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Abstract-A new method is given of “cubication” of autonomous non-linear oscillators (NLO) 
of the class !i + crx + cjx3 + s[g(x) +f(x)i] = 0, i.e. of constructing the cubic oscillator 
i + I*f + c:x + c:x’ = 0 from the NLO. The solution, limit cycles, bifurcations, fixed points, and 
stability of this NLO are approached by studying its associated cubic oscillator which is qua1 at 
least in the largest harmonics (principle of harmonic balance) and by assuming as a first approxima- 
tion a solution for the NLO problem in terms of Jacobian elliptic functions. When cs = 0, the elliptic 
functions become circular functions and the present method reduces to the well-studied harmonic- 
balance method of linearixation. The present method is equivalent to a third-order Chebyshev 
expansion of the NLO force if this is conservative. For a dissipative NLO, it gives the position and 
features of limit cycles and bifurcations. 

1. INTRODUCTION 

Most of the approximate quantitative methods used for solving the non-linear oscillator 

(NLO) 
2 + F(x,i) = 0 (1) 

are applicable only if this oscillator is of the class 

2 + cix + &h(X,2) = 0 (2) 

with cl > 0 and E a small parameter. Some of these methods are termed linearization 
methods, because they obtain the linear oscillator 

2 + c:x + 1*3 = 0 (3) 

from equation (2) with suitable coefficients, and then the solution of this equation is taken as 
an approximation to that of equation (2). For example, one method of this kind is the 
Krylov-Bogoliubov method in the first appproximation [l, Chapter XII]. Another method 
Cl-33 uses the principle of harmonic balance for obtaining equation (3) from equation (2); it 
is this method we shall call the linearization method. 

Although the class of oscillators (2) is very useful, it is also limited as many important 
NLOs do not belong to it. The equation of the pendulum, for oscillations that are not very 
small, is a good example. A wider class of NLO is 

.% + Cl x + cjx3 + &h(X, a) = 0. (4) 

which, when c3 = O(e), is equation (2). 
In previous publications the author and his colleagues have presented some techniques 

for solving equation (4): a Krylov-Bogoliubov method that uses Jacobian elliptic functions 
as generating solutions [4], a Krylov-Bogoliubov method and a harmonic-balance method 
when c i = 0 [5], another harmonic-balance method when h(x, z?) =f(x).? [6], and a cubi- 
cation technique when h(x,g) = g(x) [7]. This paper looks at a method in which the 
solution of equation (4) with h(x,~Z) = g(x) +f(x)n (where g(x) and f(x) are analytic 
functions in the oscillation interval), i.e. the solution of the class of oscillators 

2 + cix + cjx3 + ls[g(x) +f(x)2] = 0 (5) 

is approximated by the solution of the cubic oscillator 

2 + c:x + CZX’ + 1*2 = 0 (6) 

347 



348 S. B. YUSTE 

where CT, cf, and rl* are obtained using the principle of harmonic balance. This is the 
cubication method of the present work. Comparison will be made with numerical integra- 
tion and with the results given by other authors. 

The linearization method that uses the principle of harmonic balance is known to be 
suitable for ascertaining the limit cycles and topological configuration of the solutions of 
NLOs of type (2). We will show that the cubication method proposed here also has these 
desirable properties for NLOs of type (5). 

2. CUBICATION USING THE PRINCIPLE OF HARMONIC BALANCE 

One seeks a cubic oscillator 

2 + F*(x, a) = 0 
with 

F*(x,.$ = c:x + CTX’ + 1*1 

so that its solution is a good approximation to the solution of equation (1) with 

F(x,i)= CIX + c3x3 + E[g(X)+f(X)i]. (7) 

If in equation (5) we set E = 0, the resulting equation (generating equation) has the solution 
(generating solution) in terms of Jacobian elliptic functions, 

x(t) = A cn(ot + 0, j?) = A cos 2 (8) 
where 

and 
z = am(ot + ~9, j?) E am (I(/, p2) 

02=c1 +c3A2 

p2 =(c3A2/2)/(c1 + c3A2). 

Assuming that the solution of equation (5) is given as a first approximation by equation (8), 
the parameters c:, cf, and 1* of equation (6) are obtained by equating 

F(x, a) = F(A cos z, A c6s z) E F 
and 

F*(x,1) = F*(Acosz, A&z) E F* 

at least in their largest harmonics (principle of harmonic balance). The term A c6s z is equal 
to 

AoCdcn(& ~*YWl = - Aosn(J/, p’)dn(ll/, p2) = - wAsinz AZ 

with sn($, p2) = sinz and dn($, p2) = AZ. Writing h.o.h. for higher-order harmonics, as 

F = alcosz + a3cos3z + bIsinz + h.o.h. (9) 

F* = a1 cos z + a3 cos 32 + /$ sin z + h.o.h. (10) 
with 

al = c:A + &:A3 
a3 = ic:A” 

PI = - L*wAy, 
where 

y1 = (l/n) 
I 

“Azsin2zdz 
0 

and equating the coefficients of the largest harmonics in equations (9) and (lo), one obtains 

c: = (aI - 3a3)/A (11) 

cf = 4a3 /A3 (12) 

A+ = - WbAy,). (13) 
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From these last three equations, one sees that four definite integrals must be calculated to 
obtain c:, c:, and i.*: 

a, = (l/n) 
s 

*=F(Acosz, - oAsinzAz)coszdz = i 
0 s 

:‘Fcoszdz 

F cos 32 dz 

b ’ 
s 

2n 

I=- Fsinzdz 
= 0 

(14) 

y1 =1 I 
2n 

sin* z AZ dz. (15) 
= 0 

Substituting the force of equation (7) into equation (14) one has 

s 

2x 

b 1 = - (&WA/X) f(A cos z, - WA sin z AZ) sin* z AZ dz. (16) 
0 

Notice that in equations (9) and (lo), although the coefficients of cos z and cos 32 are not 
negligible in general, the other harmonics are of O(E). 

3. APPLICATION OF THE METHOD 

3.1. Conservative oscillators 
For the conservative NLO, 

%+F(x)=O 

one obtains, using equations (11) and (12), the associated oscillator 

with 
2 + F*(x) = 0 

F*(x) = c:x + c;x3. 

(17) 

The solution of this last equation is the present method’s approximate solution to 
equation (17). It is given by equation (8) with 

W2 = c: + c:A* (18) 

p* = (c: A*/~)/(c: + c: A*). (19) 

It is known that the expression F*(x) = c:x obtained by the linearization method is 
equal to the Chebyshev polynomial expansion of F(x) in [- A, A] truncated after the linear 
term. Also, as is easy to prove, the expression F*(x) = c:x + czx’ obtained by the present 
method of cubication is equal to the Chebyshev polynomial expansion of F(x) in [- A, A] 
truncated after the cubic term. Therefore, we will not extend the discussion about this class 
of oscillators. 

3.2. Dissipative oscillators: limit cycles 
In Section 2 the principle of harmonic balance was used to obtain the cubic oscillator (6) 

from the oscillator under study, equation (5). The transient of this oscillator is then 
approximated by the transient of the cubic oscillator. But transients will not be studied here: 
we will focus on where harmonic balance isespecially useful, in the search and study of limit 
cycles (also called closed orbits). 

From equation (6) one sees that there is a limit cycle when L* = 0, i.e. by equation (la), 
when b 1 = 0, given by 

x(t) = A,cn(wt + 8,~~) = A,cn($,p*) = A,COSZ 

a(r) = - wA,sn($, p*) dn(#,p*) = - wA,sin z AZ (20) 

where A, is the amplitude and w and p2 are given by equations (18) and (19). 
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Let us now define some useful quantities: the non-linearity factor v = cj A2/cf, the total 
energy of oscillation En = CT A2 + cf A4/2 = c: (1 + v/2), maximum or minimum potential 
V,,, = (c:)~/(~c:), and the position x, of this maximum or minimum, xi = - c:/c:. 

In terms of the non-linearity factor v, the frequency and parameter of equations (18) and 
(19) are 

fB2 = cT(l + v) (21) 

P2 = v/[2(1 + v)]. (22) 

According to the value of the parameter p2, the limit cycle (20) can be expressed in terms 
of Jacobian elliptic functions in three ways: 

(i) 0 i; p2 c 1. This is the case when 0 5 v c co, i.e. when c: > 0, c: > 0 (therefore, 
0 s g2 c l/2) and when v i; - 2, i.e. when CT c 0, c: > 0 and En 2 0 (therefore, 
I/2 s p2 s 1). The limit cycle is given by 

x = A, cn ($:, p2) (23) 

i = - A,osn(JI,p’)dn($,p’). (24) 

An expression that will be needed below is 

dz = dn(Jl,p2)dll/. 

(ii) p’ s 0. This is the case when -l~;v~O,i.e.whenc~>O,c~<OandEncV,.We 
distinguish this case since it is not usual although it would be possible) to work with elliptic 
function parameters outside the interval [O, 11. For example, tables of elliptic functions are 
given only within this interval. When p2 5 0 we use the negative parameter transformation 
[S], and thus 

cosz = cd&a2) E cd 

sin2 = rrisd(+,,e*) = grsd 

AZ = nd(#,,a2) E nd 

dz = o1 nd d$, (25) 

where a: = 1 - tr*, +* = $1~~ and a2 = - p2/(1 - 11’) or 

c* = - v/(2 + v). (26) 

Of course, now the parameter a* of the elliptic functions satisfies 0 5 c2 I 1. From 
equations (20) the limit cycle is then given by 

x=A,cd (27) 

i= - cl A,w sd nd. (28) 

(iii) $ L 1. This is the case when CT < 0, c$ > 0 and En 5 0, i.e.’ when - 2 S v 5 - 1. 
To have the elliptic function parameter inside the interval [0, 11, we use the reciprocal 
parameter transformation [S) and thus 

cosz = dn(+,, q2) = dn 

sin2 = ~sn(~~, q2) zz qsn 

AZ = cn($,, q2) z cn 

dz = qcndrj, (29) 

where +,, = & and q2 = l/p2 or 

tf * = 2fl f v)/v (30) 

and now the parameter tf2 of the elliptic functions lies between zero and one. Then from 
equations (20) the liiit cycle is given by 

x=A,dn (31) 

i5= - qA,osncn. (32) 
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4. THE VAN DER POL-DUFFING OSCILLATOR 

The first example is the van der Pol-Duffing oscillator 

i + clx + cjx3 = &(a - /3x2).-i. (33) 

This interesting equation is a simple example of a differential equation with local and global 
bifurcations of codimension greater than one. Moreover, this NLO appears in the study of 
some problems of practical interest, such as flow-induced oscillations [9] or convection in 
diffusive systems [lo]. 

A detailed analysis of this equation can be found in refs [l 1, 123, which used differential 
dynamics, and also in ref. [lo] which uses the principle of energy balance. 

From equations (11) and (12) one gets c: = cl and c: = c3. From equations (33) and (16) 

b1 = - (EwA/x) 
I 

‘“(a - /L4’cos2 z)sin* z Azdz = - (swA/x)(aQ - PTA*) 
0 

and from equation (15) 

where 

and 

YI = Qln 

s 

2n 

Q = sin* z AZ dz 
0 

f 

2% 

T= sin* z cos* z AZ dz. 
0 

Then from equation (13) 
1* = &[a - j?(T/Q)A*]. (34) 

When one evaluates this expression three possibilities appear: 

(i) The oscillator is hard (cr > 0, c3 > 0) or soft-hard (cr < 0, c3 > 0). Then 0 < p2 < 1 
(v > 0 or v < - 2) and (e.g. ref. [ 133) 

Q = JIK sd* dn* d$ = (4/3~*)[(2~* - l)E + p:K] 

s 

4K 

T= sn* cn* dn*dl/l = (4/15p4)[2(p4 + p:)E + &(p* - 2)K] 
0 

where c(: = 1 - p*, K = K(p*) is the complete elliptic integral of the first kind, and 
E = E(p*) is the complete elliptic integral of the second kind. Integration is over the period 
of x(t), which, from equation (8), is 4K(p*). 

(ii) The oscillator is soft (cl > 0, c3 > 0, En < If,,,). Therefore, p2 < 0 (- 1 < v < 0) and 
(e.g. ref. [ 133 ) 

4R 

Q = 
I 

a: sn* nd* dJld = (4/3 o%J-(1 + a2)E - u:K] 
0 

I 

4K 

T= a: sd* cd* nd* dll/# = (4/15 a401)[2(a4 + a:)E + a;(~’ - 2)K] 
0 

where K = K(u*) and E = E(a’). The integration is over the period of x(r), which, from 
equation (25), is 4K(a2). 

(iii) The oscillator is soft-hard (cr < 0, c3 > 0 with En < 0). Therefore, cc2 > 1 
(-2 < v < - 1) and (e.g. ref. [13]) 

Q = {;' q3 sn* cn*dl//,, = (2/3q)[(2 - q*)E - 2q:K] 

I 

2X 

T= q3dn2 sn* cn* de,, = (2/15q)[2(q4 + r&E + qf(v2 - 2)K] 
0 

where q: - 1 - q*, K = K(q*) and E = E(q’). The integration is over the period of x(t), 
which, from equation (29), is 2K(q*). 

&II 27:3-c 
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In short, the parameters CT, c* and i.* for each kind (hard, soft and soft-hard) of van der 3 
Pol-Duffing oscillator (33) and for any energy, have been obtained as long as the motion is 
oscillatory. 

The limit cycles are found by solving J.* = 0. This equation, by equations (34), (21) and 
(18), is equivalent to the system 

A’ = M.NQWWl WI 
A2 = (c:/c:)v E IV. (W 

Each solution (Af , v,) defines a limit cycle with its frequency o given by equation (21), and 
its parameter, depending on the value of vs, given by equation (22), (26), or (30). An 
important and useful feature of the system (35) is that the dissipative and conservative terms, 
equations (35a) and (35b), are considered separately. 

In equations (35) there are two independent parameters: a/j? and r. This method of 
cubication is well illustrated by studying how the limit cycles are affected by the variation of 
r for fixed a//?. In the following r/B is unity. 

4.1. Discussion of results 
Figure 1 shows the graphical solution of system (35). We have plotted what we call the 

“dissipative” curve or curve D (35a) and some “conservative” curves or curves C (35b). The 
curve D represents all the limit cycles that the dissipative force can generate in cubic 
oscillators; the point (Af , v,) where curve C cuts curve D defines the cycle actually 
generated. 

A careful examination of Fig. 1 is instructive. First, one notices that curve D tends 
asymptotically to 

A: = (5/3){2[E(l/2)/K(l/2)] - 1} = 3.6474. . . (36) 

when v --, rt co, since then p2 + l/2 and equation (35a) becomes equation (36). When the 
oscillator is purely cubic, c1 = CT = 0, r = 0 and curve C cuts curve D at v = f co. 
Therefore, the limit cycle is given by equations (23) and (24) with Af = AL, p2 = l/2, and 
fB2 = c3A2,. This result was obtained in ref. [l]. For the more linear hard oscillators 
(ci > 0, c3 > 0), T increases, Af increases, and v, decreases. So, when I = 1, the limit cycle is 
given by equations (23) and (24) with v, = Af = 3.745 and, therefore, with p2 = 0.395 and 
o2 = 4.745~:. For the linear oscillator c3 = 0, r = CO, and then v, = 0, Af = 4, p2 = 0 and 
o2 = CT. It is not surprising that this should be the well-known result given by the 

Non-linearity factor 

Fig. 1. Graphical solution of system (35): (-I -) D-curve for a dissipative force of van der Pol type 
with a//3 = 1; C-curve for the conservative force cIx + cax3 with r = 1 labelled “a”; the same with 
r = rz = - 1.329 labelled “b” the same with r = - 1 l/10 labelled “c”; C-curve for the conservative 

force sinh x labelled “d”: C-curve for the conservative force sin x labelled “e”. 
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linearization method because cn(#, p2 = O).= cos I,&. In other words, the linearization 
method using harmonic balance is a particular case of the present method. 

For soft oscillators (ci > 0, c3 c 0) there is periodic motion, i.e. a limit cycle, if 
- 1 < v I; 0, but not if v s - 1. Also it is well known that a x,,, (xk = - r) are saddle 
points. As can be seen in Fig. 1,5 z AZ 2 4 when - 1 I v s 0, and therefore the limit cycle 
given by equations (27) and (28) does not reach the saddle points if - co < r < - 5. When 
r = - 5, the limit cycle becomes a separatrix, i.e. a homoclinic cycle. For r 2 - 5 there are 
no periodic solutions. 

For soft-hard oscillators (ct c 0, c3 > 0, v s - 1) there are three singular points: a saddle 
point at x = 0 and two foci at + x,. For brevity we will always say “foci”, but these 
singular points are really nodes if &a + @r/~~)~ + 8ci > 0. One observes in Fig. 1 that 
curve C with r < r2 = - 1.329 does not cut curve D in the region with v < - 1, i.e. soft-hard 
oscillators with r c r2 have no limit cycles. When r = r2, curve C touches curve D at 
a point-coalescence point-with coordinates Af I= 2.877, v, zz v, = - 2.164. Therefore, 
the limit cycle given by equations (23) and (24) with the above amplitude, with 
a2 = - 1.164cr and $ = 0.930, is a semistable iimit cyde. When r = r4 =_ - 5/4 is reached, 
there is a cycle with v, < - 2 and another at v, = - 2 with AZ = 5/2, w2 = - cl and 
fi2 = r#J = 1. This last is a separatrix (a homoclinic orbit: double-saddle loops). In the 
following, we use the term internals (externals) for limit cycles with v, > - 2 (v, < - 2). For 
r > r4 there is one external cycle, given by equations (23) and (24), with v, c - 2 and 
Af > 5/2, and two internal ones, given by equations (31) and (32), with - 2 < v, c - 1 and 
1 c A: c 5/2. For the right internal cycle A, = + (Az)“2, and for the Ieft internal cycle 
A s = - (At)“2. For example, for ci = - 11, c3 = 10, ac = 8 = 1, one has r = - ll/lO > r4 
and there is one external cycle at v, = - 3.019, AS = 3.321 with cc2 = 22.213 and 

P2 = 0.748, and two internal cycles at v, = - 1.781, Af = 1.959 with cut = 8.890, q2 = 0.877 
and A s = + (1.959)“’ for one and A, = - (l.959)‘12 for the other. Figure 2 shows the above 
limit cycles and the limit cycles calculated numerically for E = 0.5. Even for such a large E the 
present method gives good results. Notice that the linearization method is not even 
applicable. One observes in Fig. 1 that, if r approaches rl = - 1, then Af and v, approach 
one, i.e. the internal limit cycles contract onto the foci. When r = rl, the internal cycles 
disappear into the foci that then change their stability character, For r > - 1, only the 
external cycle remains. This is known in differential dynamics as Hopf bifurcation. 

Fig. 2. Numericat and approximate analyticat limit cycles for the example oscillator (33) with 
Cl = - 11, c3 = t0, a = fi = 1 and e = 0.5: (- t -), numerical limit cycln; (---), analytical limit 

cycles. 
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We have already seen how the parameter r affects the limit cycle configurations for a fixed 
a//3 = 1. We will now give some results for a//) > 0. From equation (35a), for a given v, 
a//I # 1 only has the effect of stretching the curve D in Fig. 1 by the factor a//X But the 
homoclinic cycle, the coalescence cycle, the double-saddle loops, and the Hopf bifurcation 
occur for v = -1,v=2.164,v= -2,andv= - 1, respectively, for any value of a//?. Then it 
is easy to deduce that the homoclinic cycle occurs when a//? = - r/S, the coalescence when 

a//B = - (2.164/2.877)r, the double-saddle loops when a/b = - 4r/5, and the Hopf bifurca- 
tion when a/j = - r. These results coincide with those obtained using the methods of 
differential dynamics [14]. 

Finally let us consider the stability of the limit cycles and the singular points. For each 
oscillator, the function I*(A) is given by equation (34). If at 1* = 0 and A = A, dl*/dA 
happens to be positive, the limit cycle is unstable (U), and if dl*/dA is negative it is stable 
(S). In Fig. 3, we plot L* vs A for the oscillator with cl = - 11, c3 = 10, a = fl= 1 and E = 1. 
Internal cycles are seen to be U and the external cycle is S (the foci are S). In general if E > 0 
and CT < 0, the limit cycles with v < v, are S, with v, c v < - 1 are U, the foci at v = - 1 are 
S if r < - 1 and U if r > - 1, and (x, 2) = (0,O) is a saddle point. For E > 0 and CT > 0, the 
limit cycle is S for all v > - 1 and the focus at (x, i) = (0,O) is U. Finally, if E < 0, the sign of 
A* changes, and therefore the stability of all the above limit cycles and foci are reversed, i.e. 
U+Sand S-+U. 

5. TWO OTHER EXAMPLES 

The examples are: 

2 + sinhx = &(a - /Ix*)2 (37) 

2 + sinx = &(a - jIx*)z?. (38) 

As before we will set, without loss of generality, a = /I = 1. For oscillator (37), by equations 
(11) and (12), one gets [lS] 

c:(A) = 2CJ1(A) - 313(41/A 
c:(A) = 813(A)/A3 

where I,(A) = (- i)“J,(iA) is a modified Bessel function. Using equation (13), one finds that 
l*(A) is given by equation (34) again, since the dissipative force is the same in all the 
examples. That is, the dissipative curve given by equation (35a) is the same D-curve of the 
van der Pol-Duffing example of Section 4. The C-curve given by equation (35b) is plotted in 
Fig. 1. There is only one intersection: Af = 3.867 and v, = 0.854, defining the limit cycle 
given by equations (23) and (24) with o* = 1.772 and p2 = 0.230 since cT(A,) = 0.956. 

I.5 

Amplitude 

Fig. 3. A plot of d* vs amplitude for the example oscillator (33) with cI = - 11, cl = 10, a = /3 = 1 
and 8 = 1. The U-limit cycles are unstable and the S-limit cycle is stable. 
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-2 

-2 -I 0 I 2 

Fig. 4. Numerical and approximate analytical limit ~cles for the example oscillators (37) and (38) 
with K = j = 1 and e = 0.1: (- * -), (- + -) numerical limit cycle for the conservative force sinh x, 
sin x, respectively; (-A -), (- B-) analytical limit cycle for the conservative force sinh x, sin x, 

respectively; (-L-) analytical limit cycle of 2 + x = 0.1 (1 - x2)2?. 

35s 

For oscillator (38) we find [lS] 

c?(A) = 2CJI(A) + 3J3(4l/A (39) 

c:(A) = - 8J3(A)/A3 W) 

where Jr and 5s are Bessel functions. As before I*(A) is given by equation (34). The C-curve 
is also plotted in Fig. 1. The intersection point Af = 4.236, v, = - 0.5605 defines the limit 
cycle given by equations (27) and (28), with a2 = 0.422 and rr2 = 0.389 since CT (A,) = 0.959. 

In Fig. 4, we compare the above two limit cycles with the limit cycles evaluated 
numerically for E = 0.1. As a reference, the limit cycle of 2 + x = O.l(l - x”)i is also 
plotted. 

Finally, for oscillator (38), it is easy to give an estimate of the value of a//? where the limit 
cycle reaches the saddle points and becomes a separatrix (homoclinic cycle). This happens 
when v = - 1, i.e. when c$(A)A2/c:(A) = -1, i.e. from equations (39) and (40) when 
J1(A) = J3(A), i.e. for A = 3.054. But for a/j = 1 and v = - 1, one has Q/T = Af = 5. 
Therefore, from equation (35a) one concludes that there is no oscillatory motion when 
a//I 2 (3.054)2/5 z 1.87. Numerically one obtains a/j? > z 1.89 for E = 0.1. 

6. CONCLUSIONS 

A new method for the approximate study of a wide class of NLO given by equation (5) 
has been presented. A cubic oscillator associated with the NLO problem is constructed in 
such a way that both oscillators are equal in at least their largest harmonics, assuming 
equation (8) as the solution in a first approximation. An approximate knowledge of the 
NLO problem was reached studying the associated cubic oscillator. As was shown with 
some examples, the method is suitable for studying the positions and characteristics of limit 
cycles and bifurcations, in other words, for studying the essential part of the NLO 
problem-the topological configuration of its solutions-while sacrificing some other 
secondary facts (the presence of higher harmonics in the stationary solution, for example). 
These properties are not at all unexpected: the situation is very similar to that in the 
linearization methods for NLOs of type (2), i.e. for quasilinear oscillators, see p. 74 
of ref. [2]. 
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