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L E T T E R S  T O  T H E  E D I T O R  

CONSTRUCTION OF APPROXIMATE ANALYTICAL SOLUTIONS TO A NEW CLASS 
OF NON-LINEAR OSCILLATOR EQUATIONS 

1. INTRODUCTION 

The work of  many authors, principally in this century, has given many approximate 
methods of  solution of  the non-linear oscillator equation: 

~i + x =  e f ( x ,~ ) ,  .(1.1) 

where 0 < e << 1 and f is a polynomial function of  its arguments. Mickens and Oyedeji in 
a recent letter [1] have investigated a new class of  non-linear oscillator, 

~ + x 3 = Ef(x, ~) (1.2) 

with e and f as before. I f  in the previous equations we put e = 0, the resulting equations 
are called generating equations and their solutions are called generating solutions. 

A century of  work on equation (1.1) has been based on obtaining approximate solutions, 
where the circular functions play a central role. In reference [1] equation (1.2) is solved 
by using circular functions. Our group has applied the Jacobian elliptic functions to 
non-linear problems of  relativistic quantum mechanics [2, 3] and non-linear oscillators 
[4, 5]. They are the natural extension to non-linear problems of  circular functions. For 
t, he present problem we think it more appropriate to use the solution of  the generating 
equation 

X-I- X3 ~-- 0, (1.3) 

i.e., the Jacobian elliptic functions 

x ( t )  = A cn(tot + q~,/x 2 =�89 (1.4) 

where A = to and where A and ~b are constants fixed by the initial conditions. 

2. THE ELLIPTIC METHODS 

In this letter we would like to show how to extend with Jacobian elliptic functions the 
methods of  harmonic balance and slowly varying amplitude and phase. We use, when 
possible, the notation and presentation of  reference [1]. 

For  the first method (of  harmonic balance) one assumes a solution of the form 

x(  t) = A cn (tot, �89 (2.1) 

where A and to are constants to be determined. Substituting equation (2.1) into equation 
(1.2) gives 

F1(A, to, a, e) cos z + F2(A, to, a, e) sin z + (higher order harmonics) = 0, (2.2) 

where z is the amplitude function of argument tot and parameter �89 [6], z = am (tot, �89 
that is, cos z = cn (tot, �89 and sin z = sn (tot, �89 and where a collectively denotes any para- 
meter which appears in the non-linear function f ( x ,  ~:). One now first takes FI = 0  and 
then F2 = 0. Each solution A(a,  e) and to(a, e) of  this system corresponds to a possible 
steady state limit cycle and /o r  limit motion of  equation (1.2). 
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In the second method (of slowly varying amplitude and phase) one assumes for 
equation (1.2) a solution of the form: 

x(t) = A(t) cn [tot+ qb(t), #2 =�89 = A(t) cn [0(t) ,  �89 = A cn, (2.3) 

whete to is an unknown constant and A(t) and ~b(t) are functions to be determined. For 
this, one imposes two constraints on equation (2.3): constraint-l, equation (2.3) must be 
a solution of equation (1.2); constraint 2, the time derivative of equation (2.3) must have 
the same form as the time derivative of the generating-solution, that is 

~(t) = - toA sn dn. (2.4) 

Differentiating equation (2.3) and using constraint 2 one has 

.,{ c n -  A~ sn dn = 0. (2.5) 

It is known that 

( d 2 / d 2 0 )  cn (0, / x2) = - (1  --2/X 2) c n -  2/z 2 cn 3. (2.6) 

Then, differentiating equation (2.3) twice, using equation (2.5) and substituting into 
equation (1.2) (constraint 1) gives 

- toA sn d n -  to2A cn 3 - toA~ cn a + A 3 cn 3 = ef(A cn, - toA sn dn). (2.7) 

Solving equations (2.5) and (2.7) one obtains the system 

Ato (sn 2 dn 2 + cn 4) + (to2A - A a ) cn 4 sn dn = -e fsn  dn, 

toA~ (sn 2 dn 2 + cn 4) + (to 2A - A 3) cn 4 = - efcn. (2.8) 

The exact solution of this system will give the exact solution of equation (1.2). However, 
this does not seem easy. We give here only an approximate solution using the averaging 
method on equation (2.8). The averaging is over the Jacobian-elliptic-function-period, 
4K(~2), where K ( ~  2) is the complete elliptic integral of  the first kind (in our case/.t 2 =�89 
Then one obtains 

= - f ( A  cn, - toA sn dn) sn dn dO, 

toAq~ = - ( 3~-i~ ) Io 'Kf(Acn, - toAsndn)cndO-~( to2A-A3) ,  (2.9) 

where K =  K(-~). Use has been made of (see reference [7]) 

fo ~K 
(sn 2 dn 2) = (1/4K) sn 2 dn 2 dO = I, (c n4) = I, (cn 4 sn dn) = 0. (2.10) 

3. AN EXAMPLE 

We shall apply the two methods to the equation 

5i + x3= e ( 1 -  x2)yc (3.1) 

and compare the results with those in reference [1]. Substituting equation (2.1) into 
equation (3.1) gives 

3(-to2A + A 3) cos z + (A/4)(-to2A + A 3 ) cos 3z 

+ toe(A-A3/4) sin z d n -  (eto/4)A 3 sin 3z dn = 0. (3.2) 
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Here dn = (1-�89 sin 2 z) 1/2. Fourier expansion of sin z dn and sin 3z dn in equation (3.2) 
gives 

3(_ ~o2A + A 3 ) cos z + (eoJ/zr) [~KA + 4(K - 2E)A 3 ] sin z + (higher order harmonics) = 0, 

(3.3) 

where K =  K(�89 and E = E(�89 E(tz 2) is the complete elliptic integral of second kind. 
Setting the coefficients of  cos z and sin z to zero, one gets a system with the solution 

~o = A~, A~-2 _ (~)/[2(E/K) - 1] = 3.6474: (3.4) 

that is, A, = 1.9098. Then, the steady state solution of equation (3.1) is 

x( t )  = As cn (AA, �89 (3.5) 

with A, given by equation (3.4). The period is z = 4K(�89 = 3.8833. Mickens and Oyedeji 
gave x ( t ) = 2  cos (~/3t) with r =3.6276. Solving equation (3.1) by numerical integration, 
we find an error in the steady state amplitude for e =0.1 of the order of 5% in reference 
[1] and less than 1X, (that is more than 50 times smaller) with our method. For larger e 
(e < 1) the error of  reference [1] is also about 5% and, at least, an order of magnitude 
smaller with our method. 

In the second method, the integrals of equations (2.9) are [7] 

A = (e /2)A{1 +~(1 - 2 E / K ) A  2} = (e/2)A{1 - (A/A~)2}, ~ = (A 2 -  ~o2)/3oJ. (3.6a, b) 

It is easy to show that the non-zero steady state solution of  this system (3.6) is the same 
as the steady state solution of  the harmonic balance method. The transitory motion is 
obtained by solving equations (3.6). From equation (3.6a) 

A2(t) 2 2 ~ 2 2 e - " ] :  = AsAo/[Ao + (A~ - Ao) (3.7) 

that is, the same amplitude expression as in reference [1] (but with A~=4). Equations 
(3.6b) and (3.7) give 

c~(t) = - (1~3cA,)  In [1 + ((A~/A2o) - 1) e-~'] + q~o. (3.8) 

The constants A o - A ( O )  and ~bo~-~b(0) are evaluated from the initial conditions. One 
concludes that the approximate solution to equation (3.1) is 

x(  t) = A(  t) cn ( A,t + c~( t ), �89 (3.9) 

where A(t ) ,  c~(t) and A, are given by equations (3.7), (3.8) and (3.4). 

4. CONCLUSIONS 

We have generalized two methods of obtaining approximate solutions for the class of  
non-linear differential equations represented by equation (1.2), using Jacobi elliptic 
functions rather than circular functions. Following the same technique as reference [1], 
the generalized method of  harmonic balance allows the determination of the parameter 
of the possible limit cycles and /or  limit points, and the method ofslowly varying amplitude 
and phase gives the transitory behaviour of  the motion as the system approaches steady 
state. The precision is improved by at least an order of magnitude over the method of 
reference [1] when e ~  < 1 and orders of magnitude for e~0-1 .  
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