p +
O(1x)2, namely:

• GMMP method:

ω
γ

0 U (m+1)
j = S

[
U (m)

j−1 − 2U (m)
j + U (m)

j+1

]
−

m∑
k=1

ω
γ

k U (m+1−k)
j

+ U 0
j

m∑
k=0

ω
γ

k , (12)

S = K
(1t)γ

(1x)2
. (13)

• CL method:

U (m+1)
j = S

(
U (m)

j−1 − 2U (m)
j + U (m)

j+1

)
−

m+1∑
k=1

ω
γ

k U (m+1−k)
j

+

(
1

m + 1

)γ U (0)
j

0(1 − γ )
. (14)
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Figure 1. Solution at the mid-point x = π/2 of the fractional
diffusion equation described in the main text for γ = 1/2. Line:
exact solution, u(π/2, t) = E1/2(−t1/2); squares: numerical solution
obtained with the GMMP and YA methods; circles: CL method.
We have used 1x = π/20 and 1t = 7.074 × 10−5.

• YA method:

U (m+1)
j = U (m)

j + S
m∑

k=0

ω
(1−γ )

k

×

[
U (m−k)

j−1 − 2U (m−k)
j + U (m−k)

j+1

]
. (15)

The difference schemes for fractional diffusion-wave
problems (1 < γ 6 2) can be deduced in a similar way:

• GMMP method:

ω
γ

0 U (m+1)
j = S

[
U (m)

j−1 − 2U (m)
j + U (m)

j+1

]
−

m∑
k=1

ω
γ

k U (m+1−k)
j

+ U 0
j

m∑
k=0

ω
γ

k + U ′0
j 1t

m+1∑
k=0

kω
γ

k . (16)

Here U ′(0)
j is the numerical value of the derivative of the

exact solution at time t = 0.
• CL method:

U (m+1)
j = S

(
U (m)

j−1 − 2U (m)
j + U (m)

j+1

)
−

m+1∑
k=1

ω
γ

k U (m+1−k)
j

+

(
1

m + 1

)γ U (0)
j

0(1−γ )
+

(
1

m + 1

)(γ−1) U ′(0)
j

0(2 − γ )
.

(17)

• YA method:

U (m+1)
j = 2U (m)

j − U (m−1)
j

+ S
m∑

k=0

ω
(2−γ )

k

[
U (m−k)

j−1 − 2U (m−k)
j + U (m−k)

j+1

]
.

(18)

In figure 1, we compare the analytical solution and
the numerical solutions obtained from these methods for

Figure 2. Error of the numerical methods for the problem
considered in figure 1. Main panel: error for the GMMP and YA
methods (squares). Inset: the same as in the main panel including
the error corresponding to the CL method (circles).

Figure 3. Solution at the mid-point x = π/2 of the fractional
diffusion-wave equation described in the main text for γ = 1.7.
Line: exact solution, u(π/2, t) = E1.7(−t1.7); squares: numerical
solution obtained with the GMMP and YA methods; circles: CL
method. We have used 1t = 0.0994 and 1x = π/20.

the fractional diffusion equation defined in the interval 06
x 6 π with γ = 0.5, f (x) = sin x , and boundary conditions
u(0, t) = u(π, t) = 0. The error of each method is shown in
figure 2. One sees that the results given by the CL method
are the poorest, and that those of the YA and GMMP methods
are exactly the same! This is quite surprising because the CL
and GMMP schemes are closely related (note that the only
difference lies in their last term), whereas the YA and GMMP
schemes appear to be completely different. Figure 3 shows
the solution for a fractional diffusion-wave equation with
γ = 1.7 in the interval 06 x 6 π with γ = 0.5, f (x) = sin x ,
g(x) = 0, and boundary conditions u(0, t) = u(π, t) = 0.
We find again that the YA and GMMP results coincide and
that the CL method gives even poorer results than for the
case considered in figure 1. It is important to note that
these numerical solutions have been obtained using the BDF1
coefficients (10). The fact that the YA and GMMP method
lead to the same results is not casual. We discuss this issue
further in section 4.
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Figure 4. Numerical solution (circles) provided by the GMMP
and YA methods for the fractional diffusion equation with γ = 0.5
and f (x) = sin(x) after 800 timesteps when 1x = π/20 and
S = (1t)γ /(1x)2

= 0.37. Note that this value of S is larger than
the stability bound 2−1.5

' 0.3535 . . . provided by equation (20).
The broken line is to guide the eye.

3. Stability

The explicit difference methods considered in section 2 are
not always stable because for any given value of γ there
are choices of 1x and 1t for which the numerical scheme
becomes unstable, which leads to absurd numerical solutions
(see an example in figure 4). Therefore, it is important to
determine the conditions, if any, under which these explicit
methods are stable. To this end, we use the fractional
von Neumann stability analysis employed in [26, 31] for
fractional diffusion equations. Their extension to fractional
diffusion-wave equations is straightforward. Proceeding as in
these references, one easily finds that the YA, GMMP and CL
methods are stable if

(1t)γ

(1x)2
6

1

4
ω(−1, γ ), (19)

where ω(z, γ ) =
∑

∞

k=0 ω
γ

k zk is the generating function for the
ω

γ

k coefficients. If one uses the BDF1 coefficients (cf (10)),
then the generating function is ω(z, γ ) = (1 − z)γ [30] and
the stability bound becomes

(1t)γ

(1x)2
6 2γ−2. (20)

Figures 4 and 5 show the numerical solution u(x, t) for the
same problem of figure 1 but for two values of S, respectively,
larger and smaller than the stability bound provided by (20).
One sees that the value of S is crucial: when this parameter is
inside the stable region one gets a sensible numerical solution,
otherwise one gets an evidently wrong solution with wild
oscillations, which are the signature of an unstable scheme.

4. Equivalence between the GMMP and YA methods

In section 2, it was seen that the numerical results obtained
with the YA method were identical to those obtained by
means of the GMMP method. This result seemed surprising
given the quite different structure of the two algorithms
(cf equations (15) and (12)). However, this is not just

Figure 5. Numerical solution (circles) provided by the GMMP
and YA methods for the fractional diffusion equation with γ = 0.5
and f (x) = sin(x) after 1000 timesteps when 1x = π/20 and
S = (1t)γ /(1x)2

= 0.35. Note that this value is smaller than the
stability bound 2−1.5

' 0.3535 . . . provided by equation (20), so that
we are inside the stability region. The solid line is the exact solution.

a coincidence since it is possible to prove that the two
methods are equivalent (see below) if and only if the
following relationship involving the generating functions of
the coefficients ω

γ

k holds:

ω(z; γ )ω(z; 1 − γ ) = 1 − z. (21)

A similar result is also valid for diffusion-wave equations:
as long as ∂u(x, t)/∂t |t=0 = g(x) = 0, the two methods are
equivalent if and only if

ω(z; γ )ω(z; 2 − γ ) = (1 − z)2. (22)

4.1. Equivalence of the GMMP and YA methods for
fractional diffusion equations

It is easy to see from (15) and (12) that the value for U (1)
j

provided by the two methods is the same if ω
(1−γ )

0 ω
γ

0 = 1.
In the same way, it is easy to prove that the two methods
lead to the same value for U (2)

j if ω
γ

0 ω
(1−γ )

1 + ω
γ

1 ω
1−γ

0 = −1.
In general, it is possible to prove by induction after some
lengthy algebra that for k > 2 the two methods lead to the
same value U (k)

j if, and only if,

ω
γ

0 ω
1−γ

0 = 1, (23)

ω
γ

1 ω
1−γ

0 + ω
1−γ

1 ω
γ

0 = −1, (24)

k∑
n=0

ω1−γ
n ω

γ

k−n = 0, k > 2. (25)

But

ω(z; γ )ω(z; 1 − γ ) =

∞∑
m=0

m∑
r=0

zmω
γ
m−rω

1−γ
r . (26)

Therefore, inserting equations (23)–(25) into (26) one
gets (21). Note that this equation is satisfied trivially if one
uses the BDF1 coefficients in the YA and GMMP methods
because, for these coefficients, ω(z; γ ) = (1 − z)γ .

4
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4.2. Equivalence of the GMMP and YA methods for
fractional diffusion-wave equations

Let us start by comparing the first value U (1)
j provided by the

YA and GMMP methods. According to the YA method,

U (1)
j = 2U (0)

j − U (−1)
j + Sω

(2−γ )

0

[
U (0)

j−1 − 2U (0)
j + U (0)

j+1

]
. (27)

The ‘ghost’ value U (−1)
j can be obtained from the boundary

condition ∂u(x, t)/∂t |t=0 = g(x) = 0:

U (−1)
j = sU (0)

j − g j1t (28)

so that

U (1)
j = U (0)

j + g j1t + Sω
(2−γ )

0

[
U (0)

j−1 − 2U (0)
j + U (0)

j+1

]
.

(29)

On the other hand, for the GMMP method one gets

ω
γ

0 U (1)
j = S

(
U (0)

j−1 − 2U (0)
j + U (0)

j+1

)
+ ω

γ

0 U 0
j + g j1tωγ

1 .

(30)
Thus ones sees that the two methods lead to the same value
U (1)

j if, and only if,

ω
(2−γ )

0 ω
γ

0 = 1, (31)

ω
γ

1 = −ω
γ

0 . (32)

But this last equation is not verified by the BDF1 set of
coefficients, nor by any other set of known coefficients [30].
Therefore, we have to conclude that, in general, the YA and
GMMP methods are not equivalent. However, note that if
g(x) = 0, then the condition (32) is no longer necessary, and
the two methods provide the same value U (1)

j if the BDF1
coefficients are used. In fact, it is possible to prove that the
two methods lead to the same value U (m)

j for all m as long as
the following equations hold:

ω
γ

0 ω
2−γ

0 = 1, (33)

ω
γ

0 ω
2−γ

1 + ω
γ

1 ω
2−γ

0 = −2, (34)

ω
γ

0 ω
2−γ

2 + ω
γ

1 ω
2−γ

1 + ω
γ

2 ω
2−γ

0 = 1, (35)

k∑
n=0

ω1−γ
n ω

γ

k−n = 0, k > 3. (36)

Note that these equations imply (22), which is only satisfied
by the generating function of the BDF1 coefficients.

5. Conclusions

We have considered three explicit methods (GMMP, YA
and CL methods) for solving fractional diffusion and
diffusion-wave equations. As the GMMP and YA methods
were not originally developed for fractional diffusion and
diffusion-wave equations, we have generalized them to cope

with this class of equations. Regarding the accuracy, we found
that the CL method is the poorest of the three methods
considered, especially for short times. Initially, we found
empirically that, when using BDF1 discretization coefficients,
the YA and GMMP methods always lead to the same results
for the fractional subdiffusion problem, and for the fractional
diffusion-wave problem as long as the initial time derivative
is zero. We proved that this is no coincidence: the two
methods are equivalent if and only if the BDF1 discretization
coefficients are used. The nonequivalence of the CL and
GMMP methods and the equivalence of the YA and GMMP
methods is quite remarkable: it is a nice example of how
two almost identical algorithms obtained from the very same
equation (the CL and GMMP schemes) are really different,
and how two seemingly quite different algorithms obtained
from two different forms of an equation (the YA and GMMP
schemes) turn out to be identical. Finally, by means of a
von Neumann stability analysis we obtained the stability
conditions for the three methods and for both the fractional
diffusion and diffusion-wave equations. We found that the
three methods have the same stability.
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