THE RAYLEIGH METHOD WITH JACOBI ELLIPTIC FUNCTIONS

1. THE RAYLEIGH METHOD AND THE ELLIPTIC FUNCTIONS

The Rayleigh (one-term deflection function) method is an old method [1] that has been extensively used to find an upper approximation to the lowest or fundamental frequency of vibrating systems. It is sometimes presented as a generalization of the energy method, in which the frequency is obtained by equating either the maximum kinetic energy $T_{\max }$ with the maximum elastic energy $U_{\max }[2,3]$, or the mean kinetic energy with the mean elastic energy $[4,5]$.

For a vibrating string [2,3]

$$
\begin{equation*}
U_{\max }=\frac{\tau}{2} \int_{0}^{L}\left(y^{\prime}\right)^{2} \mathrm{~d} x \tag{1}
\end{equation*}
$$

and $T_{\max }=\omega^{2} T^{*}$ with

$$
\begin{equation*}
T^{*}=\frac{\rho}{2} \int_{0}^{L} y^{2} \mathrm{~d} x \tag{2}
\end{equation*}
$$

Hence (the Rayleigh quotient) $\omega^{2}=U_{\max } / T^{*}$, where τ is the string's tension, ρ is the mass of the string per unit of length, L is the distance along the x axis between the ends of the string, and $y(x)$ is the string's deflection curve. There are similar expressions for torsional or longitudinal vibrations of bars [2,5]. For beams one has [2, 5, 6]

$$
\begin{equation*}
U_{\max }=\frac{\varepsilon I}{2} \int_{0}^{L}\left(y^{\prime \prime}\right)^{2} \mathrm{~d} x, \quad T^{*}=\frac{\rho}{2} \int_{0}^{L} y^{2} \mathrm{~d} x \tag{3,4}
\end{equation*}
$$

where ε is Young's modulus, I the beam moment of inertia, ρ the mass of the beam per unit of length, L is the distance along the x axis between the ends of the beam, and $y(x)$ is the beam deflection curve.

The frequency obtained with the Rayleigh method is the exact fundamental frequency if the trial deflection function $y(x)$ is the exact one. But if $y(x)$ is different from the exact deflection function, the frequency obtained from the Rayleigh quotient is always higher than the exact fundamental frequency. Often a trial deflection function that depends on an undetermined parameter, say γ, is used, and this parameter γ is chosen to minimize $\omega^{2}(\gamma)$. For example, Rayleigh himself [1, vol. I, p. 112] used the trial deflection function

$$
\begin{equation*}
y(x)=y_{0}\left[1-(2|x| / L)^{\gamma}\right] \tag{5}
\end{equation*}
$$

for the vibration of a stretched string (the origin of x is the string's middle point).
The Rayleigh method has been applied with a great variety of trial functions; polynomial and periodic (trigonometric) functions principally (especially in textbooks, see references [2-5)]. For polynomial trial functions the exponent is the natural undetermined para-meter-expression (5) is an example-or at least has been the most popular undetermined parameter since the work of Schmidt [7-9]. However, there is no similar natural undetermined parameter reported in the literature for the periodic (trigonometric) functions. The purpose of the present communication is to point out that the elliptic parameter k^{2} can be taken as the natural undetermined parameter in the Rayleigh method (when periodic

Figure 1. (A) The $\mathrm{cn}\left(\psi, k^{2}\right)$ functions and (B) the $\mathrm{sn}\left(\psi, k^{2}\right)$ functions for (a) $k^{2}=0.998$, (b) $k^{2}=0.8$, (c) $k^{2}=0$, (d) $k^{2}=-4$ and (e) $k^{2}=-499$.
functions are used as trial functions), if the trigonometric functions are considered as particular cases of the Jacobi elliptic functions, since $\cos (\psi)=\mathrm{cn}\left(\psi, k^{2}=0\right)$ and $\sin (\psi)=$ $\operatorname{sn}\left(\psi, k^{2}=0\right)$. In other words, the Jacobi elliptic functions $\mathrm{cn}\left(\psi, k^{2}\right)$ and $\operatorname{sn}\left(\psi, k^{2}\right)$ are a natural extension of the trigonometric functions in the Rayleigh method with an undetermined parameter. The graphical representation of these functions with $0 \leqslant k^{2}<1$ and $k^{2}<0$ is shown in Figure 1. Note that the plot of $\mathrm{cn}\left(\psi, k^{2}\right)$ displaced a quarter period to the right is the same as $\operatorname{sn}\left(\psi, k^{2}\right)$. This is because $\operatorname{sn}\left(\psi, \mu^{2}\right)=\mathrm{cn}\left(\varphi-\mathrm{K}, k^{2}\right)$, where $\varphi=\psi /\left(1-k^{2}\right), k^{2}=-\mu^{2} /\left(1+\mu^{2}\right)$, and $K=K\left(k^{2}\right)$ is the complete elliptic integral of the first kind (for more details see reference [10]). The period of $\mathrm{cn}\left(\psi, k^{2}\right)$ and $\operatorname{sn}\left(\psi, k^{2}\right)$ is $4 \mathrm{~K}\left(k^{2}\right)$.

The next section presents some illustrations of the use of Jacobi elliptic functions as trial deflection functions. The results are satisfactory, especially for the beam examples.

2. ILLUSTRATIVE EXAMPLES

2.1. String with fixed ends and a point mass at the middle

This problem is mathematically equivalent to the longitudinal (or torsional) vibration of a bar clamped at both ends and having a disk with mass (or moment of inertia) in the middle of the bar. The circular trial function is [2,4]

$$
\begin{equation*}
y(x)=y_{0} \operatorname{sen}(\pi x / L)=y_{0} \cos \left(\frac{\pi}{L} x-\frac{\pi}{2}\right)=y_{0} \mathrm{cn}\left(\frac{2 \mathrm{~K}(0)}{L} x-\mathrm{K}(0), 0\right) . \tag{6}
\end{equation*}
$$

The elliptic trial function is therefore

$$
\begin{equation*}
y(x)=y_{0} \mathrm{cn}\left(\frac{2 \mathrm{~K}\left(k^{2}\right)}{L} x-\mathrm{K}\left(k^{2}\right), k^{2}\right) . \tag{7}
\end{equation*}
$$

By substituting expression (7) into equation (2) and carrying out the integrations (see reference [11]) one obtains the maximum kinetic energy of the string:

$$
\frac{1}{2} \omega^{2} \rho L y_{0}^{2}\left[(\mathrm{~K}-\mathrm{E}) /\left(k^{2} \mathrm{~K}\right)\right]=\frac{1}{2} \omega^{2} \rho L y_{0}^{2} T_{2}^{*},
$$

where $\mathrm{K}=\mathrm{K}\left(k^{2}\right)$, and $\mathrm{E}=\mathrm{E}\left(k^{2}\right)$ is the complete elliptic integral of the second kind. The maximum kinetic energy of the point mass (of mass m) is $\frac{1}{2} m \omega^{2} y^{2}(L / 2)=\frac{1}{2} m \omega^{2} y_{0}^{2}$. By using

$$
(\mathrm{d} / \mathrm{d} \psi) \mathrm{cn}\left(\psi, k^{2}\right)=-\mathrm{sn}\left(\psi, k^{2}\right) \mathrm{dn}\left(\psi, k^{2}\right)
$$

in equation (1) and carrying out the integrations [11], one finds that the maximum potential energy is

$$
U_{\max }=\frac{1}{2}(\tau / L) y_{0}^{2} 4 \mathrm{~K}\left[\left(1+k^{2}\right) \mathrm{E}-\left(1-k^{2}\right) \mathrm{K}\right] /\left(3 k^{2}\right) \equiv \frac{1}{2}(\tau / L) y_{0}^{2} H_{2} .
$$

Equating $U_{\max }$ with the total maximum kinetic energy (the beam's maximum kinetic energy plus the maximum kinetic energy of the point mass) one finds

$$
\omega^{2}=\left\{H_{2} /\left[T_{2}^{*}+(m / \rho L)\right]\right\} \tau /\left(\rho L^{2}\right)=\bar{\omega}^{2} \tau /\left(\rho L^{2}\right) .
$$

The values of $\bar{\omega}^{2}$ thus obtained with their optimum parameters k^{2} are given in Table 1. Other values of $\bar{\omega}^{2}$ are given for comparison: the exact ones $[2,4]$ and those obtained by using the Rayleigh method with the polynomial trial function given by equation (5) and the circular trial function of equation (6).

Table 1
String with fixed ends and point-mass at the middle: comparison of the $\bar{\omega}^{2}$ values obtained in the various approximations (the optimum parameter values are given in parentheses)

$m / \rho L$	Exact	Circular	Elliptic	Polynomial
0.0	$\pi{ }^{\prime}$	π	$\pi(0.0)$	$3.146(1.72)$
0.1	2.858	2.868	$2.863(0.29)$	$2.860(1.55)$
0.2	2.628	2.655	$2.641(0.44)$	$2.630(1.43)$
0.5	2.154	2.221	$2.185(0.64)$	$2.155(1.24)$
1.0	1.720	1.814	$1.761(0.74)$	$1.722(1.13)$
5.0	0.866	0.947	$0.898(0.83)$	$0.866(1.03)$

2.2. Clamped-free beam

As the circular trial function is [5,2]

$$
\begin{equation*}
y(x)=y_{0}\left[1-\cos \left(\frac{\pi}{2 L} x\right)\right]=y_{0}\left[1-\mathrm{cn}\left(\frac{\mathrm{~K}(0)}{L} x, 0\right)\right], \tag{8}
\end{equation*}
$$

we use

$$
\begin{equation*}
y(x)=y_{0}\left[1-\mathrm{cn}\left(\frac{\mathrm{~K}\left(k^{2}\right)}{L} x, k^{2}\right)\right] \tag{9}
\end{equation*}
$$

as the elliptic trial deflection function. These two trial functions (8) and (9) satisfy the kinematic conditions $y(0)=y^{\prime}(0)=0$. By using the relation

$$
\left(d^{2} / d \psi^{2}\right) c n=-\left(1-2 k^{2}\right) c n-2 k^{2} \mathrm{cn}^{3},
$$

where $\mathrm{cn} \equiv \mathrm{cn}\left(\psi, k^{2}\right)$, in equation (3) and carrying out the integrations one finds

$$
\begin{equation*}
U_{\max }=U_{1} \frac{1}{2} y_{0}^{2} \varepsilon I / L^{3} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{1}=\left(1-2 k^{2}\right)^{2} C_{2}+4 k^{2}\left(1-2 k^{2}\right) C_{4}+4 k^{4} C_{6} . \tag{11}
\end{equation*}
$$

and where (see reference [11])

$$
\begin{gathered}
C_{2}=\int_{0}^{\mathrm{K}} \mathrm{cn}^{2}\left(\psi, k^{2}\right) \mathrm{d} \psi=\left(\mathrm{E}-k_{1}^{2} \mathrm{~K}\right) / k^{2}, \\
C_{4}=\int_{0}^{\mathrm{K}} \mathrm{cn}^{4}\left(\psi, k^{2}\right) \mathrm{d} \psi=\left[2\left(2 k^{2}-1\right) C_{2}+k_{1}^{2} \mathrm{~K}\right] /\left(3 k^{2}\right), \\
C_{6}=\int_{0}^{\mathrm{K}} \mathrm{cn}^{6}\left(\psi, k^{2}\right) \mathrm{d} \psi=\left[4\left(2 k^{2}-1\right) C_{4}+3 k_{1}^{2} C_{2}\right] /\left(5 k^{2}\right)
\end{gathered}
$$

and $k_{1}^{2}=1-k^{2}$. By substituting equation (9) into equation (4) and carrying out the integrations, one has [11]

$$
\begin{equation*}
T^{*}=T_{12}^{* 1} y_{0}^{2} \rho L \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{1}^{*}=\left[\mathrm{K}+C_{2}-(2 / k) \arcsin (k)\right] / \mathrm{K} . \tag{13}
\end{equation*}
$$

Therefore $\omega^{2}=\bar{\omega}^{2} \varepsilon I /\left(\rho L^{4}\right)$ with $\bar{\omega}^{2}=U_{1} / T_{1}^{*}$. The minimum value $\bar{\omega}^{2}=3 \cdot 520$ is found for $k^{2}=0 \cdot 40$. When $k^{2}=0$, i.e., by using equation (8), one finds $[2,3,5,6] \bar{\omega}^{2}=3 \cdot 664$. The exact value is $\bar{\omega}^{2}=3 \cdot 516[3,5]$.

2.3. Clamped-free beam carrying a point mass at the free end

The elliptic trial deflection function used is the same as in the last example. The kinematic conditions are again satisfied. The expression for $U_{\max }$ is again given by equations (10) and (11). The value of $T_{\max }$ is obtained by adding the maximum kinetic energy of the point mass, given by $\frac{1}{2} m \omega^{2} y^{2}(L)=\frac{1}{2} m \omega^{2} y_{0}^{2}$, where m is the value of the point mass, to the maximum beam kinetic energy, given by equations (12) and (13). Then the Rayleigh quotient gives

$$
\omega^{2}=\left\{U_{1} /\left[T_{1}^{*}+(m / \rho L)\right]\right\} \varepsilon I /\left(\rho L^{4}\right) \equiv \bar{\omega}^{2} \varepsilon I /\left(\rho L^{4}\right) .
$$

The values of $\bar{\omega}^{2}$ and the optimum parameters k^{2} obtained with the present method are given in Table 2. Other $\bar{\omega}^{2}$ values are given for comparison: the exact ones [12], those obtained by using the Rayleigh method with the exact solution of the clamped-free beam as trial deflection function [12], and those obtained by using the Rayleigh method with the circular expression (8) as trial deflection function.

Table 2
Clamped-free beam with point-mass at the free end: comparison of the $\bar{\omega}^{2}$ values obtained in the various approximations (the optimum parameter values k^{2} of the elliptic method are given in parentheses)

$m / \rho \boldsymbol{L}$	Exact	Circular	Elliptic	Stephen [12]
0.2	2.613	2.671	$2.616(0.31)$	2.621
0.4	2.168	2.204	$2.170(0.27)$	2.181
0.6	1.892	1.919	$1.894(0.25)$	1.907
0.8	1.701	1.722	$1.702(0.24)$	1.716
1.0	1.557	1.575	$1.559(0.23)$	1.573

The author gratefully acknowledges the financial support of the Comisión de Investigación Científica y Técnica (CICYT, project PB87-0007).

Departamento de Fisica, \quad S. Bravo Yuste
Facultad de Ciencias,
Universidad de Extremadura, 06071 Badajoz, Spain
(Received 23 January 1989)

REFERENCES

1. Lord Rayleigh 1894 Theory of Sound, second edition. London: Macmillan; reprinted New York: Dover 1945.
2. J. P. Den Hartog 1956 Mechanical Vibrations, fourth edition. New York: McGraw-Hill; reprinted New York: Dover 1985.
3. W. T. THOMSON 1981 Theory of Vibration with Applications, second edition. Englewood Cliffs, New Jersey: Prentice-Hall.
4. J. B. Marion 1970 Classical Dynamics of Particles and Systems, second edition. New York: Academic Press.
5. M. ROSEAU 1987 Vibrations in Mechanical Systems. Berlin: Springer-Verlag.
6. M. Lalanne, P. Berthier and J. Der Hagopian 1986 Mécanique des vibrations linéaires. Paris: Masson.
7. R. SCHMIDT 1981 Industrial Mathematics 31, 37-46. A variant of the Rayleigh-Ritz method.
8. R. SCHMIDT 1982 Journal of Applied Mechanics 49, 639-640. Estimation of buckling loads and other eigenvalues via a modification of the Rayleigh-Ritz method.
9. R. SCHMIDT 1983 Journal of Engineering Mechanics, 109, 654-657. Technique for estimating natural frequencies.
10. M. Abramowitz and I. A. Stegun 1972 handbook of Mathematical Functions. New York: Dover.
11. P. D. Byrd and M. D. Friedman 1971 Handbook of Elliptic Integrals for Engineers and Scientists. Berlin: Springer-Verlag.
12. N. G. Stephen 1985 Journal of Sound and Vibration 100, 149-150. Comments on "A note on the vibrations of restrained beams and rods with point masses".
