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Different theoretical approaches for the thermodynamic properties and the equation of state for
multicomponent mixtures of nonadditive hard spheres in d dimensions are presented in a unified
way. These include the theory by Hamad, our previous formulation, the original MIX1 theory, a
recently proposed modified MIX1 theory, as well as a nonlinear extension of the MIX1 theory
proposed in this paper. Explicit expressions for the compressibility factor, Helmholtz free energy,
and second, third, and fourth virial coefficients are provided. A comparison is carried out with recent
Monte Carlo data for the virial coefficients of asymmetric mixtures and with available simulation
data for the compressibility factor, the critical consolute point, and the liquid-liquid coexistence
curves. The merits and limitations of each theory are pointed out. © 2010 American Institute of
Physics. �doi:10.1063/1.3429600�

I. INTRODUCTION

Nonadditive hard spheres represent a versatile model to
study various real physical systems. These include alloys,
aqueous electrolyte solutions, molten salts, rare gas mixtures,
and colloids. In these systems homocoordination and hetero-
coordination may be interpreted in terms of excluded volume
effects due to nonadditivity of the repulsive �hard-core� part
of the intermolecular potential and so, for instance, the oc-
currence of liquid-liquid demixing in real systems may be
linked to a binary hard-sphere mixture with positive nonad-
ditivity, while negative nonadditivity may be invoked to ex-
plain chemical short-range order in amorphous and liquid
binary mixtures with preferred heterocoordination. On the
theoretical side, prototype models of nonadditive hard-sphere
mixtures, such as the Widom–Rowlinson model1 or the
Asakura–Oosawa model,2 have been very useful to gain in-
sight into interesting physical aspects, such as fluid-fluid
phase transitions and the nature of depletion forces.

A few years ago, in a paper3 where a rather thorough
review of the theoretical and simulation works on nonaddi-
tive hard-sphere mixtures was provided, we introduced an
equation of state of multicomponent nonadditive hard-sphere
mixtures in d dimensions. Such an equation of state results
from a natural extension of the one we had earlier proposed
for additive hard spheres,4 has an explicit �simple� density
dependence, and by construction leads to the exact second
and third virial coefficients. In the case of d=3, in the same
paper we compared the predictions for the compressibility
factor corresponding to our proposal with those of the pro-
posal by Hamad,5–8 which shares some characteristics with

ours, and available simulation results for various binary
mixtures.9–13 We also compared the predictions of the fourth
and fifth virial coefficients arising from the above two theo-
retical proposals and the then available Monte Carlo
results.14,15 The restriction in the comparison only to Ha-
mad’s approach was justified then by the fact that Hamad
had already proved that his proposal was superior to other
theories, including the so-called MIX1 theory originally due
to Melnick and Sawford.16

Recently, Pellicane et al.17 reported new evaluations of
the fourth virial coefficient of a binary nonadditive hard-
sphere mixture covering a wide range of size ratios and val-
ues of the nonadditivity parameter. Also recently, Paricaud18

proposed a new equation of state for nonadditive hard-sphere
mixtures, which is based on and corrects one of the deficien-
cies of the MIX1 theory, namely, the fact that MIX1 does not
lead to the correct second virial coefficient. These two recent
papers serve as a motivation for the present contribution. On
the one hand, we want to see to what extent the conclusions
drawn from the analysis carried out in Ref. 3 are still valid in
view of the new available data. On the other hand, we will
also introduce a �new� nonlinear extension of the MIX1
theory. As an extra bonus, we will write all the theoretical
expressions in a unified language which will hopefully make
the comparison much easier.

The paper is organized as follows. In order to make it
self-contained, in Sec. II we provide the necessary back-
ground for the later development. Section III provides the
explicit expressions for the contact values of the radial dis-
tribution functions, compressibility factors, Helmholtz free
energies, and second, third, and fourth virial coefficients as
given by the original MIX1 theory, Paricaud’s modified
MIX1 theory, Hamad’s theory, and our earlier proposal. A
nonlinear extension of the MIX1 theory is also introduced
here. In Sec. IV we compare the numerical values of the
composition-independent virial coefficients, compressibility
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factors, and liquid-liquid coexistence curves for a variety of
cases with available Monte Carlo data. This paper is closed
in Sec. V with some concluding remarks.

II. GENERAL BACKGROUND

We consider an N-component mixture of nonadditive
hard spheres in d dimensions. Let �ij denote the hard-core
distance of the interaction between a sphere of species i and
a sphere of species j. If the diameter of a sphere of species i
is �i��ii, then �ij =

1
2 ��i+� j��1+�ij�, where �ij �−1 is a

symmetric matrix with zero diagonal elements ��ii=0� that
characterizes the degree of nonadditivity of the interactions.
In the case of a binary mixture �N=2�, the only nonadditivity
parameter is �=�12=�21.

The compressibility factor Z� p /�kBT of the nonaddi-
tive mixture, where � is the total number density, p is the
pressure, T is the temperature, and kB is the Boltzmann con-
stant, is given by

Z��,�xk�,��k��� = 1 + 2d−1vd� �
i,j=1

N

xixj�ij
d gij��,�xk�,��k��� ,

�2.1�

where vd= �� /4�d/2 /��1+d /2� is the volume of a
d-dimensional sphere of unit diameter, xi=�i /� is the mole
fraction of species i, �i being the partial number density of
particles of species i, and gij�� , �xk� , ��k����gij��� stands for
the radial distribution functions at contact. Unfortunately, no
general expression is known for gij���, but it may formally
be expanded in a power series in density as

gij��� = 1 + vd��
k=1

N

xkck;ij + �vd��2 �
k,�=1

N

xkx�ck�;ij + O��3� ,

�2.2�

where the coefficients ck;ij ,ck�;ij , . . . are independent of the
mole fractions but, in general, depend in a nontrivial way on
the set of diameters ��ij�. To our knowledge, only the coef-
ficients linear in � �i.e., ck;ij� are known analytically for d
�3. This formal series expansion in the number density, Eq.
�2.2�, when substituted into Eq. �2.1�, yields the virial expan-
sion of Z, which we write in the form

Z��� = 1 + �
n=1

�

�nBn+1 = 1 + � �
i,j=1

N

xixjBij

+ �2 �
i,j,k=1

N

xixjxkBijk + �3 �
i,j,k,�=1

N

xixjxkx�Bijk�

+ O��4� . �2.3�

Here Bn is the usual nth virial coefficient of the multicom-
ponent mixture, which is a polynomial of degree n in the
mole fraction, Bij,. . . being composition-independent coeffi-
cients. In terms of the coefficients ck;ij and ck�;ij, the
composition-independent second, third, and fourth virial co-
efficients are given by

Bij = 2d−1vd�ij
d , �2.4�

Bijk =
2d−1vd

2

3
��ij

d ck;ij + �ik
d cj;ik + � jk

d ci;jk� , �2.5�

Bijk� =
2d−1vd

3

6
��ij

d ck�;ij + �ik
d cj�;ik + � jk

d ci�;jk + �i�
d cjk,i�

+ � j�
d cik,j� + �k�

d cij;k�� . �2.6�

Along the path we have taken, the different theories for
mixtures of nonadditive hard spheres in d dimensions may be
related to different proposals for gij���. In Sec. III we pro-
vide the explicit expressions for the approximate proposals
that we will consider in this paper, including a new nonlinear
extension of the MIX1 theory.

III. SOME APPROXIMATE THEORETICAL
DEVELOPMENTS

A. MIX1 approximation

The original MIX1 approximation,16 which we will indi-
cate with a superscript M, is equivalent to

�ij
d gij

M��� = 	�i + � j

2

d�gij

add��� + Yij
M �

��
��gij

add����� ,

�3.1�

where gij
add��� are the contact values of the additive mixture

and

Yij
M � d�ij . �3.2�

Inserting Eq. �3.1� into Eq. �2.1� one gets

ZM���

= Zadd��� + b2vd��
i,j

N

xixj	�i + � j

2

d

Yij
M �

��
��gij

add���� ,

�3.3�

with Zadd��� as the compressibility factor of the additive mix-
ture with the same sets of mole fractions �xk� and diameters
��k�. The Helmholtz free energy per particle in the MIX1
theory is then

aM���
kBT

= − 1 + �
i

xi ln�xi�	i
d� +

aex
add���
kBT

+ b2vd��
i,j

xixj	�i + � j

2

d

Yij
Mgij

add��� , �3.4�

where 	i is the de Broglie wavelength of particles of species
i, aex

add��� is the excess Helmholtz free energy per particle of
the additive mixture and, for convenience, we have identified
2d−1 with the reduced second virial coefficient in the one-
component d-dimensional hard-sphere fluid b2. The second,
third, and fourth virial coefficients of the mixture are in turn
given by

Bij
M = b2vd	�i + � j

2

d

�1 + Yij
M� , �3.5�
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Bijk
M =

b2vd
2

3
	�i + � j

2

d

ck;ij
add�1 + 2Yij

M� + 	�i + �k

2

d


cj;ik
add�1 + 2Yik

M� + 	� j + �k

2

d

ci;jk
add�1 + 2Y jk

M�� ,

�3.6�

Bijk�
M =

b2vd
3

6
	�i + � j

2

d

ck�;ij
add �1 + 3Yij

M�

+ 	�i + �k

2

d

cj�;ik
add �1 + 3Yik

M� + 	�i + ��

2

d


cjk;i�
add �1 + 3Yi�

M� + 	� j + �k

2

d


ci�;jk
add �1 + 3Y jk

M� + 	� j + ��

2

d

cik;j�
add �1 + 3Y j�

M�


	�k + ��

2

d

cij;k�
add �1 + 3Yk�

M�� . �3.7�

In Eqs. �3.6� and �3.7�, ck;ij
add and ck�;ij

add correspond to the co-
efficients in the expansion of gij

add��� in powers of the number
density. Note that the second virial coefficient of the mixture
in the MIX1 theory is not exact �compare Eqs. �2.4� and
�3.5��, except to first order in �ij. This problem can be traced
back to the fact that according to Eq. �3.1�,

lim
�→0

gij
M��� =

1 + Yij
M

�1 + �ij�d � 1. �3.8�

This is remedied by Paricaud’s modification18 that is de-
scribed in Sec. III B.

B. Paricaud’s modified MIX1 theory „mMIX1…

In the modification of the MIX1 theory introduced re-
cently by Paricaud,18 which we will refer to as mMIX1 and
ascribe a superscript mM, one keeps Eq. �3.1�, and hence
Eqs. �3.3�–�3.7�, except that Yij

M is replaced by

Yij
mM � �1 + �ij�d − 1. �3.9�

With this change Yij
M→Yij

mM, Eq. �3.1� becomes

�ij
d gij

mM��� = 	�i + � j

2

d�gij

add��� −
�

��
��gij

add�����
+ �ij

d �

��
��gij

add���� �3.10�

or equivalently,

gij
mM��� = gij

add��� +
Yij

mM

1 + Yij
mM�

�

��
gij

add��� . �3.11�

In this way, instead of Eq. �3.8�, we have
lim�→0 gij

mM���=1 and thus the second virial coefficient be-
comes exact. Otherwise, the third and higher virial coeffi-
cients are still approximate. In particular, the third and fourth
virial coefficients are given by Eqs. �3.6� and �3.7�, respec-
tively, with Yij

M→Yij
mM.

C. Hamad’s proposal

Hamad’s approximation,5–8 denoted by a superscript H,
consists of proposing the following ansatz:

gij
H��� = gpure�y��y=�Xij

H, �3.12�

where gpure�y� is the contact value of the radial distribution
function of the one-component d-dimensional hard-sphere
fluid at the packing fraction y, ��vd���d� is the packing
fraction of the mixture �with ��m�=�i=1

N xi�i
m�, and Xij

H will be
specified later. From Eq. �3.12� it follows that the virial ex-
pansion of gij��� is given by

gij
H��� = 1 + �

n=1

�
bn+2

b2
�vd���d�Xij

H�n, �3.13�

where bn is the reduced nth virial coefficient of the one-
component d-dimensional hard-sphere fluid. In particular,
comparing Eq. �3.13� with Eq. �2.2�, one gets

�
k

xkck;ij
H =

b3

b2
��d�Xij

H, �3.14�

�
k,�

xkx�ck�;ij
H =

b4b2

b3
2 	�

k

xkck;ij
H 
2

, �3.15�

so that

ck�;ij
H =

b4b2

b3
2 ck;ij

H c�;ij
H . �3.16�

By requiring Eq. �3.12� to be exact to first order in density
�third virial coefficient�, i.e., ck;ij

H =ck;ij, one must have

Xij
H =

b2

b3

�kxkck;ij

��d�
. �3.17�

Using the above results, the compressibility factor and
Helmholtz free energy per particle in Hamad’s proposal are
given by

ZH��� = 1 + �
i,j

xixj�ij
d

��d�
Zpure��Xij

H� − 1

Xij
H �3.18�

and

aH���
kBT

= − 1 + �
i

xi ln�xi�	i
d� + �

i,j

xixj�ij
d

��d�Xij
H

aex
pure��Xij

H�
kBT

,

�3.19�

respectively, where Zpure�y� and aex
pure�y� are the compressibil-

ity factor and the excess Helmholtz free energy per particle,
respectively, of the one-component d-dimensional hard-
sphere fluid at the packing fraction y. From Eqs. �2.6� and
�3.16� it follows that the fourth virial coefficient in Hamad’s
approximation is

Bijk�
H =

b4b2
2

6b3
2 vd

3��ij
d ck;ijc�;ij + �ik

d cj;ikc�;ik + �i�
d cj;i�ck;i�

+ � jk
d ci;jkc�;jk + � j�

d ci;j�ck;j� + �k�
d ci;k�cj;k�� . �3.20�

In general, Eq. �3.18� yields
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Bn
H = bnvd

n−1	b2

b3

n−2

�
i,j

xixj�ij
d	�

k

xkck;ij
n−2
. �3.21�

D. The Santos–López de Haro–Yuste „SHY… proposal

In Ref. 3 we proposed the following ansatz �hereafter
referred to as the SHY proposal� for the contact values of the
radial distribution functions:

gij
SHY��� =

1

1 − �
+ gpure��� −

1

1 − �
�zij , �3.22�

where

zij = 	b3

b2
− 1
−1	�kxkck;ij

��d�
− 1
 . �3.23�

This choice guarantees that gij
SHY��� is exact to first order

in density and thus this approximation retains the exact sec-
ond and third virial coefficients. When Eqs. �3.22� and �3.23�
are inserted into Eq. �2.1� one gets

ZSHY��� = 1 +
b3B2

� − b2B3
�

b3 − b2

�

1 − �
+

B3
� − B2

�

b3 − b2
�Zpure��� − 1� ,

�3.24�

where we have called Bn
��Bn / �vd��d��n−1; note that Bn

�

→bn in the one-component limit. In Eq. �3.24� we have ex-
pressed ZSHY���−1 as a linear combination of � / �1−�� and
Zpure���−1, with coefficients such that the second and third
virial coefficients of the mixture are exactly reproduced.
From approximation �3.24�, one may easily derive the Helm-
holtz free energy per particle, which turns out to be

aSHY���
kBT

= − 1 + �
i

xi ln�xi�	i
d� −

b3B2
� − b2B3

�

b3 − b2


ln�1 − �� +
B3

� − B2
�

b3 − b2

aex
pure���
kBT

. �3.25�

Also, Eq. �3.24� implies that the nth virial coefficient is given
by

Bn
SHY = �vd��d��n−1	bn − b2

b3 − b2
B3

� −
bn − b3

b3 − b2
B2

�
 , �3.26�

while for the composition-independent fourth virial coeffi-
cients one gets the following explicit expression:

Bijk�
SHY =

vd�b4 − b2�
4�b3 − b2�

��i
dBjk� + � j

dBik� + �k
dBij� + ��

dBijk�

−
vd

2�b4 − b3�
6�b3 − b2�

��i
d� j

dBk� + �i
d�k

dBj� + �i
d��

dBjk

+ � j
d�k

dBi� + � j
d��

dBik + �k
d��

dBij� . �3.27�

E. A nonlinear MIX1 theory

As a final theoretical proposal, in this subsection we in-
troduce a new extension of the MIX1 theory. The SHY ap-
proximation, Eq. �3.22�, is a “local” approximation with re-
spect to density in the sense that the nonadditive contact

value is expressed in terms of a reference contact value �here
that of the one-component system� evaluated at precisely the
same density. Analogously, both the original MIX1 approxi-
mation, Eq. �3.1�, and Paricaud’s modified version, Eq.
�3.11�, can be termed “linearly nonlocal” since the nonaddi-
tive contact value is furthermore expressed in terms of the
first density derivative of the additive contact value. In con-
trast, Hamad’s approximation, Eq. �3.12�, is “nonlinearly
nonlocal” because the reference contact value �again that of
the one-component system� is taken at a totally different
scaled density.

Our nonlinear MIX1 �nlMIX1� approximation, labeled
with nlM, is inspired in both Eqs. �3.11� and �3.12�. It con-
sists of assuming that

gij
nlM��� = gij

add��Xij
nlM� , �3.28�

where

Xij
nlM � 1 +

Yij
mM

1 + Yij
mM . �3.29�

Expanding in powers of Xij
nlM−1, Eq. �3.28� can be formally

rewritten as

gij
nlM��� = gij

add��� + �
n=1

�
1

n!
	 Yij

mM

1 + Yij
mM�
n �n

��ngij
add��� .

�3.30�

A comparison with Eq. �3.11� shows that gij
mM��� can be seen

as a first-order approximation of gij
nlM���. Using Eq. �3.28�,

the equation of state and Helmholtz free energy per particle
corresponding to the nlMIX1 theory are given by

ZnlM��� = 1 + b2vd��
i,j

xixj�ij
d gij

add��Xij
nlM� , �3.31�

anlM���
kBT

= − 1 + �
i

xi ln�xi�	i
d�

+ b2�
i,j

xixj�ij
d

��d�Xij
nlMGij

add��Xij
nlM� , �3.32�

respectively, where

Gij
add��� � vd��d��

0

�

d��gij
add���� . �3.33�

Note that since gij
mM��� and gij

nlM��� coincide to first order
in density, both give the same �approximate� third virial co-
efficient, namely, Eq. �3.6� with Yij

M→Yij
mM. However, the

mMIX1 and nlMIX1 theories differ at the level of the fourth
virial coefficient. In this case, instead of Eq. �3.7� �with Yij

M

→Yij
mM� we have

204506-4 Santos, López de Haro, and Yuste J. Chem. Phys. 132, 204506 �2010�



Bijk�
nlM =

b2vd
3

6
	�i + � j

2

d

ck�;ij
add �1 + 2Yij

mM�2

1 + Yij
mM

+ 	�i + �k

2

d

cj�;ik
add �1 + 2Yik

mM�2

1 + Yik
mM

+ 	�i + ��

2

d

cjk;i�
add �1 + 2Yi�

mM�2

1 + Yi�
mM

+ 	� j + �k

2

d

ci�;jk
add �1 + 2Y jk

mM�2

1 + Y jk
mM

+ 	� j + ��

2

d

cik;j�
add �1 + 2Y j�

mM�2

1 + Y j�
mM

+ 	�k + ��

2

d

cij;k�
add �1 + 2Yk�

mM�2

1 + Yk�
mM � . �3.34�

It would be tempting to determine Xij
nlM in Eq. �3.28� by

requiring agreement with the exact result to first order in
density. This would give

Xij →
�kxkck;ij

�kxkck;ij
add . �3.35�

Unfortunately, however, this implies a wrong composition
dependence of the higher order terms in the expansion of
gij��� in powers of �. In particular,

�
k,�

xkx�ck�;ij → 	�kxkck;ij

�kxkck;ij
add
2

�
k,�

xkx�ck�;ij
add . �3.36�

While the left-hand side is quadratic in the mole fractions,
the right-hand side is the ratio between a quartic function and
a quadratic function. In order to avoid inconsistencies as in
Eq. �3.36� we need Xij

nlM to be independent of the mole frac-
tions. Apart from that, Xij

nlM can be freely chosen but we will
keep the choice �3.29� in order to make contact with the
mMIX1 theory.

Before closing this section, it is worth noting that by
construction, the nlMIX1 theory is a priori not expected to
be accurate for strong negative nonadditivities. This is be-
cause on physical grounds, the parameter Xij

nlM defined by Eq.
�3.29� must be positive definite. This in turn implies, from
Eq. �3.9�, the condition �ij �−�1−2−1/d�. In the three-
dimensional case, the above condition becomes �ij −0.21.
As a matter of fact, expansion �3.30� does not converge if
�ij �−�1−2−1/d�. Notwithstanding this, from a practical
point of view the nlMIX1 theory keeps providing meaningful
results even if �ij �−�1−2−1/d�, as will be seen in Sec. IV.

IV. RESULTS

Thus far the development has been rather general in the
sense that all the approximations we have discussed apply
for any number of components N in the mixture and any
dimensionality d. However, it is only formal unless one
specifies Zadd���, aex

add���, and gij
add��� in the case of all the

MIX1 theories, and gpure�y�, Zpure�y�, aex
pure�y�, and ck;ij in the

cases of Hamad’s and the SHY approximations. In Ref. 3 we
introduced for general d the following approximation:

ck;ij = �k;ij
d + 	b3

b2
− 1
�i;jk� j;ik

�ij
�k;ij

d−1, �4.1�

where

�k;ij � �ik + � jk − �ij . �4.2�

This is exact when d=1 and d=3 and also proved to be
accurate for d=2. We will also use it here.

As for the other remaining quantities, since the new nu-
merical data17 have been obtained for d=3, we will restrict
ourselves in the subsequent analysis only to this dimension-
ality. Therefore in the MIX1 theories we will take for Zadd���
and aex

add��� the expressions given by the popular Boublík–
Mansoori–Carnahan–Starling–Leland �BMCSL� equation of
state,19,20 namely,

Zadd��� =
1

1 − �
+

3�

�1 − ��2

�����2�
��3�

+
�2�3 − ��
�1 − ��3

��2�3

��3�2 ,

�4.3�

aex
add���
kBT

= − ln�1 − �� +
3�

1 − �

�����2�
��3�

+  �

�1 − ��2 + ln�1 − ��� ��2�3

��3�2 , �4.4�

while for gij
add��� the choice will be the Boublík–Grundke–

Henderson–Lee–Levesque �BGHLL� values19,21,22 given by

gij
add��� =

1

1 − �
+

3�

�1 − ��2

�i� j��2�
��i + � j���3�

+
2�2

�1 − ��3 �i� j��2�
��i + � j���3��2

. �4.5�

It follows from Eq. �4.5� that ck;ij
add and ck�;ij

add are given by

ck;ij
add = �k

3 + 3
�i� j

�i + � j
�k

2, �4.6�

ck�;ij
add = �k

3��
31 + 3

�i� j

�i + � j

�k + ��

�k��

+ 2
�i

2� j
2

�k����i + � j�2� .

�4.7�

Equation �4.6� is exact and agrees with Eq. �4.1� in the three-
dimensional additive limit �b3 /b2= 5

2 ,�k;ij→�k�. On the
other hand, Eq. �4.7� is approximate. According to Eq. �4.5�,
the quantity defined by Eq. �3.33� is given by

Gij
add��� = − ln�1 − �� + 3 �

1 − �
+ ln�1 − ���



�i� j��2�

��i + � j���3�
− 2 �1 − 3�/2��

�1 − ��2 + ln�1 − ���

 �i� j��2�

��i + � j���3��2

. �4.8�

Finally, in the case of the pure system, we will consider
the expressions corresponding to the Carnahan–Starling �CS�
equation of state,23 namely,
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gpure�y� =
1 − y/2
�1 − y�3 , �4.9�

Zpure�y� =
1 + y + y2 − y3

�1 − y�3 , �4.10�

aex
pure�y�
kBT

=
�4 − 3y�y
�1 − y�2 . �4.11�

With the above choices, all five approximations reduce to the
CS equation of state in the one-component case �i=�. In the
additive limit, however, there are three independent propos-
als: BMCSL �to which the original MIX1 theories and its
two variants, mMIX1 and nlMIX1, reduce�, Hamad’s, and
what we referred to as eCS in Ref. 4. Of course, when non-
additivity is introduced, the five approximations differ from
each other.

A. Virial coefficients

Figures 1–6 show the comparison of the values of the
composition-independent fourth virial coefficients, as given
by the five theoretical proposals considered in this paper,
with the recent data of Pellicane et al.17,24 One can immedi-
ately see that in the cases of B1112 and B1222 the best overall
performance is the one of the nlMIX1 theory, followed
closely by Hamad’s approximation. Also worth noting is that
the mMIX1 theory already does a very good job, especially
for the smaller size ratios, while the original MIX1 theory
gives the poorest agreement. As far as B1122 is concerned, the
agreement of the theoretical predictions with the Monte
Carlo data is much less satisfactory, getting poorer as the
nonadditivity parameter is increased. Here, no approximation
is able to capture the negative values obtained by the Monte
Carlo method for ��0.2 and Hamad’s approximation totally
fails for small size ratios, irrespective of the value of the
nonadditivity parameter. This is due to the fact that while the
four remaining theories correctly reproduce the scaling be-
havior B1122��1

6�2
3 in the high-disparity limit �2 /�1→0,

Hamad’s proposal yields B1122��1
9 in that limit. If one had

to make a choice for this coefficient B1122, either the SHY
proposal or the original MIX1 theory would perhaps be the
ones to go for �especially for 0���0.2 and 0.3��2 /�1

�1�, but with all due reserves.
One might reasonably wonder whether the use of more

accurate expressions for the additive contact values gij
add

might correct the inability of the theories examined in this
paper to predict negative values of the virial coefficient B1122

for small size ratio �2 /�1 and large nonadditivity parameter
�. However, a closer analysis shows that this is not the case.
According to Eq. �2.6�, B1122��1

3c22;11+�2
3c11;22+4�12

3 c12;12.
Therefore, at least one of the nonadditive second-order coef-
ficients c22;11, c11;22, and c12;12 must be negative if B1122�0.
In contrast, the additive coefficients cij;k�

add are positive for any
�2 /�1 and, as a consequence, all the approximate theories
considered here predict positive values of cij;k� for ��0, as
can be seen from Eqs. �3.1�, �3.11�, �3.12�, �3.22�, and �3.28�.

B. Compressibility factor

To complement the above information on the virial co-
efficients, in Figs. 7–9 we present the results of our calcula-
tions of the compressibility factors of binary nonadditive
hard-sphere mixtures and a comparison with available simu-
lation data. Figure 7 displays the dependence of Z on the

FIG. 1. Plot of the composition-independent fourth virial coefficients B1112,
B1122, and B1222 vs the size ratio �2 /�1 for a nonadditivity parameter �
=0.05. The dotted lines correspond to the original MIX1 theory, Eq. �3.7�,
the short-dashed lines correspond to the mMIX1 theory, Eq. �3.7� with Yij

M

→Yij
mM, the thin solid lines correspond to the nlMIX1 theory, Eq. �3.34�, the

long-dashed lines correspond to Hamad’s proposal, Eq. �3.20�, and the thick
solid lines correspond to the SHY proposal, Eq. �3.27�. The symbols are
Monte Carlo data from Ref. 17.
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nonadditivity parameter �both positive and negative� for a
symmetric binary mixture at �=� /30�0.105 and two val-
ues of the mole fraction, namely, x1=0.1 and x1=0.5. In this
case, both the SHY proposal and the nlMIX1 theory provide
the best agreement, but the mMIX1 theory also does a very
good job. Hamad’s proposal performs better at negative non-
additivities than at positive ones. As for the MIX1 theory,
being linear in �, it only captures the region of small ���.

The superiority of Hamad’s theory for negative nonaddi-
tivities is confirmed by Fig. 8, which corresponds to the case
of an equimolar asymmetric binary mixture with size ratio
�2 /�1= 1

3 and a packing fraction �=0.5. Here Hamad’s ap-

proximation clearly outperforms all the rest. As a matter of
fact, it becomes exact in the extreme limit �→−1.3 A note-
worthy feature is that in contrast to both the original MIX1
and the mMIX1 theories, the nlMIX1 theory at least captures
correctly the qualitative behavior of the compressibility fac-
tor with the nonadditivity parameter for negative values and,
in particular, the initial decay. This is remarkable in view of
the fact that as discussed at the end of Sec. III, the nlMIX1
theory is not expected to hold if ��−0.21.

Finally, in Fig. 9 we present the results obtained for the
size ratio dependence of the compressibility factor for �
=0.2, a positive nonadditivity �=0.2, and two compositions.

FIG. 2. Same as in Fig. 1, but for �=0.1.
FIG. 3. Same as in Fig. 1, but for �=0.2.
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In agreement with the behavior observed in Fig. 7 for �
�0, we see from Fig. 9 that the SHY is the superior theory
also in the asymmetric case, although all the theories, with
the exception of the MIX1, tend to coincide as the asymme-
try increases. It is noteworthy that both the mMIX1 and nl-
MIX1 theories do a very reasonable job, better than Hamad’s
proposal.

C. Demixing

The availability of analytical expressions for the Helm-
holtz free energy per particle a in all the previous theories
�cf. Eqs. �3.4�, �3.19�, �3.25�, and �3.32�� may be exploited to

address the problem of demixing in mixtures with positive
nonadditivity. For simplicity, we will restrict ourselves here
to binary mixtures. Since in these systems the temperature
only plays the role of a scaling factor and a spinodal insta-
bility occurs, the mixture will phase separate into two liquid
phases �I and II� of different composition x1

I and x1
II. For

given size ratio �2 /�1 and nonadditivity �, by equating the
pressure �pI= pII� and the two chemical potentials ��1

I

=�1
II , �2

I =�2
II� of both phases, one may obtain �I, �II, and x1

II

as functions of x1
I and thus derive the coexistence curve in

the �-x1 plane. The chemical potentials are defined by �i

=���a� /��i. In the binary case, this is equivalent to

FIG. 4. Same as in Fig. 1, but for �=0.3. FIG. 5. Same as in Fig. 1, but for �=0.4.
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�1 = a +
p

�
+ �1 − x1�ax, �2 = a +

p

�
− x1ax, �4.12�

where ax���a /�x1��. Branches I and II of the coexistence
line meet at the critical consolute point ��c ,x1c�, which can
be determined by the two conditions,

0 = 	a�� +
2

�
a�
axx − ax�

2 , �4.13�

0 = axxx − 3axx�

axx

ax�

+ 3	ax�� +
2

�
ax�
	 axx

ax�

2

− 	a��� +
6

�
a�� +

6

�2a�
	 axx

ax�

3

. �4.14�

Here, as in Eq. �4.12�, each subscript x or � represents a
derivative with respect to x1 or �, respectively. For symmet-
ric mixtures, the critical composition is fixed, x1c=0.5.

In Fig. 10 we display the behavior of the reduced critical

FIG. 6. Same as in Fig. 1, but for �=0.5.

FIG. 7. Plot of the compressibility factor Z vs the nonadditivity parameter �
for a symmetric binary mixture of nonadditive hard spheres at �=� /30 and
two different compositions. The dotted lines correspond to the original
MIX1 theory, Eq. �3.3�, the short-dashed lines correspond to the mMIX1
theory, Eq. �3.3� with Yij

M→Yij
mM, the thin solid lines correspond to the

nlMIX1 theory, Eq. �3.31�, the long-dashed lines correspond to Hamad’s
proposal, Eq. �3.18�, and the thick solid lines correspond to the SHY pro-
posal, Eq. �3.24�. The symbols are results from Monte Carlo simulations
�Refs. 10 and 11�.

FIG. 8. Plot of the compressibility factor Z vs the nonadditivity parameter �
for an equimolar asymmetric binary mixture of nonadditive hard spheres
with size ratio �2 /�1= 1

3 at �=0.5. The dotted line corresponds to the origi-
nal MIX1 theory, Eq. �3.3�, the short-dashed line corresponds to the mMIX1
theory, Eq. �3.3� with Yij

M→Yij
mM, the thin solid line corresponds to the

nlMIX1 theory, Eq. �3.31�, the long-dashed line corresponds to Hamad’s
proposal, Eq. �3.18�, and the thick solid line corresponds to the SHY pro-
posal, Eq. �3.24�. The symbols are results from Monte Carlo simulations
�Ref. 13�.
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density �c
�=�c�eff

3 in symmetric mixtures, where �eff
3

��i,jxixj�ij
3 , as a function of the nonadditivity parameter �

for Hamad’s theory, the SHY proposal, the mMIX1 and nl-
MIX1 theories, and the available simulation data. The origi-
nal MIX1 theory has not been included since it has already
been proved that it yields a poorer performance than Ha-
mad’s theory, which is the least accurate in this instance.
Note that all theoretical results underestimate �c

� and are very
close to one another with perhaps a slightly better overall
performance of the mMIX1 and the SHY. The use of the
effective diameter �eff to define the reduced critical density
in Fig. 10 is motivated by the fact that �c

� is well defined for
high nonadditivities, including the Widom–Rowlinson limit
��1=�2��12 or �→��.

As far as the liquid-liquid coexistence curve is con-
cerned, this may be represented in different thermodynamic
planes. Here we have chosen the ��2

3-x1 and the p�2
3 /kBT-x1

planes. Further, given the previous analysis concerning the
comparison of the theoretical critical consolute points and
simulation results, and the technical difficulties associated

with the actual computation of the coexistence curves, only
the results for the SHY and the mMIX1 and nlMIX1 theories
will be presented. A comparison of available simulation re-
sults for liquid-liquid coexistence is done for both symmetric
and asymmetric mixtures in Fig. 11, where the theoretical
critical consolute points have also been included. Notice that
the qualitative trends observed in the simulations are well
captured by all the theoretical developments, but in all in-
stances they tend to underestimate the actual values of the
reduced pressure and the reduced density along the coexist-
ence. In particular, all theories correctly predict that the de-
mixing transition occurs for lower densities as the nonaddi-
tivity parameter increases. Moreover, at a fixed value of �
the coexistence densities �if measured in units of the diam-
eter of the smaller spheres� decrease with increasing size
asymmetry. Similar trends are observed for the pressure. On
the quantitative side, particularly in the density versus com-
position plane, although not very accurate, the SHY outper-
forms the other theoretical approximations.

V. CONCLUDING REMARKS

In this paper we have provided a self-contained presen-
tation of different theoretical developments to describe the
thermodynamic properties of nonadditive hard-core mix-
tures. In particular, complementing the effort initiated in our
previous paper on this subject,3 apart from repeating the
SHY proposal and the extension of Hamad’s approach to
general dimensionalities, here we have provided extensions
of the original MIX1 and Paricaud’s modified MIX1
�mMIX1� theories valid for all d. We have introduced as well
a new nonlinear extension of the MIX1 �nlMIX1� theory,
also valid for arbitrary d. In all instances, explicit expres-
sions have been provided for the contact values of the radial
distribution functions, the compressibility factor, the Helm-
holtz free energy, and the second, third, and fourth virial
coefficients. The expressions for gij��� and Z��� are given in

FIG. 9. Plot of the compressibility factor Z vs the size ratio �2 /�1 for binary
mixtures of nonadditive hard spheres with �=0.2 and x1=0.75 �upper panel�
and x1=0.5 �lower panel�. The dotted lines correspond to the original MIX1
theory, Eq. �3.3�, the short-dashed lines correspond to the mMIX1 theory,
Eq. �3.3� with Yij

M→Yij
mM, the thin solid lines correspond to the nlMIX1

theory, Eq. �3.31�, the long-dashed lines correspond to Hamad’s proposal,
Eq. �3.18�, and the thick solid lines correspond to the SHY proposal, Eq.
�3.24�. The symbols are results from Monte Carlo simulations �Ref. 13�.

FIG. 10. Plot of the reduced critical density �c
�=�c�eff

3 vs the nonadditivity
parameter � for symmetric binary mixtures of nonadditive hard spheres. The
short-dashed line corresponds to the mMIX1 theory, the thin solid line cor-
responds to the nlMIX1 theory, the long-dashed line corresponds to Ha-
mad’s proposal, and the thick solid line corresponds to the SHY proposal.
The symbols are results from Monte Carlo simulations �Refs. 25–27�.
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terms of either gij
add��� and Zadd��� in the case of all the MIX1

theories, or in terms of gpure�y�, or equivalently of Zpure�y�
=1+2d−1ygpure�y�, in the cases of Hamad’s and the SHY ap-
proximations. For the sake of illustration and restricting to
three-dimensional systems �d=3�, we have taken as input the
BMCSL equation of state for Zadd��� and the BGHLL contact
values for gij

add��� in the MIX1 theories, and the CS equation
of state for Zpure�y� in the SHY and Hamad’s proposals.

To our knowledge, the idea of starting from the contact
values of the radial distribution functions in the case of the
MIX1 theories has not been considered before. This allowed
us to construct the nonlinear extension. Of course, while in
the case of mixtures the compressibility factor is determined
uniquely once the contact values of the radial distribution
function are given, the reciprocal is not true. Hence, the ex-
pressions we have provided for these contact values are a
further contribution of this work.

We have carried out three kinds of comparison between

the five theories and “exact” numerical results. First, the the-
oretical predictions of the composition-independent fourth
virial coefficients have been tested against new available
Monte Carlo data.17 In the cases of B1112 and B1222, the best
overall agreement with the Monte Carlo values are obtained
with the nlMIX1 theory, followed by Hamad’s proposal. As
for B1122, none of the theories does well at high asymmetry
and nonadditivity, the discrepancies being especially impor-
tant in the case of Hamad’s approximation.

As is well known, the first few virial coefficients are
relevant to the equation of state in the low-density regime
but not generally beyond it. Thus, in order to test the theo-
retical approaches at finite densities, we have made use of
available simulation data for the compressibility factor.10,11,13

The emerging scenario is that Hamad’s approximation is ex-
cellent for negative nonadditivities, while the SHY proposal
is the preferable one for positive nonadditivities.

Within the limited set of compressibility factors that we
have analyzed, it is fair to say that the new nlMIX1 theory
proposed in this paper is rather satisfactory and seems to be
a good compromise between accuracy and simplicity. Further
assessment of this assertion is precluded at this stage due to
the scarcity of the data. Therefore, one of our hopes is that
the present paper may encourage more work on the subject.

Finally, the critical behavior and liquid-liquid coexist-
ence of nonadditive hard-sphere mixtures with positive non-
additivity have been examined. While the quantitative agree-
ment is not satisfactory, all theories seem to capture correctly
the qualitative trends obtained in the simulation. In this case
our original SHY proposal gives the best performance, but
again the limited availability of data prevents us from carry-
ing out a more thorough analysis. Once more we hope that
our findings may lead to the further needed work on this
matter.
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