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Abstract: An explicit difference method to solve the fractional cable equation in the Riemann-
Liouville form is studied. The numerical scheme is an extension of other schemes studied
previously by the authors in which the Riemann-Liouville derivative is approximated by means
of the Grünwald-Letnikov formula. The accuracy and stability of the method is considered.
The stability analysis is carried out by means of a kind of von Neumann method adapted to
fractional equations. The stability bound is checked numerically.
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1. INTRODUCTION

Fractional calculus is increasingly becoming a tool of key
importance to solve a broad range of scientific problems.
Biology, economics, physics or engineering are some of the
disciplines that, in the last years, have profited from this
mathematical field. For example, the fractional formalism
is widely used to study anomalous diffusion problems
described by the Continuous Time Random Walk model
[1]. In particular, during the last years, one of the authors
(SBY) has used fractional ideas and techniques in the
study of reaction kinetics problems where reactions are
limited by subdiffusion [2–5]. Many other examples can be
found in Refs. [1,6–10]

A recent and quite interesting application of the fractional
calculus is the modeling of neuronal dynamics. In the last
few years, varied experiments involving physical and bio-
logical systems have reported on anomalous diffusion. The
heterogeneous nature of the neuronal tissue is supposed
to be the origin of this evidence, according certain works.
In these models, the collisions between the messenger ions
and other structures of short mobility make the ions slow
down [11]. There is another alternative explanation for
anomalous diffusion. According this theory, ions would be
trapped by buffering proteins or indicator proteins used
in the experiments. The trapping of ions will carry a
subsequent reduction of the mobility [12].

The core conductor concept and associated cable equation
are the basis for a macroscopic explanation of the electro-
physiological behavior in neuronal processes. Some authors
[13] have proved that under certain simplifying conditions,
the Nernst-Planck equation and the cable equation are
equivalent. This supports models that incorporate anoma-
lous diffusion to describe this kind of neuronal processes
[14]. On this respect, the works of Langlands et al. [15, 16]
and Henry et al. [17], are particularly interesting. The re-
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sulting fractional cable equation proposed by these authors
is
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n− 1 < γ < n (n = integer)

is the fractional derivative in Riemann-Liouville’s sense.

Many different numerical methods for solving many classes
of fractional equations have been proposed and studied
along the last years [16–34]. The aim of this communica-
tion is to present an explicit finite difference scheme for
solving the above fractional cable equation. This method
is close to the methods studied in Refs. [18] and [19].
Besides, we study its accuracy and stability. The explicit
methods enjoy some characteristics that make them quite
widely appreciated [18, 21]: flexibility, simplicity, small
computational demand, and easy generalization to spa-
tial dimensions higher than one. Unfortunately, they can
become unstable in some cases, so that it is necessary to
determine the conditions under which these methods are
stable.

In order to carry out the numerical comparisons, we
consider the fractional cable equation (1) defined in the
interval −L/2 ≤ x ≤ L/2, with absorbing boundary
conditions, u(x = −L/2, t) = u(x = L/2, t) = 0, and
where the initial condition is a Dirac’s delta centered at
x = 0: u(x, 0) = δ(x). The exact solution of this problem
for L → ∞ is [15, 16]

u(x, t) =
1√
4tγ1π

∞∑

k=0

(−µ2tγ2)k

k!
H2,0

1,2

[
x2

4tγ1

∣∣∣(1−γ1/2+γ2k,γ1)
(0,1),(1/2+k,1)

]

(3)
where H denotes the Fox H function.
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2. THE NUMERICAL METHOD

Henceforth, we use the notation xj = j∆x, tm = m∆t, and

u(xj , tm) ' U
(m)
j , where U

(m)
j is the numerical estimate of

the exact solution u(x, t) for x = xj and t = tm.

We approximate (discretize) the Riemann-Liouville deriva-
tive by means of the Grünwald-Letnikov’s formula [2, 22]

∂γf

∂tγ

∣∣∣∣
tm

' 1

(∆t)γ

m∑

k=0

ωγ
kf(tm−k) (4)

where

ωγ
k =

(
1− 1 + γ

k

)
ωγ
k−1 . (5)

Using (4) in equation (1), and approximating the second-
order space derivative by the usual three-point centered
formula

∂2

∂x2
u(xj , tm) =

u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

(∆x)2

+O(∆x)2 (6)

we get a difference scheme for the fractional cable equation:
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with

S = K
(∆t)γ1

(∆x)2
, (8)

and where the error of discretization is order O(∆t) +
O(∆x)2.

We check this explicit difference scheme comparing the
analytical solution and the numerical solution of the prob-
lem described before Eq. (3) for several cases with different
values of γ1 and γ2. Some illustrative cases are shown in
figure 1 where γ1 = 1. In the numerical procedure, the
exact initial condition u(x, 0) = δ(x) is approximated by

u(xj , 0) =

{
1/∆x, j = 0
0, j 6= 0

(9)

The differences between the exact and the numerical
solution is shown in figure 2. One sees that, except for
very short times, the agreement is quite good. The large
value of the error for small times is due, in part, to
the approximation embodied by Eq. (9). In figure 3 we
compare the analytical and numerical solution of the
fractional cable when γ1 = 1/2. The error is shown in
figure 4. The results here are similar to those shown in
figures 1 and 2 for the case with γ1 = 1.

For the cases with γ1 = 1/2 we have used a smaller value of
∆t (10−5) and, simultaneously, a larger value of ∆x than
for the cases with γ1 = 1. This is necessary in order to keep
stable the numerical scheme. This issue will be discussed
in section 3.

3. STABILITY

The explicit difference scheme (7) we are considering is
not always stable. In fact, for any given value of γ there
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Fig. 1. Numerical solution at the mid-point x = 0 of the
fractional cable equation described in the main text
for γ1 = 1 and γ2 = 1 (squares) and γ2 = 1/2 (circles).
Lines: exact solution given by Eq. (3). We have used
∆x = 1/20, ∆t = 10−4, K = 1 and µ = 1.
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Fig. 2. Error of the numerical method for the problems
considered in figure 1. Squares: γ2 = 1; circles: γ2 =
1/2.

are choices of ∆x and ∆t for which the numerical scheme
becomes unstable. Therefore, it is important to determine
the conditions, if any, under which these explicit methods
are stable. Here we are going to use the fractional von
Neumann stability analysis employed in [18] and [19, 20]
for standard fractional diffusion equations. A question we
partially address here is up to what extent this procedure is
valid for more complicate fractional equations where there
appear fractional derivatives of different order.

We start by assuming a solution in the form of a subdiffu-

sive mode, u
(m)
j = ζmeiqj∆x, where q is a real spatial wave

number. Inserting this expression into (7) one gets

ζm+1 =ζm + S
m∑

k=0

ω1−γ1

k (eiq∆x − 2 + e−iq∆x)ζm−k

− µ2 (∆t)
γ2

m∑

k=0

ω1−γ2

k ζm−k. (10)

The stability is determined by the behavior of ζm. Writing

ζm+1 = ξζm (11)
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Fig. 3. Numerical solution at the mid-point x = 0 of the
fractional cable equation described in the main text
for γ1 = 1/2 and γ2 = 1 (squares) and γ2 = 1/2
(circles). Lines: exact solution given by Eq. (3). We
have used ∆x = 1/10, ∆t = 10−5, K = 1 and µ = 1.
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Fig. 4. Error of the numerical method for the problem
considered in figure 3. Squares: γ2 = 1; circles: γ2 =
1/2.

and assuming that ξ ≡ ξ(q) is independent of time, we
obtain this equation

ξ =1 + S
m∑

k=0

ω1−γ1

k (eiq∆x − 2 + e−iq∆x)ξ−k

− µ2 (∆t)
γ2

m∑

k=0

ω1−γ2

k ξ−k (12)

for the amplification factor ξ of the subdiffusive mode. If
|ξ| > 1 for some q, the temporal factor of the solution
grows to infinity [c.f., equation (11)] and the mode is
unstable. Considering the extreme value ξ = −1, we get
from (12) that the numerical method is stable if this
inequality holds:

S sin2
(
q∆x

2

)
≤ Sm

× =
−2 + µ2 (∆t)

γ2
∑m

k=0 ω
1−γ2

k (−1)k

−4
∑m

k=0 ω
1−γ1

k (−1)k

(13)
If we define S× = limx→∞ Sm

× , we get
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Fig. 5. Numerical solution (circles) provided by our
method for the fractional cable equation with γ1 = 0.5
and γ2 = 0.5 after 100 timesteps when ∆x = 1/10,
∆t = 10−5 and S = (∆t)γ1/(∆x)2 = 0.316. Note
that this value of S is smaller than the stability
bound S× = (2γ2 − µ2 (∆t)

γ2)/(22+γ2−γ1) ' 0.352 . . .
provided by equation (15), so that we are inside the
stability region.The solid line is the exact solution.
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But
∑∞

k=1 ω
1−γ
k = 21−γ , so that we finally obtain the

following relation for the stability bound on S

S =
(∆t)γ1

(∆x)2
≤ S× =

2γ2 − µ2 (∆t)
γ2

22+γ2−γ1
. (15)

In figures 5 and 6 we show two representative examples
corresponding to the problem of figure 3 but for two values
of S respectively larger and smaller than the stability
bound provided by (15). We see that the value of S is
crucial: when S is smaller than S×, we are inside the stable
region and we get a sensible numerical solution (fig. 5);
otherwise we get an evidently unstable and nonsensical
solution (fig. 6).

4. NUMERICAL CHECK OF THE STABILITY
ANALYSIS

Here we carry out a comprehensive check of the validity
of our stability bound (15) by using many different values
of the parameters γ1, γ2, µ, ∆t, and ∆x. This stability
check is carried out in the following way. First, we choose
a set of values of γ1, γ2, µ, ∆x and S and integrate
the corresponding fractional cable equation. Then we
say that the method is unstable when, at any position
j,

∣∣um−1
j − um

j

∣∣ is larger than 10 within the first 1000
integration steps. Otherwise, we label the method as
stable. In tables 1–3 we show the results obtained for a
large set of values. In all cases the method turns out to be
stable (unstable) when S is smaller (larger) than S×, in
agreement with Eq. (15).

5. CONCLUSIONS

We have considered an explicit method for solving frac-
tional cable equations where the fractional Riemann-
Liouville derivatives are approximated by means of the
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Fig. 6. Numerical solution (circles) provided by our explicit
method for the fractional cable equation with γ1 = 0.5
and γ2 = 0.5 after 100 timesteps when ∆x = 1/10,
∆t = 1.3 × 10−5 and S = (∆t)γ/(∆x)2 = 0.36. Note
that this value is larger than the stability bound S× =
(2γ2 − µ2 (∆t)

γ2)/(22+γ2−γ1) ' 0.352 . . . provided by
equation (15). The broken line is to guide the eye.

∆x γ1 γ2 S S× Stable

1/10 0.25 1 0.289 0.297 YES

1/10 0.25 1 0.308 0.297 NO

1/20 0.5 1 0.335 0.353 YES

1/20 0.5 1 0.358 0.353 NO

1/20 0.75 1 0.400 0.420 YES

1/20 0.75 1 0.429 0.420 NO

1/20 1 1 0.480 0.499 YES

1/20 1 1 0.500 0.499 NO

1/10 0.25 0.75 0.289 0.297 YES

1/10 0.25 0.75 0.308 0.297 NO

1/20 0.5 0.75 0.335 0.353 YES

1/20 0.5 0.75 0.358 0.353 NO

1/20 0.75 0.75 0.400 0.420 YES

1/20 0.75 0.75 0.429 0.420 NO

1/20 1 0.75 0.480 0.498 YES

1/20 1 0.75 0.500 0.498 NO

1/10 0.25 0.5 0.289 0.297 YES

1/10 0.25 0.5 0.308 0.297 NO

1/20 0.5 0.5 0.335 0.353 YES

1/20 0.5 0.5 0.358 0.353 NO

1/20 0.75 0.5 0.400 0.417 YES

1/20 0.75 0.5 0.429 0.417 NO

1/20 1 0.5 0.480 0.488 YES

1/20 1 0.5 0.500 0.488 NO

1/10 0.25 0.25 0.289 0.297 YES

1/10 0.25 0.25 0.308 0.297 NO

1/20 0.5 0.25 0.335 0.345 YES

1/20 0.5 0.25 0.358 0.345 NO

1/20 0.75 0.25 0.369 0.386 YES

1/20 0.75 0.25 0.400 0.385 NO

1/20 1 0.25 0.400 0.425 YES

1/20 0.25 1 0.440 0.423 NO

Table 1. Check of stability for several values of γ1, γ2,

∆x and S for µ = 1. Note that the method is stable

(“YES”) when S < S× and unstable otherwise

Grünwald-Letnikov formula. The method has been used
to solve the fractional cable equation with free boundary
conditions, Dirac’s delta initial condition, and different
fractional exponents. We have found that the error of the

∆x γ1 γ2 S Sx Stable

1/10 0.25 1 0.289 0.297 YES

1/10 0.25 1 0.308 0.297 NO

1/20 0.5 1 0.335 0.353 YES

1/20 0.5 1 0.358 0.353 NO

1/20 1 2 0.400 0.420 YES

1/20 0.75 1 0.429 0.420 NO

1/20 1 1 0.480 0.499 YES

1/20 1 1 0.500 0.499 NO

1/10 0.25 0.75 0.289 0.297 YES

1/10 0.25 0.75 0.308 0.297 NO

1/20 0.5 0.75 0.335 0.353 YES

1/20 0.5 0.75 0.358 0.353 NO

1/20 0.75 2 0.400 0.419 YES

1/20 0.75 0.75 0.429 0.419 NO

1/20 1 0.75 0.480 0.492 YES

1/20 1 0.75 0.500 0.492 NO

1/10 0.25 0.5 0.289 0.297 YES

1/10 0.25 0.5 0.308 0.297 NO

1/20 0.5 0.5 0.335 0.353 YES

1/20 0.5 0.5 0.358 0.353 NO

1/20 0.5 2 0.400 0.408 YES

1/20 0.75 0.5 0.429 0.408 NO

1/20 1 0.5 0.440 0.453 YES

1/20 1 0.5 0.460 0.452 NO

1/10 0.25 0.25 0.289 0.294 YES

1/10 0.25 0.25 0.308 0.294 NO

1/20 0.5 0.25 0.309 0.320 YES

1/20 0.5 0.25 0.322 0.320 NO

1/20 0.75 0.25 0.289 0.293 YES

1/20 0.75 0.25 0.306 0.291 NO

1/20 1 0.25 0.230 0.239 YES

1/20 1 0.25 0.240 0.237 NO

Table 2. Check of stability for several values of γ1, γ2,

∆x and S for µ = 2. Note that the method is stable

(“YES”) when S < S× and unstable otherwise

numerical method is compatible with the truncating error,
which is of order O(∆t) +O(∆x)2. Finally, by means of a
kind of von-Neumann stability analysis, we have obtained
the conditions under which the method is stable. This
stability bound has been checked numerically.
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