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Radial distribution functions for a multicomponent system of sticky
hard spheres
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Mariano López de Haroc)

Centro de Investigacio´n en Energı´a, U.N.A.M., Apartado Postal 34, Temixco, Mor. 62580, Mexico

~Received 8 June 1998; accepted 24 July 1998!

A method to obtain~approximate! analytical expressions for the radial distribution functions and
structure factors in a multicomponent system of sticky hard spheres is introduced. In its simplest
implementation, the method yields the Percus–Yevick approximation. In the next order, only
contact values of the cavity functions and the isothermal compressibility are required. Some
tentative strategies to determine the input values are discussed. Illustrative examples following these
strategies, in which the radial distribution functions and structure factors are computed, are also
presented. ©1998 American Institute of Physics.@S0021-9606~98!52240-4#
m
e

m
e

ur

u
e

tw

th

by

r
se
re

a

ac
s
t
o
a

ix
o

ik

n
s
a

sed
-
n
po-
this
of
o
as
ap-

e
eps
put

f
each
pair,
ms

uter
lar
es-

on.
nd

l

are-
I. INTRODUCTION

The knowledge and understanding of the thermodyna
and structural properties of model systems play a key rol
the modern developments of liquid state theory.1 It is unfor-
tunate, however, that very few such models have been a
nable to analytical solution and therefore progress has b
relatively slow in this area despite a vast amount of literat
devoted to the subject. Other than for hard-sphere~HS! sys-
tems, the results are rather scarce in the case of pure fl
and the situation is even worse in the case of fluid mixtur
These latter systems pose major difficulties to the use
either computer simulation or integral equation methods,
of the most important tools of liquid state theoreticians.2 A
model which has received a lot of attention recently is
sticky-hard-sphere~SHS! fluid introduced by Baxter in 1968
~Ref. 3! and later extended to multicomponent mixtures
Perram and Smith4 and independently by Barboy.5 In this
model, the molecular interaction may be defined via squa
well potentials of infinite depth and vanishing width. The
potentials embody the two essential characteristics of
molecular interactions, namely, a harsh repulsion and an
tractive part. In spite of their known shortcomings,6 an im-
portant feature of SHS systems is that they allow for ex
solution of the Ornstein–Zernike equation in the Percu
Yevick ~PY! approximation.3,4 Furthermore, they are though
to be appropriate for describing structural properties of c
loidal systems, micelles, and microemulsions as well
some aspects of gas–liquid equilibrium, ionic fluids and m
tures, solvent mediated forces, adsorption phenomena, p
disperse systems, and fluids containing chainl
molecules.7–9

In previous work10,11 we developed a rational functio
approximation~RFA! method to find analytical expression
for the radial distribution function of a pure HS fluid and

a!Electronic mail: andres@unexs.es
b!Electronic mail: santos@unexs.es
c!Electronic mail: malopez@servidor.unam.mx
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multicomponent HS mixture. The same approach was u
in a one-component SHS fluid12,13 as well as for the square
well fluid.14 It is the major aim of this paper to carry out a
extension of the RFA method to the case of a multicom
nent mixture of sticky hard spheres. As discussed below,
approach will not only allow us to rederive the results
Perram and Smith4 in the PY approximation, but also to g
beyond such an approximation in what one may refer to
an approach similar to the generalized mean spherical
proximation ~GMSA! for this system, which to our knowl-
edge has not been derived up to now.

The organization of the paper is as follows. In Sec. II w
describe the SHS mixture and give a brief outline of the st
involved in the RFA method. The method requires as in
the contact values of the cavity functions,yi j (s i j ), and the
isothermal susceptibilityx. In terms of these quantities, o
the number densities and the diameters of the spheres of
species, and of the adhesiveness parameters of each
explicit expressions are provided for the Laplace transfor
of rgi j (r ) and for the structure factorsSi j (q). In Sec. III and
in the absence of a reliable equation of state and comp
simulation results for SHS mixtures, we adopt a particu
strategy to illustrate the possible use of our results. In
sence, we present two alternative routes to estimateyi j (s i j )
andx and compare our approach with the PY approximati
The paper is closed in Sec. IV with further discussion a
some concluding remarks.

II. RFA METHOD FOR SHS: DEFINITIONS AND BASIC
REQUIREMENTS

Let us consider anN-component mixture of spherica
particles with a number densityr i of componenti. The molar
fraction of speciesi is xi5r i /r, where r5( i 51

N r i is the
total number density, while its diameter iss i . Let us also
assume that the particles interact according to the squ
well potential
4 © 1998 American Institute of Physics
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w i j ~r !5H `, r .s i j

2e i j , s i j ,r ,Ri j

0, r .Ri j .
~2.1!

Heres i j 5(s i1s j )/2 is the distance between the centers
a sphere of speciesi and a sphere of speciesj at contact,e i j

is the square-well depth andRi j 2s i j indicates the well
width. We now take the SHS limit,3 namely

Ri j→s i j ,e i j→`,t i j [
1

12

s i j

Ri j 2s i j
e2e i j /kBT5finite, ~2.2!

where thet i j are monotonically increasing functions of th
temperatureT and their inverses measure the degree of ‘‘a
hesiveness’’ of the interacting spheresi and j. The virial
equation of state for the SHS mixture is then given by

Z[
p

rkBT
511

1

6
r(

i 51

N

(
j 51

N

xixjE dr ry i j ~r !
d

dr
e2w i j ~r !/kBT

511
2p

3
r(

i 51

N

(
j 51

N

xixjs i j
3 yi j ~s i j !

3F12
1

12t i j
S 31

wi j

yi j ~s i j !
D G , ~2.3!

where p is the pressure,kB is the Boltzmann constant
yi j (r )[gi j (r )ew i j (r )/kBT is the cavity function,gi j (r ) being
the usual pair distribution function, and wi j

[ limRi j→s i j
@dyi j (r )/dr#s

i j
1. Since yi j (r ) must be continu-

ous, it follows that

gi j ~r !5yi j ~r !Fu~r 2s i j !1
s i j

12t i j
d1~r 2s i j !G . ~2.4!

Further, the energy equation of state for this syst
reads

uex[
1

2
r(

i 51

N

(
j 51

N

xixjE dryi j ~r !w i j ~r !e2w i j ~r !/kBT

52
p

6
r(

i 51

N

(
j 51

N

xixje i j

s i j
3

t i j
yi j ~s i j !, ~2.5!

whereuex is the excess internal energy per particle. Anoth
usual route to the thermodynamic properties is through
isothermal susceptibilityx,

x215
1

kBT

]p

]r
5

1

kBT (
i 51

N

xi

]p

]r i

512r(
i 51

N

(
j 51

N

xixj c̃i j ~0!, ~2.6!

wherec̃i j (q) is the Fourier transform of the direct correlatio
function, which is defined by the Ornstein–Zernike equat

h̃i j ~q!5 c̃i j ~q!1 (
k51

N

rkh̃ik~q!c̃k j~q!, ~2.7!

with

h̃i j ~q!5E dre2 iq–rhi j ~r !, ~2.8!
f

-

r
e

n

wherehi j (r )[gi j (r )21 is the total correlation function.
We are now in a position to carry out the RFA meth

for the multicomponent SHS mixture. As in previous work11

we define the Laplace transform

Gi j ~s!5E
0

`

dr e2srrgi j ~r !. ~2.9!

The conditionyi j (s i j )5finite translates into the following
large-s behavior ofGi j (s),

es i j sGi j ~s!5s i j
2 yi j ~s i j !S 1

12t i j
1s i j

21s21D1O ~s22!.

~2.10!

On the other hand, the conditionx215finite gives informa-
tion about the small-s behavior, i.e.,

s2Gi j ~s!511Hi j
~0!s21Hi j

~1!s31¯ ~2.11!

with Hi j
(0) , Hi j

(1)5finite and

Hi j
~n![E

0

`

dr~2r !nrhi j ~r !. ~2.12!

The RFA proposal for HS mixtures11 can be easily ex-
tended to the SHS model. In the former case,es i j sGi j (s)
;s21 for larges, while now es i j sGi j (s);s0. Of course, in
the special caset i j→` one must recover the pure HS cas
Consequently, our approximation consists of writing

Gi j ~s!5
e2s i j s

2ps2 ~L~s!•@~11as!12A~s!#21! i j , ~2.13!

with 1 the identity matrix and

Li j ~s!5Li j
~0!1Li j

~1!s1Li j
~2!s21Li j

~3!s3, ~2.14!

Ai j ~s!5r i@f2~s is!s i
3Li j

~0!1f1~s is!s i
2Li j

~1!

1f0~s is!s iL i j
~2!2e2s i sLi j

~3!#, ~2.15!

where

fn~x![x2~n11!S (
m50

n
~2x!m

m!
2e2xD ~2.16!

are the modified incomplete gamma functions. We note t
by construction, Eq.~2.13! complies with the requiremen
lims→` es i j sGi j (s)5finite. Further, in view of Eq.~2.11!,
the coefficients ofs0 ands in the power series expansion o
s2Gi j (s) must be 1 and 0, respectively. This yields 2N2 con-
ditions that allow us to expressL(0) andL(1) in terms ofL(2),
L(3), anda. To do so, it is convenient to expandA(s) as

A~s!5 (
n50

`

A~n!sn, ~2.17!

where

Ai j
~n!5~21!nr iF s i

n13

~n13!!
Li j

~0!2
s i

n12

~n12!!
Li j

~1!

1
s i

n11

~n11!!
Li j

~2!2
s i

n

n!
Li j

~3!G . ~2.18!
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Substitution of Eq.~2.17! into Eq. ~2.13! leads, after simple
algebra, to

1

2p
Li j

~0!512 (
k51

N

Ak j
~0! , ~2.19!

1

2p
Li j

~1!5a1s i j 2 (
k51

N

Ak j
~1!2 (

k51

N

s ikAk j
~0! . ~2.20!

Equations~2.19! and ~2.20! constitute alinear set of 2N2

equations whose solution is readily obtained. The result

Li j
~0!5l1l8s j12l8a2l(

k51

N

rk~skLk j
~2!2Lk j

~3!!

2l8(
k51

N

rkskLk j
~3! , ~2.21!

Li j
~1!5ls i j 1

1

2
l8s is j1~l1l8s i !a

2
1

2
ls i (

k51

N

rk~skLk j
~2!2Lk j

~3!!

2
1

2
~l1l8s i !(

k51

N

rkskLk j
~3! , ~2.22!

where l[2p/(12h) and l8[p2z2 /(12h)2, with zn

[( i 51
N r is i

n , h[(p/6)z3 being the volume packing frac
tion.

Equations~2.21! and ~2.22! give L(0) andL(1) as linear
combinations ofL(2), L(3), anda. We have the freedom to
chooseL(3) and a, but L(2) is constrained by the conditio
~2.10!, i.e., the ratio second term to first term in the expa
sion of exp(sijs)Gij(s) for large s must be exactly equal to
12t i j s i j .

A. First-order approximation

The simplest approximation consists of makinga50. In
view of the conditiones i j sGi j (s);s0 for larges, this implies
Li j

(3)50. In that case, the large-s behavior that follows from
Eq. ~2.13! is

2pes i j sGi j ~s!5Li j
~2!1@Li j

~1!1~L~2!
•D! i j #s

211O ~s22!,

~2.23!

where

Di j [r i S 1

2
s i

2Li j
~0!2s iL i j

~1!1Li j
~2!D . ~2.24!

Comparison with Eq.~2.10! yields

yi j ~s i j !5
6t i j

ps i j
2 Li j

~2! , ~2.25!

12t i j L i j
~2!

s i j
5Li j

~1!1 (
k51

N

Lik
~2!Dk j . ~2.26!

Taking into account Eqs.~2.21! and ~2.22! ~with Li j
(2)5L ji

(2)

and of course also witha50 andL(3)50!, Eq. ~2.26! be-
comes a closed quadratic equation forL(2),
-

12t i j L i j
~2!

s i j
5ls i j 1

1

2
l8s is j2

1

2
l (

k51

N

rksk~Lki
~2!s j

1Lk j
~2!s i !1 (

k51

N

rkLki
~2!Lk j

~2! . ~2.27!

This closes the problem. OnceLi j
(2) is known, Eq. ~2.25!

gives the contact values.
This first-order approximation obtained from the RF

method turns out to coincide with the exact solution of t
PY theory for SHS.4

B. Second-order approximation

A more flexible proposal is obtained by keepinga ~and,
consequently,Li j

(3)! different from zero. In that case,

2pes i j sGi j ~s!5
Li j

~3!

a F11S Li j
~2!

Li j
~3!2

1

a D s21G1O ~s22!.

~2.28!

This implies

yi j ~s i j !5
6t i j

ps i j
2

Li j
~3!

a
, ~2.29!

12t i j L i j
~3!

s i j
5Li j

~2!2
Li j

~3!

a
. ~2.30!

If we fix yi j (s i j ), Eqs.~2.21!, ~2.22!, ~2.29!, and ~2.30! al-
low one to expressL(0), L(1), L(2), andL(3) as linear func-
tions of a. Thus, only the scalar parametera remains to be
fixed. One possibility is to choose this parameter in orde
reproduce a given thermodynamic property. Following t
route of our previous work,10,11 we take the isothermal sus
ceptibility x. To do so, one needs first to find the coefficien
Hi j

(0) and Hi j
(1) appearing in Eq.~2.11!. Performing a power

series expansion ofGi j (s), as given by Eq.~2.13!, and com-
paring with Eq.~2.11!, one gets

H~0!5B~0!
•~12A~0!!21, ~2.31!

H~1!5B~1!
•~12A~0!!21, ~2.32!

where

Bi j
~0!5

1

2p
Li j

~2!1 (
k51

N

Ak j
~2!2 (

k51

N

s ik~adk j2Ak j
~1!!

2 (
k51

N
1

2
s ik

2 ~dk j2Ak j
~0!!, ~2.33!

Bi j
~1!5

1

2p
Li j

~3!1 (
k51

N

Ak j
~3!1 (

k51

N

s ikAk j
~2!

2 (
k51

N S 1

2
s ik

2 1Hik
~0!D ~adk j2Ak j

~1!!

2 (
k51

N S 1

6
s ik

3 1s ikHik
~0!D ~dk j2Ak j

~0!!. ~2.34!

Equation ~2.32! gives H(1) in terms of a; Hi j
(1)

5Pi j (a)/@Q(a)#2, wherePi j (a) denotes a polynomial ina
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of degree 2N andQ(a) denotes a polynomial of degreeN.
In order to express the isothermal susceptibility in terms
H(1), it is convenient to introduce the matricesĥi j (q)
5Ar ir j h̃i j (q) andĉi j (q)5Ar ir j c̃i j (q). Then the Ornstein–
Zernike equation~2.7! may be rewritten as12 ĉ(q)5@1
1ĥ(q)#21. Therefore,

x215(
i 51

N

(
j 51

N

Axixj@d i j 2 ĉi j ~0!#

5(
i 5 j

N

(
j 51

N

Axixj@11ĥ~0!# i j
21. ~2.35!

Finally, ĥi j (0)524pAr ir jHi j
(1) . It turns out then that, see

as a function ofa, x is the ratio of two polynomials of
degree 2N. Given a value ofx, one may solve fora using
Eq. ~2.35!. It turns out that the physical solution, which h
to fulfill the requirement thatGi j (s) is positive definite for
positive reals, corresponds to the smallest positive real ro

Once a is known, the scheme is complete; Eq.~2.29!
givesL(3), thenL(2) is obtained from Eq.~2.30!, and finally
L(1) and L(0) are given by Eqs.~2.21! and ~2.22!, respec-
tively. Explicit knowledge ofGi j (s) through Eq.~2.13! al-
lows us to determine immediately the Fourier transfo
h̃i j (q) through the relation

h̃i j ~q!524ps i j
3 Re

s2Gi j ~s!21

s3 U
s5 iq

. ~2.36!

The structure factorSi j (q) may be expressed in terms o
h̃i j (q) as15

Si j ~q!5xid i j 1rxixj h̃i j ~q!. ~2.37!

Finally, inverse Laplace transformation ofGi j (s) yields
gi j (r ).16

III. ILLUSTRATIVE EXAMPLES

Up to here, the presentation is rather general. Howe
the practical implementation of the method requiresyi j (s i j )
and a ~or equivalentlyx!. In this case and in contrast wit
the one of the multicomponent HS mixture,11 we have nei-
ther an approximate~analytical! equation of state nor com
puter simulations to guide us in their choice. Therefore,
order to proceed further, we will adopt a particular strate
in which the main aim will be to illustrate the possible use
our formulation and its likely connection with realistic sy
tems such as colloidal systems.

We start by recalling that in the case of a one-compon
fluid, the comparison between the Monte Carlo data and
PY approximation indicates that the latter fails to perfo
well at low temperatures even at low densities. This app
both to structural as well as thermodynamic properties.13,17It
should be expected that as the temperature increases
performance of the PY results for the one-component S
system should become close to the ones of the well-kno
HS case, which are known to deviate from simulations
high densities.18 In the case of HS mixtures, similar limita
tions of the PY approximation have been found, particula
for the radial distribution functions around the conta
f

.

r,

n
y
f

nt
e

s

the
S
n
t

y
t

region.19 It is not unreasonable therefore to expect that sim
lar drawbacks of the PY approximation will be present f
SHS mixtures. Nevertheless, we conjecture that the m
source of such limitations, especially for high temperatur
comes from the poor performance of the PY in the purely
system and that a~reasonable! order of magnitude estimat
of the differences between the structural and thermodyna
properties of the sticky system and those of the purely
system may be obtained from the PY approximation. Th
we will now consider the following approximation

yi j ~s i j !5yi j
BMCSL~s i j !1@yi j

PY-SHS~s i j !2yi j
PY-HS~s i j !#

~3.1!

and

x215xBMCSL
21 1~xPY-SHS

21 2xPY-HS
21 !. ~3.2!

The labels PY-SHS and PY-HS refer to the PY result
SHS mixtures4 and the PY result for HS mixtures,20 respec-
tively. Here xBMCSL

21 is obtained from the Boublı´k–
Mansoori–Carnahan–Starling–Leland~BMCSL! equation of
state,21 and yi j

BMCSL(s i j ) is the contact value of the cavit
functions for HS mixtures compatible with such equation
state.22 They are given by

yi j
BMCSI~s i j !5

1

2p S l1
1

2
l8

s is j

s i j
1

1

18

l82

l

s i
2s j

2

s i j
2 D ,

~3.3!

xBMCSL
21 5

1

r F r

~12h!2 1p
z1z2

~12h!3

1
p2

36
z2

3 924h1h2

~12h!4 G . ~3.4!

The underlying philosophy is that one should start from
good description of the purely HS mixture~in this case given
by the BMCSL results! to get an improvement of the PY
results via the procedure indicated above.

For the sake of illustration of these ideas, in Figs. 1 a
2 we present the results for the cavity functionsyi j (r ) for a

FIG. 1. Cavity correlation functiony11(r ) for the binary sticky-hard-sphere
mixture defined bys15s25s, x15x250.5, h50.4, t115t2251, andt12

510. The value ofa for this mixture is 0.0202. Distances are measured
units of s. The dashed line corresponds to the PY approximation while
solid line represents the RFA result.
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particularly simple binary SHS mixture defined bys15s2

5s, x15x250.5, h50.4, t115t2251, and t12510. For
comparison, in the same figures we have included the co
sponding results using the PY approximation. We find t
the behavior of these functions is similar to the one we
served in the case of the the HS mixtures,11 which is not
surprising in view of the fact that the values of thet i j are
relatively big, but not so as to make the discontinuities ar
52s disappear completely. In the absence of simulat
data to compare with, it is not possible to ascertain whet
the RFA results are better or worse than the PY values.
would expect however that, for this particular mixture a
given its closeness to a pure HS mixture, our results sho
be the better ones.

We now turn to a second example. In this case we
motivated by an approach already used for colloids.9 Con-
sider a given real fluid mixture in which, by whatever mea
we knew the total densityr, the adhesiveness parameters
the equivalent SHS system$t i j % ~for whose determination
different strategies have been suggested in the literature7,23!,
the sizes of each species$s i%, the molar fractions$xi%, the
isothermal compressibilityx, and the coordination number
at a prescribed distancel i j s i j defined by

Ni j 54pr iE
s i j

l i j s i j
dr r 2gi j ~r !. ~3.5!

Then, in order to make use of the RFA method, we de
mine the values ofyi j (s i j ) anda of the SHS mixture in such
a way as to reproduce the given values ofNi j and x. This
procedure has some parallels with the one of Amokrane
Regnaut,9 in which the roles played by ouryi j (s i j ) and a
would be played by ‘‘effective parameters’’t̃ i j andh̃ in the
PY approximation. To illustrate the kind of results that o
would get through this path, we have taken again a sim
binary SHS mixture defined bys15s25s, x15x250.5,
h50.4, t115t2250.5, t12→`, N115N22.5.67, N12.3.9,
l i j 51.5, andx50.05. In Fig. 3 we present the partial stru
ture factorsS11 and S12 as functions of the wave numberq
obtained with the above procedure. As a matter of fact, w
we actually did for the sake of simplicity was to start fro

FIG. 2. The same as in Fig. 1 but for the cavity correlation functiony12(r ).
e-
t
-

n
er
ne

ld

re

,
f

r-

d

le

at

the values y11(s)5y22(s)52.0, y12(s)51.75 and x
50.05, and then computed the correspondingNi j with l i j

51.5. We then determined the effective parameters of
Amokrane and Regnaut approximation that leads to the s
coordination numberN11 and isothermal compressibility
yielding h̃50.424 andt̃115 t̃2250.9. In deriving these re-
sults, we have assumed for simplicity that the effective
rametert̃12 retains the character of the HS interaction b
tween the two species. The results for this effective mixt
in the PY approximation are also plotted in Fig. 3. Sin
once again there are no simulation data to compare with
conclusions can be directly drawn from the numerical diff
ences. It must be emphasized though that in the RFA met
wedo nothave to determine effective parameters and so b
the density and adhesiveness in our case would be the
obtained through the standard mapping7,23 of the real poten-
tials.

IV. DISCUSSION

In this paper we have presented a rational function
proximation method for the computation of the the rad
distribution functions~in Laplace space! and structure factors
of a SHS mixture. In its simplest implementation the meth
yields the PY approximation for anN-component SHS mix-
ture. The next order, which we may refer to as a kind
GMSA for this system and which follows rather closely th
development that we introduced earlier11 for purely ~addi-
tive! HS mixtures, provides analytic expressions in Lapla
space for the radial distribution functionsgi j (r ) and the
structure factorsSi j (q) in terms of the number densities$r i%,
the diameters$s i%, and the adhesiveness parameters$t i j %.
As input, we require the knowledge of the contact valu
yi j (s i j ) and the isothermal susceptibilityx ~although other
different quantities could also be employed!. Given the val-
ues of those quantities, the formulation involves a single
rametera which obeys an algebraic equation of degree 2N.

FIG. 3. Structure factorsS11(q) and S12(q) for the binary sticky-hard-
sphere mixture defined bys15s25s, x15x250.5, h50.4,t115t22

50.5,t12→`, andx50.05. In this case,a50.1343. The wave numberq is
measured in units ofs21. The solid line represents the RFA result while th
dashed line corresponds to the PY approximation for the effective mix
(h̃50.424,t̃115 t̃2250.9, t̃12→`!.
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In the one-component case, i.e.,N51 or s i5s and t i j

5t, our approach reduces to the earlier results12 for the SHS
fluid, as it should. A similar comment can be made regard
the purely HS mixture, in that in the limitt i j→` we also
recover the results reported in Ref. 11.

It is worth pointing out that, as mentioned in the Intr
duction, we are not aware of the availability of the GMS
for a multicomponent mixture of sticky hard spheres. Nev
theless, the analytical solution to the Ornstein–Zernike eq
tion for a multicomponent adhesive hard-core Yukawa fl
by Ginoza and Yasutomi24 could be used for its derivation
in much the same way as Giunta, Abramo, and Caccam25

carried out the connection of the GMSA solution for mi
tures of hard spheres with the Yukawa closure to the mu
component HS mixture, as originally suggested by Blum a
Ho”ye.26 We anticipate, however, that the algebraic comp
cations involved in such a connection and that we discus
at length in Ref. 11 will also manifest themselves in th
case.

It could be argued that our method presents a limitat
as compared with the PY approximation in that the lat
does not require any external input. However, that such
not strictly the case can be judged by the following. On
other hand, the problem of the absence of thermodyna
consistency in the PY theory may be in principle tackl
with our approach, or at least reduced, as was shown for
multicomponent HS mixture.11 On the other hand, one coul
expect that in some instances, as the second example of
III suggests, the availability of adjustable quantities as
yi j (s i j ) and a may turn out to be an asset rather than
drawback.

As a final point, we would like to comment that there
still a severe scarcity of simulation data on fluid mixtures.
this sense, and due to the popularity of SHS systems
model real fluids and of the need to test approximate th
ries, we would hope that the present results serve as
another motivation to perform computer simulations on S
mixtures.
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