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Abstract: As is well known, subdiffusion equations in terms of fractional derivatives can
be obtained from Continuous Time Random Walk (CTRW) models with long-tailed waiting
time distributions. Over the last years various authors have shown that extensions of such
CTRW models incorporating reactive processes to the mesoscopic transport equations may
lead to non-intuitive reaction-subdiffusion equations. In particular, one such equation has
been recently derived for a subdiffusive random walker subject to a linear (first-order) death
process. We take this equation as a starting point to study a key problem in developmental
biology, namely morphogen gradient formation. We consider both the uniform case where
the morphogen degradation rate coefficient (reactivity) is constant and the non-uniform
case (position-dependent reactivity). In the uniform case we obtain exponentially decreasing
stationary concentration profiles and we study their robustness with respect to perturbations
in the incoming morphogen flux. In the non-uniform case we find a rich phenomenology at the
level of the stationary profiles. We conclude that the analytic form of the long-time morphogen
concentration profiles is very sensitive to the spatial dependence of the reactivity and the specific
values of the anomalous diffusion exponent and the anomalous diffusion coefficient.

Keywords: Riemann-Liouville fractional derivative, anomalous diffusion, reaction-subdiffusion
equations, continuous-time random walks, morphogen profiles

1. INTRODUCTION

Fractional diffusion equations are a powerful tool to study
anomalous transport processes, i.e., processes in which the
mean square displacement 〈x2〉 of a randomly moving par-
ticle displays the long time-behavior 〈x2〉 ∼ Kγt

γ , where γ
is the anomalous diffusion exponent andKγ is the so-called
anomalous diffusion coefficient. When 0 < γ < 1, one has
sublinear growth of 〈x2〉 (subdiffusion), while for γ > 1 one
speaks of superdiffusion. As it is well known, the classical
diffusion equation corresponding to the γ = 1 case can be
obtained from an average over the trajectories of a Marko-
vian random walk in the limit of large time scales and long
displacements. In contrast, stochastic transport processes
governed by anomalous diffusion equations reflect memory
effects at the microscopic level. In particular, one can show
that a suitably defined non-Markovian hopping process,
namely a Continuous Time Random Walk (CTRW) with
a long-tailed waiting time distribution, yields a subdiffu-
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y Tecnoloǵıa (Spain) through Grant No. FIS2007-60977, by the
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GRU10158, and by the National Science Foundation under grant No.
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sion equation in terms of the Riemann-Liouville fractional
derivative (1). This fractional subdiffusion equation can be
taken as a starting point to deal with a number of biolog-
ically relevant problems, e.g. the localization of a target
protein by a sea of subdiffusively moving ligands in the
intracellular environment (2; 3). In this case, the complex-
ity of the cell medium results in the ligands encountering
a large number of obstacles, barriers, etc. in the course of
their trajectories. In the framework of CTRW models, the
effect of this crowded environment can be partly captured
using waiting time distributions; subsequent averaging of
the resulting equations over trajectories then leads to the
associated fractional subdiffusion equations.

While anomalous diffusion and in particular subdiffusive
processes play a central role in Nature as a manifestation of
underlying memory effects at a microscopic level, the situ-
ation where the particles simultaneously undergo anoma-
lous transport and reaction (understood as a particle cre-
ation, destruction or transformation process) is also very
common and important from the point of view of biological
applications. In the example of the target protein and the
ligands given above, one could allow e.g. for the possibility
of the ligands undergoing a degradation process as they
sweep the cell medium. Degradation implies a change in
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chemical structure which results in the ligands losing their
ability to interact with the target; for practical purposes
this kind of transformation can therefore be regarded as a
“death” or “evanescence” process.

In what follows, we shall focus on yet another biologi-
cal process where degradation/death plays a central role,
namely morphogen gradient formation. The location, dif-
ferentiation and fate of many embryonic cells is governed
by the spatial distribution of special signaling molecules
called morphogens. Standard models of morphogen gra-
dient formation assume that a specific part of the em-
bryo secrets morphogens at a constant rate. The secreted
morphogens then undergo degradation as they disseminate
through the tissue and a concentration gradient builds
up. Different target genes in the embryonic cells are acti-
vated above different morphogen concentration thresholds,
implying that the cell response to the local environment
will depend on how large the concentration is. Thanks to
this differential response, cells are able to interpret the
morphogen gradient and translate it into specific “code”
for their further development via the expression of the
relevant genes.

Traditional models of morphogen gradient formation are
based on classical diffusion equations with a linear degra-
dation term (4; 5). Here, we aim to go one step further
and allow for the possibility of anomalous transport, as
memory effects are likely to strongly influence the stochas-
tic motion of morphogens in the complex embryonic envi-
ronment. Some recent works indeed suggest that a strong
dispersion of the waiting times between consecutive jumps
may arise as a result of entrapment events arising from
the interaction between morphogens and proteins of the
heparan sulfate proteoglycans family (6).

If one accepts the idea that morphogens perform subdiffu-
sive motion induced by a long tailed waiting time distribu-
tion, great caution must be exercised when incorporating
the effect of a simultaneous degradation process to the
transport equations because of the non-Markovian charac-
ter of the latter. Several recent works indeed illustrate that
heuristic equations where one has separate terms for the
reaction and the transport process may lead to unphysical
results, e.g. negative particle concentrations (see e.g. (7)).
Therefore, the derivation of physically correct (but not
necessarily intuitive) reaction-subdiffusion equations calls
for the use of an extended CTRW formalism where the
effect of reaction is incorporated at a mesoscopic level of
description. In a recent work (8) the authors have shown by
means of Fourier-Laplace techniques that CTRW models
extended in such a way yield equations which (in addi-
tion to a standard, purely reactive term) display a mixed
reaction-transport term containing both the reaction rate
coefficient (reactivity) and a Riemann-Liouville fractional
derivative with respect to time.

A remarkable property of morphogen gradients is their
robustness against changes or fluctuations in the rate
of morphogen production or degradation. An interesting
question which we also aim to study in what follows is the
interplay between subdiffusion and robustness with respect
to such perturbations.

The remainder of the paper is organized as follows. We
first give a brief reminder of classical reaction diffusion

equations used for modeling of morphogen gradients and
subsequently discuss how to extend such equations to
account for anomalous transport via fractional derivatives.
We subsequently focus on the specific case of uniform reac-
tivity and assess the robustness of the resulting stationary
concentration profiles with respect to perturbations of
the incoming morphogen flux. Next, we turn to the non-
uniform case and discuss the long-time behaviour of the
profiles for several specific situations, namely the case of
a piecewise constant reactivity (which not always leads to
a stationary profile) and the case of a decaying reactivity
respectively given by an exponential and a power law. In
some cases, we also provide numerical simulation results
based on a CTRW model for evanescent particles and
find excellent agreement with the analytic results obtained
from the fractional diffusion equation approach. Finally,
a summary of results and possible avenues for future re-
search in this area are given in the conclusions section.

2. CLASSICAL REACTION-DIFFUSION EQUATION
WITH LINEAR DEGRADATION

The cornerstone of many studies concerning morphogen
gradients is the classical one-dimensional reaction-diffusion
equation

∂c(x, t)

∂t
= K1

∂2c(x, t)

∂x2
− k(x, t) c(x, t), (1)

where the evolution of the concentration c(x, t) is de-
scribed by a Fickian term (characterized by a classical
diffusion coefficient K1) and a linear degradation term
(characterized by the reactivity k(x, t)). Eq. (1) is then
solved subject to the radiation-type boundary condition

−K1
∂c(x, t)

∂x

∣

∣

∣

∣

x=0+

+K1
∂c(x, t)

∂x

∣

∣

∣

∣

x=0−

= j0. (2)

This boundary condition simply states that a constant
flux of morphogens j0 is injected at the origin x = 0.
The simplest case is given by a constant degradation
rate k(x, t) = k, which yields the exponentially decaying
stationary profiles:

c(x,∞) =
j0

2
√
kK1

e
−
√

k
K1

|x|
. (3)

Despite its simplicity, the exponential dependence of Eq.
(3) captures surprisingly well the rapid concentration
decay displayed by real profiles. However, the separate
determination of K1 and k poses significant experimental
difficulties and in most cases only the characteristic length
√

K1/k can be unambiguously determined. This opens
the door to the possibility of considering non-Markovian
generalizations of Eq. (1) which are also compatible with
the experimental results for the characteristic length.

3. FRACTIONAL REACTION-SUBDIFFUSION
EQUATION WITH UNIFORM REACTIVITY

3.1 Derivation from a mesoscopic CTRW model with
reaction

The starting point to derive the reaction-subdiffusion
equation is the fundamental equation of a particle per-
forming a continuous time random walk in the presence of
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a first order evanescence reaction (degradation). Consider
the stochastic motion of an evanescent particle perform-
ing nearest-neighbor jumps on an infinite one-dimensional
lattice. We shall hereafter denote the distribution of its
waiting time between consecutive jumps by ψ(t).The prob-
ability that a particle starting at site 0 arrives at site i in
the time interval between t and t + dt can be written as
q(i, t) dt, where the arrival density q obeys the following
integral difference equation:

q(i, t) =
1

2

1
∑

j=0

t
∫

0

dt′ψRW (t− t′)q(i+ (−1)j, t′) + δi,0. (4)

In this equation, ψRW (t) = ψ(t)e−k t is the probability
per unit time that a particle found at a given site at time
t = 0 has performed a jump up to time t in the presence
of a uniform evanescence reaction (since evanescence and
jump are independent processes, the probability of jump
is simply multiplied by the survival probability e−k t).
Note that we assume reaction and hopping events to be
independent processes, as opposed to the model in ref. (6),
where they are mutually exclusive processes. Taking the
diffusive limit of Eq. (4) one can show via suitable Fourier-
Laplace techniques (7) that the probability w(x, t|0, 0) to
find the particle at position x after a time t given that it
was initially at x = 0 obeys the following equation:

∂w(x, t|0, 0)

∂t
= Kγe

−kt
0D1−γ

t ekt ∂
2

∂x2
w(x, t|0, 0)

−kw(x, t|0, 0). (5)

The operator 0 D1−γ
t is defined via the equation

L−1
u→t

{

u1−γ ỹ(u)
}

= 0 D1−γ
t y(t), (6)

where ỹ(u) is the Laplace transform of the function
y(t) and L−1

u→t {·} denotes the inverse Laplace transform.

The operator 0 D1−γ
t is closely related to the Riemann-

Liouville fractional derivative

0D
1−γ
t f(x, t) =

1

Γ(γ)

∂

∂t

t
∫

0

dt′
f(x, t′)

(t− t′)1−γ
. (7)

In fact, 0D1−γ
t and 0D

1−γ
t are the same when applied to

sufficiently regular functions f(t), as determined by the

condition limt→0

∫ t

0 dt
′(t− t′)γ−1f(t′) = 0. This condition

is actually fulfilled by all functions of t relevant to the
morphogen problem, hence we shall use 0D

1−γ
t in place of

0D1−γ
t in what follows.

If one is dealing with more than one particle, the concen-
tration c(x, t) follows the same kinetics as above, i.e. (9; 7)

∂c(x, t)

∂t
= Kγe

−kt
0D

1−γ
t ekt ∂

2

∂x2
c(x, t) − kc(x, t). (8)

As one can see, this equation is a non-trivial extension
of Eq. (1) for the case of anomalous subdiffusion with
constant reactivity k. In the normal diffusion limit γ → 1
the Riemann-Liouville operator reduces to unit and one
recovers Eq. (1) with a constant k. On the other hand,
in the absence of reaction (k → 0) Eq. (8) reduces to

the standard fractional diffusion equation, which yields
sublinear growth of 〈x2〉.
Turning now to the morphogen problem, Eq. (8) is to
be solved subject to the boundary condition (2). The
solution c(x, t) for the case of a particle source can be
obtained from the propagator solution cP (x, t) ≡ G(x, t)
(corresponding the initial condition G(x, 0) = δ(x)) via

the relation c̃(x, u) = j0 G̃(x, u)/u between the Laplace
transforms. The solution in Laplace space is found to be

c̃(x, u) =
j0
2

(u+ k)γ/2−1

u
√

Kγ

exp
[

−(u+ k)γ/2/
√

Kγ |x|
]

. (9)

The stationary solution is obtained from the final value
theorem for the Laplace transform:

cs(x) = lim
u→0

uc̃(x, u) =
j0
2

kγ/2−1

√

Kγ

exp
[

−|x|kγ/2/
√

Kγ

]

.(10)

Eq. (10) generalizes the exponential profile described by
Eq. (3) . Steady state profiles are thus seen to also exist in
the presence of anomalous diffusion, as opposed to what
had been suggested in some previous works for the case of
uniform reactivity (6).

3.2 Robustness of stationary profiles

Using Eq. (10) it is possible to study the robustness of the
concentration profiles with respect to a perturbation in the
incoming flux j0. To this end, we take a reference value c×
of the concentration and assess how large the shift of the
associated position

x =

√

Kγ

kγ
ln

(

kγ/2−1j0

2c×
√

Kγ

)

(11)

becomes when j0 is perturbed; the larger the shift, the
smaller the robustness of the profile. The latter can thus
be characterized by the inverse of the relative change of
x with respect to a characteristic length a of the problem
(e.g. the linear size of a cell), i.e.

Rj0 = a

(

j0
∂x

∂j0

)−1

(12)

Inserting Eq. (11) into this definition we find

Rj0 ∝
√

kγ

Kγ
. (13)

4. FRACTIONAL REACTION-SUBDIFFUSION
EQUATION WITH NON-UNIFORM REACTIVITY

Seki et al. (10) have shown that a CTRW process described
by a generalization of Eq. (4), namely

q(i, t) =
1

2

1
∑

j=0

t
∫

0

dt′ψRW (i+ (−1)j , t− t′)q(i+ (−1)j , t′)

+δi,0 (14)

with ψRW (i, t) = ψ(t)e−k(i) t yields the following reaction-
subdiffusion equation:
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∂c(x, t)

∂t
= Kγ

∂2

∂x2

[

e−k(x)t
0D

1−γ
t

(

ek(x)tc(x, t)
)]

−k(x)c(x, t). (15)

In order to tackle the corresponding morphogen problem,
it is first necessary to find the propagator solution of
Eq. (15). To this end it is convenient to introduce a new
function v(x, t) defined via the transformation

ṽ(x, u) = [u+ k(x)]1−γ c̃(x, u) (16)

in Laplace space. This function is readily found to fulfil
the equation

[u+ k(x)]γ ṽ(x, u) − δ(x) = Kγ
∂2

∂x2
ṽ(x, u). (17)

In what follows, Eq. (17) will be used to investigate the
effect of a non-uniform reactivity for several special cases.

4.1 Piecewise constant reactivity

Here, we assume that the reactivity is given by a superpo-
sition of Heaviside functions, i.e. k(x) = k0H(R − |x|) +
k1H(|x| −R). This can be regarded as a schematic model
of morphogenesis across the interface of two media with
different degradation properties. In region 0 (0 ≤ |x| < R)
we take k(x) = k0 > 0, whereas in region 1 (|x| ≥ R)
we assume k(x) = k1 ≥ 0. Let us respectively denote
by ṽ0(x, u) and ṽ1(x, u) the solutions of Eq. (17) in the
regions 0 and 1. These functions must fulfil the continuity
conditions

ṽ0(R, u) = ṽ1(R, u) (18)

and

∂ṽ0(x, u)

∂x

∣

∣

∣

∣

|x|=R

=
∂ṽ1(x, u)

∂x

∣

∣

∣

∣

|x|=R

. (19)

In contrast, an integration of Eq. (17) across the origin
shows that the solution must be discontinuous there:

∂ṽ0(x, u)

∂x

∣

∣

∣

∣

x=0+

− ∂ṽ0(x, u)

∂x

∣

∣

∣

∣

x=0−

= − 1

Kγ
. (20)

Using Eqs. (18)-(20) one can find explicit expressions for

the Laplace transforms ṽ(x, u), G̃(x, u) and c̃(x, u) =

j0G̃(x, u)/u. For |x| < R one gets the stationary biex-
ponential solution

cs(x) = j0 k
γ−1
0 ṽ0(x, u→ 0) (21)

with

ṽ0(x, u) = A0e
−α0x +B0e

α0x, α2
0 =

(u + k0)
γ

Kγ
(22)

The characteristic constants are

A0 =
(2α0Kγ)

−1

(

2

−1−(k1+u)γ/2α−1

0
K

−1/2

γ

+ 1

)

e−2α0R + 1

B0 =
(2α0Kγ)−1

(

2

1−(k1+u)γ/2α−1

0
K

−1/2

γ

− 1

)

e2α0R − 1
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Fig. 1. Simulation results (symbols) of c(x, t) for a step
reactivity [k(x) = k0H(R − x)] with k0 = 1/1000
and R = 5 for γ = 1/2 (only values for x¿0 are
shown). The particles are simulated by means of a
CTRW model with the Pareto waiting time distri-
bution ψ(t) = γ/(1 + t)1+γ and equiprobable jumps
{−1, 0, 1}. These parameters lead to the Kγ-value

1/
√

9π. The solid line corresponds to the theoretical
prediction for the steady-state profile when x < R.
For x > R no stationary profile is developed. The
convergence of the simulation results to the stationary
profile for x < R is very slow for values of x close to
the discontinuity at x = R. No adjustable parameters
were used.

For |x| > R we shall distinguish two subcases with different
physical behaviour. For k1 > 0 one asymptotically gets the
exponential decay law

cs(x) = c(x, t → ∞) ∝ e−k
γ/2

1
(x−R)/

√
Kγ . (23)

In contrast, for k1 = 0 the behaviour is different. For
normal diffusion the profile becomes constant for large |x|,
i.e.,

cs(x) ∝ j0 (k1 = 0, γ = 1, |x| ≥ R). (24)

However, when the diffusion is anomalous one has

c(x, t → ∞) ∝ j0 t
1−γ (k1 = 0, γ < 1, |x| ≥ R), (25)

i.e., there is no steady state! In view of Eq. (21) and (25),
we conclude that the profile is discontinuous at x = R.
This behaviour is confirmed by numerical simulations (see
Fig. 1). The lack of steady state in this case is induced
by an increased escape rate of the particles from the
central region with enhanced reactivity. Most probably
the large escape rate arises from the fat tails of the
subdiffusion propagator, as opposed to the rapid decrease
of the sojourn probability associated with the Gaussian
solution for normal diffusion.

4.2 Exponentially decaying reactivity

Here, we assume the decay law k(x) = k0 e
−β|x|. While in

this case Eq. (17) does not seem exactly solvable for finite
u, it is possible to find an exact expression of the steady
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state profile by techniques similar to the ones used above.
The final result is

cs(x) = j0
k

γ/2−1
0

2K
1/2
γ

I0

(

αk
γ/2
0 e−βγ|x|/2

)

I1

(

αk
γ/2
0

) e−(γ−1)β|x|, (26)

where the In’s are modified Bessel functions and α =
2/(βγ

√

Kγ). As in the case of piecewise reactivity with
k1 = 0, this expression displays a different behaviour for
normal and anomalous diffusion. In the normal diffusion
case (γ = 1) one gets a monotonically decreasing profile
from the concentration value

cs(x = 0) =
j0

√

4k0Kγ

I0

(

αk
1/2
0

)

I1

(

αk
1/2
0

) (27)

at the origin to the limiting value

cs(x→ ±∞) =
j0

√

4k0Kγ

1

I1

(

αk
1/2
0

) . (28)

(see Fig. 2). In contrast, for γ < 1 we find a qualita-
tively different behaviour. As one moves away from the
source, first the concentration decreases until it reaches
a minimum and then it increases (see Fig. 3). From a
biological point of view, one is tempted to hypothesize
that the combined action of anomalous transport and
a sufficiently fast decreasing reactivity induces complex
tissue patterning where certain cells far apart from each
other follow a similar developmental pathway by virtue of
the non-monotonicity of the morphogen profiles.

0 5 10 15 20 25 30 35 40
0
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10

12  t=10
 t=100
 t=1000
 t=104

 t=105

  Stationary

 

c(
x,

t)

x

Fig. 2. Convergence of CTRW simulation results (symbols)
to the stationary profile predicted by formula (26) for
j0 = 1, γ = 1, the corresponding value of the diffusion
coefficient Kγ = 1/3 and exponentially decaying
reactivity k(x) = k0 exp(−β|x|) with k0 = 1/100 and
β = 1/8 (solid line). CTRW jump characteristics as
in fig. 1

4.3 Power law reactivity

Next, we take k(x) = κ0(x0 + |x|)−
µ
γ with µ > 0.

Since a steady state was already attained for an exponen-
tially decaying reactivity, this will also be the case under

0 5 10 15 20
0

50

100

150

200

250

300

350

 t=20
 t=100
 t=103

 t=104

t= 105

 t=106

 c

x

Fig. 3. Convergence of CTRW simulation results (symbols)
to the stationary profile predicted by the formula (26)
for j0 = 1, γ = 0.5 , the corresponding value Kγ =

1/
√

9π and exponentially decaying reactivity k(x) =
k0 exp(−β|x|) with k0 = 1/200 and β = 0.6 (solid
line). CTRW jump characteristics as in fig. 1. The
simulation results clearly go towards the stationary
solution (solid line) as time increases, although the
convergence for large x is slow.

the present situation, which describes enhanced particle
evanescence.The general solution of Eq. (17) for µ 6= 2 is
given by the modified Bessel functions I|ν| and K|ν| with

ν = (µ − 2)−1. In order to single out the Bessel function
corresponding to the physical solution, we use the fact that
the incoming flux must be equal to the amount of particles
per unit time that disappear due to degradation, i.e.,

j0 =

∞
∫

−∞

k(x)cs(x)dx. (29)

This condition leads to different solutions depending on
the value of µ. For µ < 2 one gets

cs(x) ∝ (x0 + |x|)
µ
γ −µ+ 1

2K|ν|

(

Φ(x0 + |x|)− 1

2ν

)

, (30)

where Φ = 2|ν|
√

κγ
0/Kγ. For large |x|, the above

stationary solution can be shown to go to zero as

x
µ
γ − 3µ

4 exp
(

−Φ|x|1−µ
2

)

. In contrast, for µ > 2 one has

cs(x) ∝ (x0 + |x|)
µ
γ −µ+ 1

2 I|ν|

(

Φ(x0 + |x|)− 1

2ν

)

. (31)

As |x| → ∞, this expression tends to a constant limiting

value in the normal diffusion case and grows as x
µ
γ −µ for

γ < 1.

When µ = 2 the solution is not given by a power law rather
than by Bessel functions. One has

cs(x) ∝ (x0 + x)
2

γ −2+λ− (32)

with λ− = 1 ±
√

1 + 4(κγ
0/Kγ)/2. For |x| → ∞ this

solution goes to infinity, a constant value or zero depending
on whether 2

γ − 2 + λ− is positive, zero or negative.
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5. CONCLUSIONS AND OUTLOOK

In the present work we investigate both analytically and
numerically the behaviour of the long time concentra-
tion profiles arising from fractional reaction-subdiffusion
equations derived from a CTRW model with a super-
imposed death process. These fractional equations are a
natural extension of classical reaction-diffusion equations
traditionally used to study the problem of morphogen
gradient formation. We consider the case of linear degra-
dation with both a uniform and non-uniform reactivity.
The formulation of the problem in terms of fractional
diffusion equations turns out to be a key ingredient in
the analysis of the properties of morphogen gradients.
This approach allows us to exploit a plethora of powerful
analytical techniques available from fractional calculus to
tackle the morphogen problem. In conclusion, we see that
the form of the long time concentration profiles is very
sensitive to the spatial dependence of the reactivity and
the characteristic quantities of subdiffusive transport, i.e.,
γ and Kγ . Anomalous diffusion leads to novel effects not
seen for normal diffusion (absence of steady states, non-
monotonic profiles, transitions between monotonic and
non-monotonic profiles, etc.).

In the uniform case one obtains exponentially decaying
stationary concentration profiles. Their robustness with
respect to changes in the incoming flux increases with
increasing k. Likewise, one can study the robustness of the
profiles with respect to a perturbation in k by introducing
the quantity

Rk = a

(

k
∂x

∂k

)−1

(33)

This issue will be the subject of future research.

In the non-uniform case the behaviour of the stationary
profiles turns out to be very sensitive to the specific
spatial dependence prescribed for k and to the value
of γ. Moreover, for the case of a piecewise constant
reactivity with k1 = 0 and anomalous diffusion, we see
that a discontinuous profile arises and no steady state is
reached in region 1. This is a novel effect not seen for
normal diffusion. For exponentially decaying reactivity the
concentration goes to a constant limiting value far away
from the source (|x| → ∞) when γ = 1, but it grows
without bound for γ < 1. Finally, when the connectivity
decays as a power law, the stationary concentration may
go to zero, to a constant or to infinity depending on the
values of the characteristic decay exponent and γ.

In view of the strong inhomogeneities encountered by the
diffusing morphogens in the embryonic environment, we
believe that the sensitivity of the concentration gradients
to the form of k(x) may be relevant for the modeling
of morphogen gradient formation and interpretation. The
case of a spatial-dependent degradation rate is motivated
by the fact that there are several morphogen degradation
pathways (e.g. intracellular degradation in lysosomes, ex-
tracellular degradation by proteases, release from tissue,
etc.) which, for practical purposes, can be regarded as a
“death” or “evanescence” process. The rates of each of
these evanescence processes depend strongly on the local
environment.

Up to the case of piecewise constant reactivity with k1 = 0,
in the present work we limit ourselves to study the be-
haviour of the stationary concentration profiles. However,
analytic solutions for transient profiles are available for
some of the cases studied, and others can be investi-
gated via numerical techniques for the inversion of Laplace
transforms. Besides, a reaction-subdiffusion equation was
recently obtained that generalizes the above results to the
general case k = k(x, t) (11; 12). As one could have guessed
in view of Eqs. (8) and (15), this equation reads as

∂c(x, t)

∂t
= Kγ

∂2

∂x2

{

e
−
∫ t

0
k(x,t′)dt′

0D
1−γ
t

[

e

∫

t

0
k(x,t′)dt′

c(x, t)

]}

− k(x, t)c(x, t) (34)

Our aim is to use the above equation to investigate
further problems related to morphogen gradient formation
in future. Beyond this goal, Eq. (34) can be applied to
many other physical problems of interest characterized by
different kinds of boundary conditions.

Finally, one of our major long term goals is to explore
feedback effects in the degradation process. There is some
evidence that morphogen signaling enhances to some ex-
tent degradation (4), leading to non-linear degradation
terms and to even more complex equations. In such cases,
it is questionable whether exact analytic solutions still
exist; one may thus be led to use some kind of mean field
approximation to tackle the underlying nonlinear problem.
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