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THE RAYLEIGH METHOD WITH JACOBI ELLIPTIC FUNCTIONS 

1. THE RAYLEIGH METHOD AND THE ELLIPTIC FUNCTIONS 

The Rayleigh (one-term deflection function) method is an old method [l] that has been 
extensively used to find an upper approximation to the lowest or fundamental frequency 
of vibrating systems. It is sometimes presented as a generalization of the energy method, 
in which the frequency is obtained by equating either the maximum kinetic energy I&,,,, 
with the maximum elastic energy U,,, [2,3], or the mean kinetic energy with the mean 
elastic energy [4,5]. 

For a vibrating string [2,3] 

and T,,,, = w2T* with 

Hence (the Rayleigh quotient) w2= U,,_/T*, where T is the string’s tension, p is the 
mass of the string per unit of length, L is the distance along the x axis between the ends 
of the string, and y(x) is the string’s deflection curve. There are similar expressions for 
torsional or longitudinal vibrations of bars [2,5]. For beams one has [2,5,6] 

(2) 

u &I L 
max =- J 2 0 

(~"1' dx, T*=; Y' dx, (374) 

where E is Young’s modulus, I the beam moment of inertia, p the mass of the beam per 
unit of length, L is the distance along the x axis between the ends of the beam, and y(x) 
is the beam deflection curve. 

The frequency obtained with the Rayleigh method is the exact fundamental frequency 
if the trial deflection function y(x) is the exact one. But if y(x) is different from the exact 
deflection function, the frequency obtained from the Rayleigh quotient is always higher 
than the exact fundamental frequency. Often a trial deflection function that depends on 
an undetermined parameter, say -y, is used, and this parameter y is chosen to minimize 
w2(y). For example, Rayleigh himself [ 1, vol. I, p. 1121 used the trial deflection function 

Y(X) = Yo[l -w1/L)‘l (5) 
for the vibration of a stretched string (the origin of x is the string’s middle point). 

The Rayleigh method has been applied with a great variety of trial functions; polynomial 
and periodic (trigonometric) functions principally (especially in textbooks, see references 
[2-5)]. For polynomial trial functions the exponent is the natural undetermined para- 
meter-expression (5) is an example-or at least has been the most popular undetermined 
parameter since the work of Schmidt [7-91. However, there is no similar natural undeter- 
mined parameter reported in the literature for the periodic (trigonometric) functions. The 
purpose of the present communication is to point out that the elliptic parameter k’ can 
be taken as the natural undetermined parameter in the Rayleigh method (when periodic 
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Figure 1. (A) The cn ($, k’) functions and (B) the sn (I/J, k’) functions for (a) k’=0.998, (b) k’=O.8. 
(c) kZ = 0, (d) k2 = -4 and (e) k* = -499. 

functions are used as trial functions), if the trigonometric functions are considered as 
particular cases of the Jacobi elliptic functions, since cos ($) = cn (+, k* = 0) and sin (4) = 
sn (I/I, k* = 0). In other words, the Jacobi elliptic functions cn (4, k*) and sn (I/I, k*) are a 
natural extension of the trigonometric functions in the Rayleigh method with an undeter- 
mined parameter. The graphical representation of these functions with 0 6 k’ < 1 and 
k* < 0 is shown in Figure 1. Note that the plot of cn (t,b, k*) displaced a quarter period 
to the right is the same as sn ($, k’). This is because sn ($, p2) = cn (cp -K, k’), where 
(p = +/( 1 - k*), k2 = -p*/( 1 + p*), and K = K( k2) is the complete elliptic integral of the 
first kind (for more details see reference [lo]). The period of cn (4, k2) and sn (4, k2) is 
4K( k’). 

The next section presents some illustrations of the use of Jacobi elliptic functions as 
trial deflection functions. The results are satisfactory, especially for the beam examples. 

2. ILLUSTRATIVE EXAMPLES 

2.1. String withjixed ends and a point mass at the middle 
This problem is mathematically equivalent to the longitudinal (or torsional) vibration 

of a bar clamped at both ends and having a disk with mass (or moment of inertia) in the 
middle of the bar. The circular trial function is [2,4] 

.Y(x)=Yosen(?ix/L)=y,cos(~x--~) =y,cn(yx-K(O),O). (6) 

The elliptic trial function is therefore 

Y(X) = yo cn 
2K(k2) 
~ x - K( k’), k’ L 



182 LETTERS TO THE EDITOR 

By substituting expression (7) into equation (2) and carrying out the integrations (see 
reference [ll]) one obtains the maximum kinetic energy of the string: 

fw*pLY;[(K- E)/(k*K)] = fw*pLy;T;, 

where K = K( k*), and E = E( k*) is the complete elliptic integral of the second kind. The 
maximum kinetic energy of the point mass (of mass m) is fmw*y*( L/2) = $mw*yt. By using 

(d/d$) cn (JI, k*) = -sn ($, k*) dn (4, k*) 

in equation (1) and carrying out the integrations [ll], one finds that the maximum 
potential energy is 

u max =&/L)y;4K[(l+k*)E-(l-k2)K]/(3k2)=4(~/L)y:H2. 

Equating U,,, with the total maximum kinetic energy (the beam’s maximum kinetic 
energy plus the maximum kinetic energy of the point mass) one finds 

~~=~~~/[T~+(m/p~)]~~/(p~~)=~~7/(p~~). 

The values of W* thus obtained with their optimum parameters k* are given in Table 1. 
Other values of W* are given for comparison: the exact ones [2,4] and those obtained 
by using the Rayleigh method with the polynomial trial function given by equation (5) 
and the circular trial function of equation (6). 

TABLE 1 

String withfixed ends andpoint-mass at the middle: comparison 
of the 6’ values obtained in the various approximations (the 

optimum parameter values are given in parentheses) 

mid. Exact Circular Elliptic Polynomial 

0.0 77 (0.0) 3.146 (1.72) 
0.1 2& 2&8 2.863 (0.29) 2-860 (1.55) 
0.2 2.628 2.655 2.641 (044) 2.630 (1.43) 
0.5 2-154 2.221 2.185 (0.64) 2.155 (1.24) 
1-o l-720 1.814 1.761 (O-74) 1.722 (1.13) 
5.0 0.866 0.947 0.898 (O-83) O-866 (l-03) 

2.2. Clamped-free beam 
As the circular trial function is [5,2] 

Y(X)=Y,[l-cos(gX)]=y”[‘-cn(yx,O)], 

we use 

y(x)=yo[l-cn(Fx,k*)] 

(8) 

(9) 

as the elliptic trial deflection function. These two trial functions (8) and (9) satisfy the 
kinematic conditions y(0) = y’(0) = 0. By using the relation 

(d*/d$*) cn= -(l-2k*) cn-2k2 cn3, 

where cn = cn ($, k*), in equation (3) and carrying out the integrations one finds 

u mrrx = u,fJ’;EI/L3 (10) 
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with 

U, =(l -2k2)‘C2+4k2(l -2k2)C,+4k4C,. 
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(11) 

and where (see reference [ll]) 

I 

K 

c,= cn2 (+, k2) d+ == (E - k:K)/ k’, 
0 

I 

K 

c4= cn4 (+, k2) d$ = [2(2k2- 1)C2+ k:K]/(3k2), 
0 

i 

K 

c,= cn6 (4, k2) dlj, = [4(2k2- 1)C4+3kfC2]/(5k2) 
0 

and kf= 1- k2. By substituting equation (9) into equation (4) and carrying out the 
integrations, one has [ 1 l] 

with 

T* = T$y;pL, (12) 

Tf=[K+C,-(2/k)arcsin(k)]/K. (13) 

Therefore w* = cS2~l/(pL4) with G2 = U,/ T:. The minimum value G2 = 3.520 is found for 
k2 = 0.40. When k2 = 0, i.e., by using equation (8), one finds [2,3,5,6] 6’ = 3.664. The 
exact value is O2 = 3.516 [3,5]. 

2.3. Clamped-free beam carrying a point mass at the free end 
The elliptic trial deflection function used is the same as in the last example. The 

kinematic conditions are again satisfied. The expression for U,,,,, is again given by 
equations (10) and (11). The value of T,,, is obtained by adding the maximum kinetic 
energy of the point mass, given by 4mw2y2(L) =&mw*yg, where m is the value of the 
point mass, to the maximum beam kinetic energy, given by equations (12) and (13). Then 
the Rayleigh quotient gives 

w2 = { U,/[ TT + (m/pL)]}el/(pL4) = G2eZ/(pL4). 

The values of 6’ and the optimum parameters k2 obtained with the present method are 
given in Table 2. Other G2 values are given for comparison: the exact ones [12], those 
obtained by using the Rayleigh method with the exact solution of the clamped-free beam 
as trial deflection function [12], and those obtained by using the Rayleigh method with 
the circular expression (8) as trial deflection function. 

TABLE 2 

Clamped -free beam with point-mass at the free end: comparison 
of the G2 values obtained in the various approximations (the 
optimum parameter values k’ of the elliptic method are given 

in parentheses) 

m/d Exact Circular Elliptic Stephen [ 121 

0.2 2.613 2.671 2.616 (0.31) 2.621 
0.4 2.168 2.204 2.170 (0.27) 2.181 
0.6 1.892 1.919 1.894 (0.25) 1.907 
0.8 1.701 1.722 1.702 (0.24) 1,716 
1.0 1.557 1.575 1.559 (0.23) 1.573 
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