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Order statistics of diffusion on fractals
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When a large numbeN of independent random walkers diffuse on a fractal substrate, what imttne
moment of the time speti \ by the firstj to cross a given distance from the starting place? The answer to this
order-statistic problem is given in the form of an asymptotic expresgiaiuding the main and first two
corrective termgfor largeN. To first order, themth moment and the variance gfy go as (IN)™2~%) and
(InN)~2%, respectively, for &j<N, d,, being the anomalous diffusion exponent of the fractal medium. It is
shown that the first result can be obtained through less rigorous but more intuitive reasonings. Comparisons of
asymptotic results with numerical calculations are provided for three fractal substrates and for the one-
dimensional cas¢S1063-651X98)07605-3

PACS numbdss): 05.40:+j, 05.60+w, 66.30.Dn

[. INTRODUCTION less rigorous but more intuitive and simple reasoning in Sec.
V. In Sec. VI results found from using these asymptotic ex-

S.tu.dles of d|ffgS|ve processes are usually concerned Wltrr~5ressions are compared with those obtained numerically. The
statistical properties associated wittsiaglerandom walker paper ends in Sec. VIl with a discussion and conclusions
wandering over an Euclidean substrate. There is a well-

established large body of knowledge about this long-standing
problem[1,2]. A more recent line of investigation is related

to the diffusion process that takes place on a fractal substrate
[3,4]. This process is characterized by its “anomalous” The probability densityy; y(t) for the time spent by the

Il. FIRST-PASSAGE TIMES AND MORTALITY
FUNCTION

properties with respect to the “normallbr Euclidean pro-  jth out of N noninteracting particles to first reach a given
cess. Much less is known about the statistical properties aslistancer (i.e., the first-passage density of tjta particle of
sociated with the diffusion of aetof random walker§1— @ set ofN) is easily expressefB,13] in terms of the first-

10], notwithstanding its interest[11]. For example, Passage-time density to this distance of a single particle
asymptotic expressions for the number of different sites vis#(t)= #14(t), namely,
ited by N>1 random walkers that diffuse on Euclidegs] _ o -1 N=]
and fractal[6] substrates have been obtained only recently. ¥in(D=NY[(N=)!(j =Dy O[1-h®)]".

In this paper we address a relat@hd also basicprob- 21
lem: Given a set oN independent random walkers, all start- _ ot . . . .
ing at the same place on a fractal substrate, what is the tim'éIere h(t)=Joy()d7 is the mortality function, i.e., the

: . . robability that a single diffusing particle has reached this
spent by thgth random walker to cross a given distance? Or’gistancer}:juring the ti?ne interveﬂ%t% Thus. with the func-
stated using the more colorful words coined by de Genn n '

e
[12], what is the escape time of the firstants (random fion (1) [or h(t)] at hand, one can evaluate the moments of

walkerg of a battalion ofN members initially parachuted tj. (the *jth-passage timey

onto a site of a fractal labyrinth if the exits are placed at a o

distancer from the origin? In more technical words, we ad- (t}”‘N>=f tMy; (D). (2.2

dress the problem of describing the order statistic of the dif- 0

fusion proces$8,13] on a fractal. For Euclidean substrates,

rigorous results are known only for the one-dimensional cas

[8,9]. As will be seen, the results provided in this paper

which are also valid for the one-dimensional case, improv .

and extend those resula short presentation of some of the h Vall_n dlen Br;)eckfln Re1[%5;|[hhasf_sht<_)wn how -tt(') eva:juate't

ideas and results of this paper can be found in REd)). he Laplace ra_ns orm O_ ] € first-passage-ime density
The paper is organized as follows. In Sec. Il we give anda/(s)zllf(sz for finitely ramified fractals. For not too large

deduce relations about some statistical quantities that will bealues ofs,s) can be evaluated through the Taylor series

used later. Section IIl is the most technical section and iexpansion off(s). For larges, it is more suitable to use the

devoted to obtaining asymptotic expressions for the generagsymptotic relatiori14]

ing function of themth moment of the first-passage timg, _ _ _

of the jth random walker out of a total dfi>j. (This deri- U s)~ Aexp( — CGsHdw), 2.3

vation was absent in Ref10].) The main and two first cor-

rective asymptotic terms of these first-passage-time momenthe constaniis related to the probability that one particle

<tJ”"N> and the main term of their variances y are explicitty ~ has gone from a site to any of its nearest neighbors on the

given in Sec. IV. Some of these results are obtained with ath generationfracta) lattice via any of the shortest paths

én what follows the mean time spent by a single random
walker to reach thé¢arbitrary) distancer will be taken as the
’éime unit.
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traced over ther(+1)th generation latticg14]. Therefore, 6 y T T T

this constant can be known exactly. Howev@ras to be
estimated numerically. Away from the short-time regime the 5H v, 5 .

Laplace inversion offs)= 1/f(s) leads to
. ar .

Xt
P(t)= 2 (2.4

=1 f7(Xy) ¥in 3 ]

X,<0 being thenth largest root off(x)=0 [15]. The
asymptotic behavior ofs(t) for small times can be obtained
by Laplace inversion of Eqg(2.3 through the saddle-point
method[16]:

() ~At~ I+ Bexy — C/ItA)(1+ ¢itF), (2.5

where A= WI(2m)(BAv)"?A C=tb=p~(Qv)",

¢,=(1-2d,)(d,—2)/24C, pB=1/(d,—1), and v=p

+1 (values of these constants can be found in REd)). FIG. 1. First-passage-time distribution of tita random walker
From the above equation f@i(t) it is not difficult to find  out of N for the two-dimensional Sierpinsky lattice. Here and in the

a similar asymptotic expression for the mortality functionrest of the figures times are expressed in units of the mean first-

h(t)=fL¥(7)dr. Thus, from Eq.(2.4) and taking into con- passage time of singlerandom walker.

sideration that E(t)=/[g¥(t)dt=—=7_[x,f"(x))] 7%

one finds m (=
Unm(2)= rf t"Y(1-h+hzN-2ZNdt. (3.2
o ot ZJo
h(t)=1+ . 2.6
® nZl X' (Xp) 28 Dropping thezN term, we get
This expression is well known and especially simple for the m (=
one-dimensional lattice: Unm(2=7— . t"“exp{NIn[1—h(t)(1-2)]}dt.
(3.2

45 (—1)"
h(t)=l+;n§l (2n—)1 exd —1(2n—1)272t]. (2.7

The point is thalfy n(z) andUy (z) have the same Taylor
series expansion up to the term of ora®f *, so that(t["y)
Given that [5r%exp(—b/t?)=bl* VP (- (a+1)/B,b/tF)/B  can also be estimated through the evaluation of this pseudo-
and that the incomplete Gamma function satisficd ['(a  generating functionUy (z). Therefore, by means of the
+12)~7z% Y 1+alz+0(1/z%)] for z—x=, one obtains asymptotic evaluation of this function one can also find
from Eq. (2.5 that asymptotic expressions foti"y) whenj<N. To this end we

proceed as in Ref9]. We start by splitting the interval of

h(t)~ht)=At*2exd — (to/t)#](1+h,t#) (2.8  integration

for small t, with A=A/BC and h,=¢,—1/2C (values of Un,m= Ui+ Ul 3.3

these constants for certain substrates can be found in Ref.

[10]). where
Several cases of first-passage-time densities ofjthe

particle i; \(t) for the two-dimensional Sierpinsky gasket o 7 m—1

are showh in Fig. 1(For other substrates, such as those to be Nv)m_ﬁ 0 dtt™ “exp{NIn[1—h(t)(1-2)]}dt,

considered below in Fig. 4, these densities are very sinilar. (3.4)

Whenj<N, we see that these functions take significant val-

ues for smallt only. This means that only the behavior of m (=

#(t) andh(t) for small times are relevant in order to calcu- U}fr)n:le dtt™ texp{NIn[1—h(t)(1—2z)]}dt.

late(t{"y) whenj<N. We shall return to this fact in the next ) 3.5

section. :

The time 7 is chosensmall enoughso thath(t)~Hh(t) for

. ASYMPTOTIC EVALUATION OF THE GENERATING 0<t=r or, being more precise, so that

FUNCTION

The generating function of thenth moment of the “Nh(7) _ a=NF7)| = —NTm_E
jth-passage timéty (2) ==L (t)z)~* can be written as e € |=[h(7)—h(7)|Ne Sk’
(8,9] (3.6
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20k ' ' ' ' x| where
1D lattice . LI
18} '+ 2D Sierpinsky - ] - (e dp o XM+ DB )
16l 3pSierinsky x ] fm (M) =X\ 0t n® 3 , (311
S t . B+ Exﬁ(p)
= 14} R ]
82 .
o 12p * 1 p=xPlexp—x"P), (3.12
£ i *
1or ' ] with e=(7/to)??exd (—ty/9)?] and A=Nats'*(1—z). No-
sl 4° ] tice thate~t£/ZH(7)/A=In(N)/N<1 whenN>1. The func-
. tion X(p) can be estimated as follows. We take logarithms of
62 42 6 8 10 12 both sides of Eq(3.12), obtaining
InN

B
_ =, By B__
FIG. 2. Dependence oN of U{J(0) [the contribution to Inp=vF=x 2Inx. (313

(tyn)=Un,2(0) neglected in our asymptotic expansjdor the one-
dimensional lattice and the two- and three-dimensional Sierpinsky; i clear that kv) 1~1 for smallx (note thatt<r<1
lattices. implies x<1) becauseBInx/2v? is a minor correction of
. . . order Irv/v®. We can be more precise. Definiggex 1 —v
wherek>1 is an arbitrary Iargg positive constant that, forand using Eq(3.13), it is not difficult to see that/v satisfies
convenience, we take as/li(t) — h(t)|. This means that the the relation
1] €\? &
—Duf-Z|2] =0o| =—
s Y8 -of 5]

time 7 is simply the solution of
Using the above relations and becauge) is small fort (3.14
=<7, ONe can write

3

eNR= N, (3.7 1 58, PR
2+U v+2

glnv-f-ﬁ

~ with the solution
expNIn[1—-h(t)(1-2)]}=exd —N(1—-2)h(t)]

~ 3
x{1+O(NF(t))}. (3.8 5——1m—v+1(1— )Inzv +Eln_v Inv
N v 2,8 8 A v28 4,28 o8
Neglecting terms of ordeX (t), one finds (3.15
Uf\‘ﬂm% 13 Tdttm‘lexr[—N(l—z)T(t)]. (3.9 Inserting this solution intox=v ~1(1—&/v) %, one finds
y _Z O
- -2
Notice that these neglected terms decay essentially s 1/ Xk —oH 1 U_B+ ﬁv*ﬁlnu+ v %
because, from Eq3.7), NF?(7) = (In?N)/N . Therefore, their 1+xP12 2 2
algebraically decaying contribution tdly , is negligible 5
against that of the retained term, which, as we will see later, _ ﬂ -28 e —28[n2
- - - h v Inv+ = (u+B)v “PIn“v
decays in a mildly logarithmic way for largh. Also, an 4 8

inspection ofUy , as given by Eq(3.2) shows that forN

>1 the integrand is only non-negligible whéxft) is very +0(v %In%)|. (3.16
small, i.e., for small times. This is in agreement with the

remarks at the end of Sec.(Bee Fig. 1 In other words, one

expects a negligible contribution &{), to Uy ,,. Thisis  Thus Eq.(3.10 can be written as

explicitly confirmed in Fig. 2, which shows the dependence

on N of U{)(z=0), i.e., the dependence & of the con- te | 1+a 1

tribution to(t; ) =Uy 1(0) of those times longer than We Ug\lq-,)mwl_zlll-%—a—f_ 2 J2+a_§|2+a

see that this contribution essentially decays as a power of

1/N. This justifies calculating) (), by Eg. (3.9 for obtain- (1+a)(2+a) 3+2a

ing the asymptotic dependence 0f; (z). To this end we + 8 3ta” Ty J3+a

shall follow closely the procedure used [i8,9]. Inserting

T(t) as given by Eq(2.8) into Eq.(3.9) one finds + %—h1t€(2+a) |3+a]’ (3.17)

m
(1) oo +Mre(0) Bs(1)
UNim™ 77 ol Tm (M) + hato T (V)] (310 wherea=m/g=m(d,,— 1) and[9]
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I_sd_pf}\plml 1y
#oJop In“(1p) #~—1In*"IN  In“\
w216+ 92
pTomY (3.18
AN REON
3 fedp 7APM[M(1h0] U(p—1)+Inlnx  yInln
= —e ~ —_ ,
# Jop In*(1/p) (m—1)In#~ I\ IN“\
(3.19
ed In?[In(1/,
Kﬂ=f—pe_"p [In(1/p)]
0P In*(1/p)
1 [ 2 . 2mnm.+}n4nx (3.20
I \(p-1° (p-1)2 w1

vy=0.577 215 being the Euler constant.
(3.18—(3.20 into Eq.(3.17), one finally gets

¢ [1-1—)
2In2)\( “

N,m(Z)—EM il 2 5Inin\ —y

2

T 1
X F-I—yz +y—2hth— §+(1+a)7>lnln)\
1ta IN3InX
+——In?in\ |+ O : (3.21
4 In3\

For the one-dimensional lattice this formula is a generaliza-
tion of those obtained in Ref9] [in that reference only

one-dimensional formulas dfiy (z) for m=1 andm=2
were given.

IV. ESCAPE TIMES

From the preceding section we know thaf'y) is the

coefficient of Z~! in the Taylor series expansion of
Un m(2). Therefore, themth moment of the first-passage

Inserting EQs.
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)

1 B 1 3 n(a-l-n 1)

IN*A _In“)\ONnZ:o (=) (a—1)!

1 < 'S(n)
|nn)\0Ni2n( 1 =2, 4.2)

Interchanging the order of the sums and bec&u$m) =0 if
n<m andS,,(1)=(—1)"n!, one gets

1 1 1+§ Ja 1
= Z —
N\ In“AgN|~ n=1 [N IN\oN

(—1)" (a+1)! S,(2)
N (a— D! In?x N

1
In3\oN

+

4.3

Also, it is not difficult to prove that

Inin\ 1 (a+1)Inin\gN—1
= InIn\ N + n
InatIn  InetIngN| 0 21 ninkoN
Inin\ N
(4.9
In?xoN

Inserting Eqs(4.3) and(4.4) into Eq. (3.21), one finds
e 2 A(@) n)
pA ’

>

In a+1)\ NA=1 n

Un,m( Z)N_( <t1N>

(4.9
where
a+1 [ L 254(2)
A“(a)_1+2In)\ON[ -1) n—1)! +InIn(AgN)
1 ol In?In\oN 9
at1 7 In?\oN '

time of the first out ofN>1 diﬁusing partiCIeS is equal to Expanding 1/(1— Z) in powers ofz in Eq. (4.5 and extract-

Unm(0),i.e.,
tn )= § [, @ TN )
= =Inin\gN—
N nangN| T InhN 27T ’
2
+ [(l-l—a) 7T—+y2)+'y—2h1t’8
21n2A N 6 0
1 1+«
— E+(1+a)y Inin\ N+ InIn\ N
In®In\ oN
ol —2-1 ¢, (4.1)
In3\N

where\ o=\ (z=0)/N=At5". The calculation oftj"y) for

j>1 is more involved, as we shall now see. Becau$glin

—2)=nI3” (—1)S(n)Z/i!, whereS;(n) are the Stirling num-
bers of first kind[17], one finds that

ing the coefficient ofZ! ~*, one finds

tg]a 2 n(a)

In a+l)\ NA=1 n

(ti) =t + (4.7)

The varianceo? \=(t7\)—(t; x)? can be obtained from
Egs.(4.7) and(4.1):

t5(dy—1)2
In2dw) oN

2
O-j,N

I 25.(2
(S (1?2

n=1

1
n

Tz
(4.8)

Now it should be clear why we have calculated the main
andtwo corrective terms ot - : It turns out that the main
and first corrective term 0('[J Ny are equal to those of
(t; n)?, so that only the difference between their second cor-
rective terms contributes to theainterm of the variance. It
is notable that to lowest order inNhthe coefficient of varia-
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1.0 ' ' ' 25 L . l1DIatt;ce I I I I
4 2D Sierpinsky
0.8r . ool ¥ 3DSieminsky i
=  Given-Mandelbrot
= 06} > 15}
:E N=4 h(t)"‘,.—"' -
04} ] 10t
N=40 N=10\ .
0.2t ] ST
0.0 _',.-‘;’... , ~ X * 0-| 1 Lt bt L]
00 02 04 06 08 1.0 0 2 4 6 8 10 12 14
t InN

FIG. 3. Function[1—h(t)]N vst with N=4,10,40 for the two-
dimensional Sierpinsky gasket. We see that the larger the value
N, the closef1—h(t)]V is to a step function. The dotted line is
simply the mortality functiorh(t).

FIG. 4. Dependence oN of the mean first-passage time of the
f%rst particle out ofN, (t;y), for the one-dimensional lattice, the
?wo- and three-dimensional Sierpinsky lattices, and the Given-
Mandelbrot curve. Her@=1/(d,,—1). The symbols correspond to

the numerical estimates fdi=2" with n=0,1,...,20 and the

tion t; /o N goes as IN independently of the substrate
(this was checked numerically in Rgf.0]).

V. SIMPLER WAYS TO OBTAIN SOME
OF THE PRESENT RESULTS

solid lines to Eq(4.1) with m=1.

zero(main term) of the rigorously obtained E¢4.1). Insert-
ing the above first solution for? into the right-hand side of
Eq. (5.2), we get a better approximation

Itis i . . 8
is instructive to see how one can find some of the pre- B 0 (5.4
vious laboriously obtained asymptotic results by only resort- L B '
ing to simple and intuitive arguments. Let us start by show- INN—zInInN+= Into + INA—Inin2
ing how we can easily estimate(tyy)=Uym(0)
=m/gdtt™ [1—h(t)]" in fairly good agreement with the 4.4 therefore that
rigorous result of Eq(4.1). The following reasoning was
already used in Ref9] in order to ge{ty’y), but only for the B
one-dimensional case. The crucial fact in our argument is m 3InInN— = Into— INA+ Inin2
that the functiorf 1— h(t)]N approaches a unit step function {am )~ % 144 2
O (t—7) whenN— oo, wherer is the step’s widtf18] (see N neN InN ’
Fig. 3. Therefore (tT\)~m/idtt" *=7". We shall esti- (5.9
mate the widthr by solving the transcendental equation
[1-h(n) V=« (5.0 251 ¢ 1Dlatice
4 2D Sierpinsky
with, say,x=1/2. This value foi is arbitrary: It is clear that ook 7 3D Sierpinsky ]
any other value between 0 and 1 would also be valid because = Given-Mandelbrot
the step’s width is not very sensitive to the value «ofif a [
N>1. For these values ofN the above equation > 151 y
1/2=exgNin(1—h(t)] becomes 12 exd —Nh(D] -
~exd —NAEZexp(—(to/7)P)], so that ~ 1o} -
5 t6 ]
TP~ 3 (5.2 5r
INN+ = In7+InA—InIn2
2 ol L o,
A first solution is given by7ﬁ=t§/InN. Therefore, 0 2 4 6 8 10 12 14
In N
m
(tTN>= |t_ON' (5.3 FIG. 5. Dependence oN of the second moment of the first-
na

passage time of the first particle out bf, <tiN), for the same

substrates as in Fig. 4. The symbols correspond to the numerical

with a=m/B, is a first approximation tdt7y). Notice that
this expression fully agrees with the approximation of order(4.1) with m=2.

estimates foN=2" with n=0,1, . . ., 20 and thsolid lines to Eq.
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T T T 7 T T T 25 r—r—T | T T T
15+ e 1D lattice b ° 1D|a'tt|ce‘
Ao 2D Sierpinsky 20 4 2D Sierpinsky
v 3D Sierpinsky " v 3DSierpinsky
= Given-Mandelbrot = Given-Mandelbrot
oz 10t s 15
- =
: J
~ 10
51
5
o L - L L L n L L 0 1 " 1 1 1 L 1 " 1 2 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

FIG. 6. Dependence oN of the variance of the first-passage FIG. 7. Dependence oN of the mean first-passage time of the

time of the first particle out o, o1, for the same substrates as in secondparticle out ofN, (t, ), for the same substrates as in Fig. 4.

Fig. 4', Hereq stands for_ 1011W. .The _symbols correspond to. the The symbols correspond to the numerical estimateNfe2" with
numerical estimates foN=2" with n=0,1, ...,20 and theolid n=1,...,20 and theolid lines to Eq(4.7) with m=1 and;j=2.

lines to Eq.(4.8) with j=1.

We solve this equation in the same way as &), finding
a first approximated solution fgr<N: tj/’,N~tg/InN. Insert-
ing this solution into the right-hand side of E&.7), we get
a better approximation

with a=m/g, in good agreement with the rigorous expres-
sion of Eq.(4.1).

Let us see now another intuitive and simple way of esti-
mating the mean escape time of itk particle(t; y). Our
argument goes as follows. From the definition of the mortal-
ity function h(t) and because thd diffusing particles are toa
independent, one would expect that, for example, the mean tj/N%tl/N—’_Tlnjv (5.9
first-passage time of one-half of these particles should be In*""N
approximately given by, whereh(t,,,) = 1/2. In the same
way, one expects that the mean first-passage tinjeoot of  \yhere
theseN diffusing particles(t; y) can be approximated by
tjn, Where

to

tin (5.9

h(tjn)=]/N. (5.9 IN*N

1+ BN Bintg—ina
+m§nn —Ento—n

and a=1/8=d,,— 1. These expressions are very close to
those rigorously obtained in Sec. IV, namely, Egs1) and
(4.7 (notice that In==!_,1/n— vy for largej [17]).

In the next section we shall compare the results provided

If j<N, thent;;y<1 andh(t;;y)~MNt;y), so that the equa-
tion for t;,y becomeg/N~Atfexi —(to/tn)*], ie.,

t8 by these simply obtained formulas and the rigorous
tjﬂ/N“ 0 ) (5.7 asymptotic expression of E@¢4.7) with those obtained nu-
INN—Inj + Elnt- FInA merically. As we will see, the formulas of this section lead to
2 N surprisingly good results.

TABLE |. Mean first-passage time of the first random walker oulNoft, ), for the two-dimensional
Sierpinsky lattice as given by different approximations. Times are expressed in units of the mean first-
passage time of singlerandom walker. The label “zero” refers to the main teforder zerg of Eq. (4.1),

“step” refers to Eq.(5.5), “frac.” to Eq. (5.8), “asym.” to the full asymptotic expression of E¢.1), and
“num.” to the numerical results.

Equation N=10 N=10 N=10° N=10" N=10° N=10°

zero 0.3233 0.1293 0.0757 0.0517 0.0385 0.0303
step 0.1678 0.1111 0.0715 0.0507 0.0384 0.0304
frac. 0.2359 0.1247 0.0768 0.0534 0.0400 0.0315
asym. 0.2773 0.1200 0.0729 0.0508 0.0383 0.0303

num. 0.2549 0.1190 0.0728 0.0508 0.0383 0.0302
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TABLE Il. Mean first-passage time of the second random walker o\, ¢t \), for the two-dimensional
Sierpinsky lattice as given by different approximations. Times are expressed in units of the mean first-
passage time of singlerandom walker. The labels have the same meaning as in Table |, except for “asym,”
which now refers to Eq(4.7).

Equation N=10 N=10 N=10° N=10 N=10° N=10°
frac. 0.3645 0.1504 0.0868 0.0585 0.0431 0.0335
asym. 0.3509 0.1453 0.0846 0.0573 0.0429 0.0330
num. 0.3739 0.1497 0.0858 0.0578 0.0425 0.0331
VI. COMPARISON WITH NUMERICAL RESULTS the one-dimensional lattitenamely, the order-statistic prob-

lem. That is, we have been interested in giving a statistical
@escription of the time at which thjeéh random walker out of
a total of N reach, for the first time, a given distance. Our
answer was given in terms of rigorously obtained and de-
NI tailed asymptotic expressioiithe main and first two correc-
m o\ _/¢m : M- 1pj tive terms includefl of the mth moment of this timgt"y)
() <tJ’N>+mj!(N—j)! fo R for N>1. For example, it was found that, to first ordﬁlf?N>
_ goes as (IN)™~%) the nth corrective term being essen-
x[1=h(O]"dt, (6.) tially of order In""N with respect to the main asymptotic
with term. This means that the exit times decay in a mildly loga-
rithmic way with N and that the corrective terms are usually
<t1mN>=mfxtmfl[l—h(t)]th. (6.2) not negligib_le even for very large values bf. It is also '
: 0 worth pointing out that in order to get only the main
) o _ ) asymptotic term of the variance df y [which goes as
This expression is readily obtained from E¢®8.1) and(2.2)  (|nN)~2%] it was necessary to Knot; ) and(tl-z \) up to
integrating by parts. Analogously, in order to calculate nU-the second corrective term. It was also shown that the main
merically the variance, one can write it as term of(t]"y,) for eitherj =1 (and arbitrarym) orm=1 (and
arbitrary j) can be obtained by means of very simple argu-

In this section we shall compare the results provided b
the analytical asymptotic expressions obtained in Secs. |
and V with those calculated numerically for different sub-
strates. This can be accomplished by using the relation

| ©
Uj2+1,N: sz,N+ z%f (t—(th,N))h(t)j mepts and we found that thgse arguments also lead to a good
Ik 1o estimate of the next corrective term.
B N-—j It should be noticed that the results reported in this paper
X[1=h(®]™dt, 6.3 have only been proved for finitely ramified deterministic
where fractals because in our derivation it was crucial to know the

. form of the mortality function and we only know [icf. Eq.
UiN:<t1,N>2+2f (t—(t,W[1-h(t)]Vdt. (6.4 (2.8)] for this class of fractals. Thus a natural question is
0 whether these results are applicable to other classes of self-
) o similar substrategsuch as other kinds of fractals or even
The mortality function is evaluated through E@.8) for  gisordered medial think that the answer is yes. First, there
small times and by means of E(.6) otherwise. are precedents in which it is known that statistical properties
In Figs. 4—6 we compare the first moment, the seconge|ated to the diffusion processes are described in the same
moment, and the variance of the first-passage time of the firg{ay for deterministic fractalgfinitely ramified fractals in-
particle with the corresponding asymptotic analytical resultqﬂuded as for disordered medighe propagator for the short-
for four substrates. The same comparison is made in Fig. §ime regime is a well-known exampleAnother (indirect
but for the first moment of the first-passz_;\ge time of the S€Cargument(already discussed in RefL0]) is as follows. In
ond particle. We see that the agreement is very good even f@gef [10] it was proved that the number of different sites of a
a relatively small number of particles. The results fgfy)  fractal visited by a set o> 1 independent random walkers
with N=10" andn=1,2, .. . ,6found by means of the sim- g, (t) can be derived from Eq4.1). Notice that this equa-
ply obtained formulas of Eqg5.3), (5.5), and(5.8) and by  tion would in principle only be valid for finitely ramified
means of the rigorous asymptotic expression of @d)) are  fractals. However, it turned out that the expressionSigft)
compared with the numerical results in Tell. In Table Il so obtained was valid for disordered media {6& There-
we compardt]"y) for N=10"andn=1,2, ... ,6 agiven by  fore, it seems reasonable to expect that Egl) and the
Eq. (5.8 and by the rigorous asymptotic expression of Eq.other order-statistic results found in this paper could also be
(4.7) against numerical results. The goodness of the resultgalid for any self-similar substrate.
provided by the simply obtained formulas is notable.
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