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Abstract-A method of Krylov-Bogoliubov type, which gives the approximate solution in terms of 
Jacobi elliptic functions, is used for the study of perturbed Duffing oscillators with slowly varying 

d 
parameters: --[r(r)z2] + q(s)x + cJ(~)x3 + E/(X, .+, 7) = 0. This method is a natural generaliz- 

ation of the usual Krylov-Bogoliubov method that is only valid when c3(7)x3 is of E order. Two 
examples are given. One is a pure cubic oscillator (cl = 0) with variable mass and linear damping, 
f(x, i) = k, for which a simple accurate approximate solution is found. The other is a pendulum 
with variable length and damping proportional to the velocity for which an approximate analytical 
expression for the rate of variation of the oscillation amplitude is obtained, and successfully 
compared with the numerically calculated result and with that obtained using the normal 
Krylov-Bogoliubov method. 

1. INTRODUCTION 

It is well known that most methods of obtaining approximate solutions of non-linear 
oscillators are only applicable to weak cases: 5 + cl x + E~(x, a) = 0, where cl > 0 and E is 
a small parameter. Much effort has therefore been put into extending these methods to 
other interesting and more general classes of oscillators. References can be found in [l]. The 
author and colleagues have constructed some methods to obtain approximate solutions in 
terms of Jacobi elliptic functions for the class of perturbed Duffing oscillators (strongly 
non-linear oscillators) 

5 + ClX + cjx3 + Ef(X, a) = 0, (1.1) 

where c1 and c3 are arbitrary and E is a small parameter. These methods are a method of 
harmonic balance [2,3], a Galerkin method 143, a weighted mean-square method of 
“cubication” [S] and a Krylov-Bogoliubov (KB) method [2,6,7,8]. The use of elliptic 
functions to solve many problems of non-linear oscillations approximately or exactly is well 
documented in, for example, references [1,9, lo]. Recently Coppola and Rand [ll] have 
implemented another method of KB type. This method, which we will call the elliptic KB 
(EKB) method, is completely equivalent to that expounded by Bravo Yuste and Diaz 
Bejarano [8] when cl = 0 or c3 = 0. When cl # 0 and c3 # 0 both methods lead to the 
same equation for the oscillation amplitude. However the method of Coppola and Rand is 
preferable because the phase equation is suitable for the averaging procedure even for 
cl # 0 and c3 # 0. 

In this paper we shall use a generalization of the EKB method [12] that makes it 
applicable to perturbed Duffing oscillators with slowly varying parameters 

; [/I(r + CI(T)X + c3(r)x3 + ef(x,i,7)= 0, U-2) 

where ,u(r), cl(~), ~~(7) are the slowly varying parameters, E is a small constant parameter 
and 7 = EC is the “slow time’*. Two oscillators will be studied: one is a pure cubic oscillator, 
cl = 0, with variable mass and linear damping,f(x, a) = 1, and the other is a pendulum 
with variable length and damping proportional to the velocity. 
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2. THE EKB METHOD FOR DUFFING OSCILLATORS WITH SLOWLY 
VARYING PARAMETERS 

For ease of reference we shall give here the principal expressions of the EKB method for 
oscillators with slowly varying parameters [12]. The proposed solution of the EKB method 
for the oscillator (1.2) is given by 

(1 

I 
X(C) = A cn w(s)ds - 4, m 

> 
= Acn(#,m)= Acn(4Kcp, m), (2.1) 

0 

with i(t) = -oA sn($, m) dn(+, m) and where the frequency, w, and modulus, m, are 

PO2 = Cl + QA2 = crfl + v), (2.2) 

m = c3A2/[2(c1 + c9A2)] = v/12(1 -I- v)], (2.3) 

with v, the non-linearity factor, given by 

Y = c3AZ/c1 * (2.4) 

The functions A(r) and cp(t) are the solutions of 

k =_~(sn2dn')-~~sn2)-~~sn2-sn4/2)+~(fsndn), (2.5a) 

ken rp&ltfi cn, i 

4KAcn,-h:- > ilKen,, ’ 
(2.5b) 

wheref=f(AcnJ/, -A osn $dnJI, T) and 

(...)-& 4K...dyS, 
I 

(2.6) 
0 

is the operation of averaging over the period 4K of the elliptic functions that appear in 
equations (2.5). We use the notation f;h(a, B) = dF(a, p)/aa. From the transformation 
properties of the Jacobi elliptic functions with respect to their modulus [13], one can deduce 
(see Appendix) that the value of K must be given by 

K = K(m) for O<m< 1, 

K=(l -m)-1'2K(-m/(l-m)) for m<O, 

K=jm""2K(l/m) for m> 1, (2.7) 

where K(z) is the complete elliptic integral of the first kind of modulus z. Equation (2.5b) for 
ri) could be written in a more explicit form as in reference [123, but we shall not give it here 
because it is very complex and not useful for the present work. 

When the oscillator is quasilinear, i.e. when c3 = 0 and therefore m = 0 (and ~.lw” = cl) 
the system (2.5) becomes especially simple 

A = -i$$(~w)+t& :‘/(Acos#, -Ausin$,r)sind$, 
f 

-AosinJI, t)cosJId+, (2.8) 

since cn($,O) = cosJI, sn(+,O) = sin+, dn($,O) = 1, K(0) = x/2, (sin’) = l/2 and 
(sin cos} = 0. These are well-known relations in the normal KB method for oscillators 
with slowly varying parameters [14] but here obtained as a particular case of the general 
expressions (2.5) of the EKB method. When the oscillator is qu~i-pu~~ubic, i.e. when 
cl = 0 and therefore m = l/2 (and pw2 = c3 A2), the system is also simple 

A = - &-- (PC~) + f -& 
I 

:Kf(Acn, - Awsndn, r) sn dn d$, 

4 = - -!--!- 
I 
4Xf(Acn, -Aosndn, r)cnd$, 

pAw4K o 
(2.9) 
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with cn = cn(JI, l/2), sn = sn ($, l/2), dn = dn(JI, l/2) and K = K(1/2) = 1.85407. . In 
these last two cases we have given the averaged expressions in terms of the more usual 
phase 4. 

In the next two sections, we will study two perturbed Duffing oscillators with slowly 
varying parameters using the elliptic KB method. 

3. A LINEAR DAMPED QUASI-PURE-CUBIC OSCILLATOR WITH VARIABLE MASS 

The equation is 

$ [p(r)zi-J + cjx3 + Ei = 0, (3.1) 

i.e. equation (1.2) with cl = 0, c3 constant andf(x, i) = i. For this oscillator the system 
(2.5) is 

A ldp E 
-=---__ 

A 6p dt 3~’ 
$J=o, (3.2a, b) 

since (sn2dn2) = l/3 (for m = l/2) and (sndncn) = 0. Integrating these equations we 
easily find that q5(t) = q%(O) E cJo and 

A(t)= A,(%)ti’exp( -ilidt). (3.3) 

We use the convention that an expression with a subscript zero represents its value at the 
initial time t = 0. The approximate solution is 

x(r) = A(r)cn(Qtt) - 40, l/2), (3.4) 

with Q(t) = 
i 

, 
o(s)ds and pw2 = c3A2. To give an explicit expression for A(t) and n(t) it 

0 

is necessary to know the mass variation law. We shall assume that the law is linear 
~1 = p. + plr = ,co + spl t, where p1 is a constant. Then, from (3.3), we find 

A(t) = Ao(po &J, (3.5) 

where /I = [(2 + pl)/6~,]. Also 

f 

I 
w(s) ds = fi Ao/i: 

I 

I 
i-l(t) E (lo + Ej41t)-8-1’2dt. 

0 0 

If p1 = 1, the approximate solution is given by (3.4) where 

(3.6) 

112 

’ 

and 

Q(t) = i &A0 ln [(PO + W~OI. 

(3.7) 

(3.8) 

If p1 # 1, the approximate solution is also given by (3.4) but now with the amplitude A given 
by (3.5) and 

cl(t) = E(p13_ 1) J;;;(A,h - Ao&). (3.9) 

Figures l-3 show plots of the approximate solution given by the above expressions and 
the numerical solution obtained using a fourth order Runge-Kutta method for different 
oscillators. In all cases the results are very good. Figure 1 is for an oscillator with p1 = 1, 
Fig. 2 with ccl # 1 (pr = 0.2), and Fig. 3 with ccl = -2. This last case shows that the 
oscillation amplitudes do not change when the ratio between the rate of variation of the 
mass and the damping coefficient is k(t)/& = -2, in agreement with equation (3.2a). 
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TIME 

Fig. 1. Approximate (solid line) and ‘numerical (0) solution of the linear damped quasi-pure-cubic 

oscillator with variable mass $(I + O.lt)i] + x3 + O.lf = 0, with initial conditions x(0) = 1 and 

J(0) = 0. The approximate solution is obtained using formulae (3.4). (3.7) and (3.8) since /.~t = 1. The 
numerical solution is obtained using a Runge-Kutta method of fourth order. 

0 10 20 a0 40 50 80 

TIME 

Fig. 2. Approximate (solid line) and numerical (0) solution of the linear damped quasi-pure-cubic 

oscillator with variable mass $ [(l + O.O4t)i] + x3 + 0.21 = 0, with initial conditions x(0) = 2 

and i(O) = 0. The approximate solution is obtained using formulae (3.4), (3.5), and (3.9) since 
p, = 0.2 # 1. The numerical solution is obtained using a Runge-Kutta method of fourth order. 
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Fig. 3. Approximate (solid line) and numerical (0) solution of the linear damped quasi-pure-cubic 
d 

oscillator with variable mass $1 + 0.2t)J] + x3 - 0.1x ’ = 0, with initial conditions x(0) = 1 and 

i(O) = 0. The approximate solution is obtained using formulae (3.4), (3.5) and (3.9) since 
Cl = -2 # 1. The oscillation amplitude is constant because p, = -2 implies B = 0. The numerical 

solution is obtained using a Runge-Kutta method of fourth order. 
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4. PENDULUM WITH LINEAR DAMPING AND VARIABLE LENGTH 
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The oscillator is 

:( MI (r)~ = ,,> + 2,$ [QT)~] + mgl(r)sin8 = 0. 

We follow closely the notation of reference [ 143: 8 is the angle of deviation of the pendulum 
from the vertical, g is the gravitational acceleration, M is the mass of the pendulum, I(r) is 
the slowly varying length and 2n is the coefficient of friction. For not too large oscillations 
we can approximate sin8 by the first two terms of the power series expansion, and then 
equation (4.1) becomes 

$ (Ml'(r);) + mgl(r)B - ;mgl(r)e3 + &f(e, e, ?) = 0, 

where 
sf(e, 8, T) = 2n1(~)B + 2nei(r). (4.3) 

Notice that, unlike the usual methods, it is not necessary to assume that 
mgI(r)e3/6 = O(e): the present method works for large oscillations. The approximate 
solution is given by equation (2.1) where R(t) and cp(t) are determined by integrating 
equations (2.5). For quasilinear or quasi-pure-cubic oscillators (such as the oscillator of 
Section 3) the integration is not too difficult because the averaged expressions do not depend 
on m, i.e. on the amplitude. When cl and c3 are non-zero, however, the integration is very 
difficult because the averaged expressions depend on the amplitude in a non-trivial way. 
This problem also arises in Duffing oscillators with constant parameters [6,7,8]. However, 
as in those references, useful information can be obtained from equations (2.5) directly. For 
examp!e, an analytical expression for the dependence of the relative amplitude variation 
rate, A/A, on the amplitude of the oscillations has been found. For the oscillator (4.2) 
equation (2.5a) has the form 

k ( 3i(r) -I 

A -&)-4Ti;jA =a9 > 
(4.4) 

a/2 = a(cr’)/2 = (sn2dn2) = Eta=) (a2 + l)- 
K(a2) + 62 

- 1 [3a2(1 - a”)], (4.5) 

and 

a2 = a’(A) = A=/(12 - A=). (4.6) 

The function E(02) is the complete elliptic integral of the second kind. The relative 
amplitude variation rate A/A has the property of being independent of the amplitude in 
a linear oscillator with linear damping. This quantity is closely related to the useful 
magnitude ln(A,+I/A,), or logarithmic decrement [la, 17,181, where A, and A,+, are the 
amplitudes of two successive oscillation maxima. 

Equation (4.4) with a = 1 agrees with the expression obtained in the usual KB method 
[14]. In other words: the relative amplitude variation rate given by the EKB method is 
equal to that obtained from the usual KB method (as well as other methods, such as the 
method of multiple scales Cl]), multiplied by the factor a = 2( sn2 dn2). When A + 0, then 
c2 + 0 and a + 1, i.e for small amplitudes the EKB method and the usual methods agree. 
Figure 4 shows the excellent comparison between the analytical results and numerical 
calculations. The usual methods (for which a = 1 for any amplitude) are only suitable for 
small oscillations. 

Finally, some words about the procedure of finding k numerically. First, we calculate 
approximately the amplitudes A evaluating thcmaximum of the function Ix(t)1 obtained by 
means a fourth order Runge-Kutta method. With these values of A(t,), we proceed to find 
the values of the derivative at each time tl. It should be noted that the points of Fig. 4 are 
given for selected amplitudes in order to make the figure simple and illustrative; these 
selected amplitudes are not successive amplitudes A(ti), A(tl+ 1) obtained in the numerical 



676 S. BRAVO YUSTE 

4.0. 

2.5. 

a.0. 

2.b. 

2.0. 

1.6. 

Fig. 4. The pendulum function (k/A)[ -n/Ml(r) - 3j(s)A/41(7)] -’ vs the amplitude A (in radians), 
obtained numerically (0). and analytically, equation (4.4), by the EKB method (solid line). The 
numerical values are obtained by integrating the oscillators (4.1) with M = 1, E = 0.1 and 
r(t) = 0.1 + O.OOlt. Fourth order Runge-Kutta integration procedure for A and a Gregory-Newton 
interpolation technique for A were used in the numerical ca!culation. Different values of the 

damping coefficient, n, were used in order to calculate A with sufficient precision. 

integration. In order to find the numerical derivative we have used the formulae of the 
qregory-Newton interpolation procedure [18]. Clearly the estimates of the derivative 
A will be better when the differences between successive amplitudes A(Q, A(ti+ I) and times 
tl, tl+l are small. For large oscillations with amplitudes close to the limit oscillation 

amplitude e1 = ,/& this favorable situation only occurs when the friction coefficient n is 
small. So, for the four points closest to e1 in Fig. 4, the amplitudes were evaluated solving 
numerically the oscillator (4.1) with A4 = 1, E = 0.1, I(t) = 0.1 + 10m3t, and a value of the 
friction coefficient very small: n = 10 -lo. For not so large amplitudes it is not necessary to 
use so small a value of n. So, to evaluate the first seven points on Fig. 4 we used n = 10 -‘, 
for the following four points n = lo-’ and for the following three points n = IO-*. 

5. CONCLUSIONS 

In this paper we have used a version of a Krylov-Bogoliubov method designed to solve 

perturbed Duffing oscillators with slowly varying parameters, ; CPc(?)al + CI(Tb+ 

c3(z)x3 + &f(x, 1, T) = 0, where the approximate solution is given in terms of Jacobi 
elliptic functions. For quasilinear or quasi-pure-cubic oscillators the elliptic modulus of the 
proposed solution is not time-dependent and the expressions for the time derivative of the 
amplitude and phase are simpler than for the general oscillator. We thus obtained a simple 
and accurate approximate solution for a linear damped quasi-pure-cubic oscillator with 
variable mass. But if c1 # 0 and c3 # 0, the elliptic function modulus is in general time- 
dependent, and it is then not possible to integrate the EKB equations of the amplitude and 
phase. Even in these cases however, one can obtain useful information from these equations, 
especially from the amplitude equation. We have shown this in the present paper by the 
example of a pendulum of variable length and linear damping, deriving a very good 
expression for the influence of the oscillation amplitude on the amplitude variation rate. 
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APPENDIX 

In this Appendix we will show that if the period of the Jacobi elliptic functions of (2.5) is denoted by 4K, then 
K must be given by (2.7). We shall use the cn(+, m) function (we would find the same results if we used other elliptic 
functions). It is well known Cl33 that, when 0 Q m C 1, the period ofcn($, m) is 4K(m), and then the justification of 
(2.7a) is obvious. The proof of (2.7b) starts from the following relation [13] 

MS, m) = cc&M,, d), (A4 
where a: = 1 - u*, and u2 = -m/(1 - m). Notice that if m is negative then u2 lies between xero and one. If 4K is 

the period of cn($, m), then cn($ + 4K.m) = cn($,m) or, equivalently, using (A.l), cd - + 
(: :*m) 

=cd(#/u,, m). As the period of cd(+, a’) is 4K(u2) then 4K/u, = SK@‘), i.e. we find that K must be given by 
equation (2.7b) when m < 0. The proof of (2.7~) is similar. We start from the relation [I33 

cn(S, m) = dn(lL/rt, 9% (A.2) 

where q* = l/m. Notice that if m > 1 then g2 lies between zero and one. From (A.2) if cn($ + 4K, m) = cn($, m) 

’ thendn(:+y,q ) = dn(+/q. n*). But the period of dn(+, s*) is 2K(n*) so that 4K/g = 2K(qz), i.e. we find 

that K must be given by equation (2.7~) when m > 1. 


