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A WEIGHTED MEAN-SQUARE METHOD OF “CUBICATION” 
FOR NON-LINEAR OSCILLATORS 
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An alternative to the linearization technique in oscillator problems of the type jl +_/I x I= 0 
is studied in which these equations are approximated by others of cubic type ji + a,~’ = 0 
using a weighted mean-square method. This “cubication” method is checked by studying 
the period, energy and solution for several examples. For all forces with odd polynomials 
and a positive largest coefficient, cubication is more accurate than linearization for large 
amplitudes, and for all amplitudes if J(x) has a cubic and no linear term. For the 
softening-hardening cubic forces, cubication gives better results than linearization. 
However, for the softening cubic forces and the flattening springs examined here, lineariz- 
ation is more suitable than cubication. 

1. INTRODUCTION 

In the linearization technique, an “associate” oscillator 

2 +f*(x, a) = 0 (1.1) 

is obtained from the non-linear oscillator problem 

jl+.f’(x, X) =o, (1.2) 

in such a way that the solution of equation (1.1) is an approximate solution of equation 
(1.2). The term linearization is used because a linear form is chosen forf*(x, .c). So, for 
non-dissipative oscillators, 

.;1 +.f(x) = 0. (1.3) 

where the non-linear function f(x) is odd (as will be used throughout the following), 
linearization applied to equation (1.3) yields the associate oscillator 

_;1 +.I;(x) = 0, ( 1.4) 

where 

f;(x) = a,x’ (1.5) 

and i = 1 always. This choice of i = 1 is because the new equation (1.4) has a simple 
oscillating solution in terms of circular functions 

x(t)=Acos(wt+~). (1.6) 

Nevertheless, the choice i = 3 for equation (1.4) with the function (1.5) also has a 
simple solution 

x(t)=Acn(wt+4,+), (1.7) 
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where cn (u, k’) is the Jacobi elliptic function cos (am (u, k2)), A is the amplitude, w the 
frequency, 4 the phase and 5 is the value of the elliptic function parameter k’. It is then 
natural to try expression (1.4) with the force (1.5) and i =3 as the associate oscillator to 
the non-linear problem (1.3): i.e., to try a “cubication” technique. 

One of us has already worked with a harmonic balance method [II-using equation 
(1.7) as trial solution of equation (1.3)-that can be considered a cubication method. 

Methods of linearization or cubication differ in the form of obtaining the parameter 
ai that defines J;(x). The criterion is that this a, must give the best approximation to the 
period (the period criterion). A complementary criterion might be that the optimal a, 
gives a good approximation to the energy of oscillation. This complementary criterion 
can be justified in the following way. One can rewrite equation (1.3) as 

where 

i+a,x’+R,(x)=O, (1.8) 

R(x) =f(x) -A(X). (1.9) 

Equations (1.3) and (1.4) are similar and therefore so are their solutions, when Ri(X) = 0. 
If the forces f(x) and A(x) are similar and intersect only at x = 0 in the oscillation interval, 
then 

E= Af(x)dx 
I 

and E, = Af;(x) dx J (1.10) 
0 0 

must be similar. Therefore, the solutions of equations (1.3) and (1.4) are similar when 
E = Ei. This is the energy criterion. If f(x) and A(x) intersect at several points in the 
oscillation interval, the energy criterion could be inappropriate because there exist 
oscillators with very different forces but similar energies. Notice that, in the same way, 
the period criterion is not appropriate if the oscillators have very different forces but the 
same or similar period. 

2. THE WEIGHTED MEAN-SQUARE CUBICATION METHOD 

In the methods of weighted mean-square linearization (i = 1) or cubication (i = 3) a 
search is made over the ai to minimize 

J A 

[S(x) -f;(x)l’4x) dx. 
-A 

(2.1) 

One then obtains 

with 

J A 
u,(A) = (l/N) xif(x)w(x) dx (2.2) 

-- A 

J A 
N= x”w(x) dx. (2.3) 

-A 

Different choices of the weight w(x) give different values of ai. In the case i = 1 (lineariz- 
ation) several techniques have been used [2-71. Denman [2] used w(x) = (1 -x~/A~)-“~, 
which is equivalent to makingf,(x) equal to the linear Chebyshev polynomial approxima- 
tion to f(x). Denman and Howard [3] and Denman and Liu [4] used w(x) = 
(1 - x~/A~)*-“~, which is equivalent to takingf,(x) as the linear ultraspherical polynomial 
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approximation to f(x). Sinha and Srinivasan [5] proposed w(x) = (xjml for small oscilla- 
tions, where the constant m, is fixed by the period criterion. Mittal [6] showed that the 
best choice of m, depends on the type of oscillator, and Agrwal and Denman [7] extended 
the method to large oscillations. 

Denman and Liu [4] used a method similar to our cubication technique taking J(x) = 
a,x + uXx3. In the present work we use the technique of Sinha and Srinivasan [5], with 
weight function w(x) = IX]“‘, in equations (2.2) and (2.3) with i = 3. The value of m, is 
chosen to make the period 73 of the associate oscillator and the original period T as close 
as possible (period criterion). This will be referred to in the following as the cubication 
method. We show that m3 (in analogy to M, [5,7]) depends on the form of -f(x) and on 
the amplitude of the oscillations. 

The exact expression for the oscillator period is given by 

T = 2’P I A [V(A) - V(x)] I” dx, 
0 

where 

(2.4) 

(2.51 

is the potential energy of the oscillator. As expression (1.7) is the solution of equation 
(1.4) with i = 3, the period calculated by the cubication method is 

r3 = ~K($)/(Au;‘~,, (2.6) 

where K(4) = 1.85407 . . . is the complete elliptic integral of the first kind with parameter 
k’ = f. The total energy of oscillation E = V(A) given by the cubication method is 

E, = a,A4/4. 

Using the linearization technique gives the period as 

(2.7) 

12.8) 

and the total energy of oscillation is 

E, = a,A2/2. (2.9) 

In the next sections, we apply the cubication method to several examples. A comparison 
is made with the numerical results obtained for these oscillators following the linearization 
techniques of references [5] and [7]. Throughout the paper, the values of m, used are 
taken from references [5] and [7]. In the following, “the linearization method” will refer 
to the method of these references. 

3. POLYNOMIAL NON-LINEARITIES 

In this section we consider an oscillator submitted to the force 

f(x) = c3x3 + cxZni ‘. (3.1) 

One needs to distinguish two regimes: when c,A’ >> IcAZ”+‘J, c3 > 0, the cubic regime, and 
the non-cubic regime when Jc3A3)<< cA2”+’ (in particular, the linear regime if n = 0). 
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Following Mittal [6] and Agrwal and Denman [7] one can show, using the period 
criterion (see Appendix l), that the weighting function w(x) must be 

w(x) = JXJ’)” (3.2) 

in both regimes, if the weight function is even and independent of the amplitude. 
In the cubic regime, the period is (see Appendix 2) 

r= [4K/(Ac:“)][l - (c~r~A’“-~/2c,)J (3.3) 

with 

[2/(n+l)][E+S,(n/2)]/K, 

[2/(n+ 1)l{S3[(~-1)/2ll/K, (3.4) 

where 

Se(j) = (2E- K) i G(i), S,(O) = 0, (3.5) 
i=l 

ifi=l 

4i-5 (3.6) -. . .- if is2 
4i-3 1 

and 

if i=O 
Sdi) = K ,!I Gdi), 4i-3 (3.7, 3.8) 

i=o -. . .- 
I 

ifi ’ 
4i-1 

Here K and E are the complete elliptic integrals of the first and second kind, respectively, 
both with parameter k2 = i( E = 1.35064. . . ). If one equates this expression for T with 
the expression for T, obtained from expressions (2.6), (2.2) and (3.1), one finds (as 
shown in Appendix 1) that w(x) is given by equation (3.2) with the optimal value for 
m3 given by 

m.3=-7+[(u2(2n-2)]/(1-a2). (3.9) 

In the non-cubic regime the period is [7] 

~-(2/A”){~/[(n+l)c]}“~{~[1/(2n+2)]/f[(n+2)/(2n+2)]}. (3.10) 

The exact period r is equal to the cubic period rj if (see Appendix 1) w(x) is given by 
equation (3.2) and m, (optimal m3) is given by equation (3.9) but now with 

a2=(4K2/~)(n+1){l-2[(n+2)/(2n+2)]/l-2[1/(2n+2)]}. (3.11) 

The optimal values of m3 for different n, according to expressions (3.9) and (3.4) for the 
cubic regime and, according to expressions (3.9) and (3.11) for the non-cubic regime, are 
given in Table 1. 

Let us now consider some examples. 

3.1. CASE I, HARDENING CUBIC FORCE: f(X) = C,X+ C3X3, C, > 0, Cj > 0 

The linearization method of Sinha and Srinivasan [5], i.e., equation (2.2) with i = 1 
and W(X) = 1x1 ml, gives 

al(A)=c,+[(m,+3)/(m,+5)]c,A2. (3.12) 
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TABLE 1 

Optimal m, for each n and range of A 
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n Cubic regime Non-cubic regime 

0 0.0864 

2 0.5365 
3 1 
4 1.4174 
5 915 
co 

A-t02 -0.6231 A+0 

-0.0284 
-0.0490 

A+0 -0.0624 A + cc 
-0.0718 
-0.1248 

In the present method (cubication), one uses equation (2.2) with i = 3 and w(x) given 
by (3.2) to obtain 

a,(A)=[(m,+7)l(m,+5)l(c,lA’)+c,. (3.13) 

With the preceding expressions and with equations (2.6)-(2.9) we have evaluated the 
exact period and energy of the associate oscillators for different amplitudes: 7= 
4K(k*)/w, E = c,A*/2+ c,A4/4, with k* = c,A*/[2(c, + c,A*)], and w2 = c, + c3A2. 

For this oscillator, m, = 3 is the optimal value for small oscillations [5] and m, = 2.0864 
is the optimal value for large oscillations [7]. The values for mj were taken from Table 
1: m, = 0.0864 for small oscillations and m3 = -0.6231 for large oscillations. The simpler 
values m, = 2 and m3 = 0 are, nevertheless, very good both here and in many other cases, 
as will be seen in following examples. 

The relative errors of the period and the energy versus the non-linearity factor Y = 
c3A2/ cl are shown in Figure 1. These figures show that the results are better with cubication 
than with linearization, except for small non-linearity factors. 

3.2. CASE II, SOFTENING CUBIC FORCE: f(X) = C,X+ C&, C, > 0, C3 < 0 

For oscillatory motions, the non-linearity factor v is between -1 and 0, and therefore 
there are no large oscillations in this case. Expressions (3.12) and (3.13) are valid here 
as well. The values of T and E are as in the case of the hardening cubic force, but now 

50 
+-J--’ 
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B : 1 
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30 

--j 
, 

‘0 i 

Non-llneorlty factor 

Figure 1. Relative error in period (a), and energy (b), vs. non-linearity factor for the oscillator jI + c,.x + cjxz = 0, 
c, > 0, c1 > 0. The parameters are m, = 2, A; m, = 3. B; m, = 2.0864, C = A in (b); m, = 0,O; m3 = 0.0864, + = C 
in (a) and + = 0 in (b); m3 = -0.6231, *. Here and in the following figures we use the following conventions: 
B for the optimal m, when A + 0; C for the optimal m, when A -+ co; + for the optimal m3 when A -S 0; and 
* for the optimal m3 when A + ~0; symbol, = symbol, means that the line corresponding to symbol, is given by 
the line corresponding to symbol, because they are the same or very close. 
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with kZ = -c3A2/(2c, + c,A’) and CO’ = c, + ( c?A2)/2. The optimal values for A + 0 are also 
the same as for case I. 

The relative errors of 7, , TV, E, and E, versus v are shown in Figure 2: one sees that 
the linearization method is better over the total range of amplitudes. 

3.3. CASE 111, SOFTENING-HARDENING CUBIC FORCE: f(X) = C,X + CiX3, C, < 0, C2 > 0 

In this case, for symmetrical oscillations, v < -2. The exact values of T and E are given 
by the same expressions as in case I. The relative error of the period and energy for the 
associate oscillator versus the non-linearity factor v are shown in Figure 3. For v 2 -3 
neither method is good, but the cubication method is better for v < -3. 

3.4. CASE IV, ODD-POWER FORCE: f(X) = X+X3 + Xs + X7 

In general, if f(x) = 1, x2j+’ equations (2.2) and (2.3) give 

a,(A) =C [(m, +3)l(m,+2j+3)lA2’, (3.14) 

a,(A)=C [(m3+7)/(m3+2j+5)]A2J-2. (3.15) 
i 

The relative errors of the period and energy of the associate oscillators versus the amplitude 
for different values of mi are shown in Figure 4. The value of T was calculated by numerical 

I I J 
-1.0 -0.6 -0.2 

Non-llnearlty factor 

Figure 2. Relative error in period (a), and energy (b), VS. non-linearity factor for the oscillator ji + c,x + clx’ = 0, 
c, >O, cj ~0. The parameters are m, =2, A; m, =3, B; mq =O. 0; m, =0.0864, + =O in (a) and in (b). 
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Figure 3. Relative error in period (a), and energy (b), OS. non-linearity factor for the oscillator i + C,X + cjx3 = 0, 
c, < 0, c3 > 0. The parameters are m, = 2, A; m, = 3, B; m, = 2.0864, C = + in (a) and C = A in (b); m3 = 0, 0; 
m3 = 0~0864, + = 0 in (b); m3 = -0.6231, *. 
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Figure 4. Relative error in period (a), and energy (b), vs. amplitude for the oscillator ji -t x + x1 + x‘ +.x- = 0. 
The parameters are m, =2, A; m, =3, B; m, =2.0212, C= A in (b); m,=O, 0; m, =0.0864, + =O in (b); 
m, = -0.0490, * = 0 in (b). The line corresponding to m, = 0 is not plotted in (a). It lies between lines * and + 

integration. In the linearization method, m, = 3 is the best value in the linear regime 
(A = 0), and m, = 2.0212 is the best for large A. In the cubication method, the best m, is 
0.0864 for the linear regime (A + 0, n = 0, Table 1) and m, = -0.0490 for the non-cubic 
regime (A + co, n = 3). 

This case is well suited to showing how the energy criterion explained in section 1 
works. The numerical solutions of this problem with f‘(x) = x+x3+x5+x7 for different 
values of the amplitude versus the normalized time (f/7) are shown in Figure 5. Solutions 
of the associate linear and cubic oscillators are also given in this figure. Errors in the 
period of the linear and cubic solution are small (see Figure 4(a)) and have been taken 
to be zero in order to simplify the plot. For A = 0.5 the difference between the exact and 
the linear energy of the oscillator (E and E,) is small (see Figure 4(b)) and less than 
that between the exact and the cubic oscillator ( E3). It is shown in Figure 5 that the linear 
solution is closer to the exact one for this case. For A = 1.2, the error in the energy is 
small when calculated with the cubication method, and less than that given by the 
linearization technique (see Figure 4). When A 3 3, although the error in the energy is 

I.0 

0.6 
3 
. 
‘; 

0.4 

0.15 
Normalized time 

Figure 5. Numerical solution for the oscillator i +x + x3 + x5+ x7 = 0 with initial conditions $0) = 0 and 
x(O) = A, where A = 0.5, +; A = 1.2, *; and A P 3, 0. The approximate linear solution A cos (wr), labeled 1, 
and the approximate cubic solution A cn (wf, l/2), labeled 2, are also given. 
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Figure 6. Relative error in period (a), and energy (b), vs. amplitude for the oscillator ,+sinhx =O. The 
parameters are m, =2, A; m, =3, B; m, = 1.9348, C= A in (b); m2 =O, 0; m, =0.0864, + 10 in (b); m, = 
-0.1248, * = 0 in (b). 

large with either method, it is lower with cubication. For large amplitudes (A 2 3) the 
difference between the two solutions is practically constant, which is consistent with the 
practically constant percentage error in energy for large A (see Figure 4(b)). 

4. SINH NON-LINEARITY 

We now considerf(x) = wi sinh x. This function can be represented by the power series 

sinhx=x+(x’/6)+ i [xZ”+‘/(2n+l)!]. 
,,=2 

(4.1) 

Therefore the optimal m3’s for small amplitudes (A + U with n = 0) and for large amplitudes 
(A + 00 with n + co) are those given in Table 1. Hence, for small oscillations one has 
m, = 3 [S] and m3 = 0.0864; for large oscillations m, = 1.9348 [7] and m3 = -0.1248. It is 
possible to obtain the best value of m3 when A +CD in the following different way (as 
shown in reference [7] for ml). The exact period of oscillation is [4] 

r= (4/w,,) sech (A/2)K(k2), (4.2) 

with k = tanh (A/2). For large A 

T = (4/w,)A exp (-A/2). (4.3) 

Using the cubication method, one has 

TV = (4K/w,,)[2/(m,+7)]“‘A exp (-A/2) (4.4) 

for large values of A. The best m3 is easily calculated by equating expressions (4.3) and 
(4.4). Then m,=2K2-7= -0.1248.. . 

Plots of the relative errors for the period and energy (E = V(A) = w$cosh (A) - 11) for 
the above values of mi and for m, = 2 and mj = 0 are shown in Figure 6 (as the relative 
error for the energy is so large when using m, = 3, this is not shown in Figure 6(b)). One 
therefore concludes that the method of cubication is better in this case also, except for 
low values of A. 

5. FLATTENING SPRINGS 

In this type of oscillator the force tends to a constant value when x + 00. An example 
is f(x) = wi tanh x. 
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For small amplitudes the best value of m3 depends on the particularities of each 
oscillator, but for large amplitudes the best m1 is the same for all flattening springs. 
following Agrwal and Denman [7] if A + CO, when x + ~0, f(x) + *w,$ V(x) + o$xl+ C 
and, then, from equation (2.4), 

A 

7= (8”z/wg) 
I 

(A-.x)-“’ dx = (4/~,,)(2A)“~. (5.11 
0 

By means of the cubication method, for A + 0~ 

~j=(4K/~0)A”2[(m3+4)/(mj+7)]“‘. (5.2) 

Equating (5.1) and (5.2), one obtains the value of m3 that gives the correct behaviour of 
the period: 

m,=(14-4K’)/(K’-2)=0.1736.... 15.3) 

As tanhx=x-x3/3+. * . the best values for A + 0 are m, = 0.0864 (Table 1) and m, = 3. 
For A -+ 00 the best value is [7] m, = 2.27898 . . . . 

The relative errors for the period and energy (E = V(A) = CIJ~ In [cash (A)]) are shown 
in Figure 7. As the relative error for the energy is large when using m, = 3, this case is 
not plotted in Figure 7(b). Linearization is better in this case, for any amplitude. 

I 1 I I I I I 
0 5 IO 15 20 25 

-607 
IO 15 20 25 

Amplltude 

Figure 7. Relative error in period (a), and energy (b),’ us. amplitude for the oscillator jl+ ~5 tanh x = 0. The 
parameters are m, = 2, A; m, = 3, B; m, = 2.27898, C = A in (b); m, = 0, 0; m3 = 0.0864, + = 3 in (b); 
m,:=0.1736, *==O in (b). 

6. DISCUSSION 

Sinha and Srinivasan [5], Mittal [6] and Agrwal and Denman [7] have developed a 
very good weighted mean-square method of linearization (w(x) = jxlml) for odd-power 
forces in non-dissipative oscillators. They obtained the best values of m, to approximate 
the period in two regimes: for large oscillations, and for small oscillations if the force 
has a non-zero linear term. 

The present paper has described a similar method, but now of cubication, in which 
the best m3 in the weight function w(x) = 1x1 mJ is obtained for large oscillations, and for 
small oscillations if f(x) has a non-zero cubic term. 

The results (associated solution, period, and energy) are good, and a clear improvement 
over linearization for certain types of oscillators. If the force f(x) is closer in form to 
a3x3 than to a,~, the energy is better approximated by the associate cubic oscillator than 
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by the associate linear oscillator. For all odd polynomials f(x) with a positive largest 
(nth) coefficient, cubication is preferable to linearization for large amplitudes A, and for 
all A if f(x) has a cubic and no linear term. If n and A tend to infinity, the correct 
asymptotic period approximation is given when rn3 = 2KZ- 7. This same rrz3 gives the best 
period for large amplitude when f(x) is of the type sinh x. For the softening-hardening 
cubic forces (negative linear term, positive cubic term) cubication is better than lineariz- 
ation for any amplitude. However, we found that for softening and flattening springs, 
linearization is more suitable for calculating the best associate solution, period and energy. 

Finally, the results for m3 = 0 are similar to those obtained by taking the best mj, in 
the non-cubic regime. The choice m3 = 0, when I,” x3f(x) dx can be written as a sum of 
elementary functions, gives therefore a simple cubic approximation for the solution and 
the period. 
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APPENDIX 1 

We demonstrate here that if f(x) is given by equation (3.1) then the period criterion 
leads to the weight function w(x) = 1x1”‘~ in both the cubic and the non-cubic regimes. 

The approximate period rJ of the method of this paper is given by equations (2.6) and 
(2.2) with i = 3. The exact period r is given by equation (3.3) for the cubic regime and 
by equation (3.10) for the non-cubic regime. Equating r2 and r:, and taking w(x) as 
even, one finds 

J A A 

x 2n+4W(X) dx = a2A2n-2 
0 J x”w(x) dx, (AI) 

0 

where (Y’ is given by equation (3.4) for the cubic regime and by equation (3.11) for the 
non-cubic regime. This equation is valid for all values of A (within each regime). Then, 
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differentiating with respect to A, one obtains 

5 

A 

(1 -(~~)[a*(2n -2)]-‘A’w(A) = x”w(x) dx. 
0 

(A2) 

Differentiating again and replacing A by x, one finds 

dw/ w = m,(dx/x), (A31 

where m3 is expressed by equation (3.9). The weight function is then given by equation 
(3.2), with m3 depending only on n in both regimes. 

We show here the derivation 
From equations (3.1), (2.4) and 

r~ r 

of equation (3.3) for the period T in the cubic regime. 
(2.5) one finds 

r = (32/~#‘~ 
J 1 

c A2”+2_x2”+2 

0 

l+& ; 
-112 

3 A4-x4 I 
( A4 - x4)-“’ dx. (A4) 

APPENDIX 2 

With the change of variable y = x/A, and as c,A3 >> IcA”‘+‘l in the cubic regime, one has 

T = [32/(A2c3)]“* 1-h $ A’“-’ 
1_$“+2 

l-y4 1 (1 -y4)-‘I2 dy. (A5) 
3 

For even n 

(1 _y*n+* )/(l -y4) = E y4’-*+ 1/(1+y2), 
I=, 

with p = n/2. For odd n 

(1-Y ‘“+‘)/(l-y”)= t y4', 

i =0 
(A7) 

with q = (n - 1)/2. Following reference [8], one has 

I 

1 

I 

1 

( 1 - Y~)-“~ dy = 2-‘/*K, (1 + y’)-‘( 1 - y4)-“* dy = 22”‘E, 
0 0 

I 

1 

yi(l -y4)-“2 dy = 2-“*1,. 
(A8) 

0 

Therefore, substituting equations (A6) and (A7) into equation (A5), and defining 

(A61 

S,(i) = i 44, 
i=l 

one has equation (3.3). 
It is shown in reference [8] that 

S0(j)= i 14;, (A9) 
i=O 

4(i-l)-5 4i-5 I 4(i-l)-3 4i-3 
4(i-l)-3 4i-3 ” 

14+. . -I 
4(i-1)-l 4i-1 O’ (AlO) 

with 1, = 2E - K and Z. = K. It is then straightforward to show that S,(j) is given by 
expression (3.5) and S,(j) by expression (3.7). 


