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Order statistics of diffusion on fractals

S. Bravo Yuste
Departamento de Fı´sica, Universidad de Extremadura, 06071 Badajoz, Spain

~Received 4 November 1997!

When a large numberN of independent random walkers diffuse on a fractal substrate, what is themth
moment of the time spentt j ,N by the firstj to cross a given distance from the starting place? The answer to this
order-statistic problem is given in the form of an asymptotic expression~including the main and first two
corrective terms! for largeN. To first order, themth moment and the variance oft j ,N go as (lnN)m(12dw) and
(lnN)22dw, respectively, for 1< j !N, dw being the anomalous diffusion exponent of the fractal medium. It is
shown that the first result can be obtained through less rigorous but more intuitive reasonings. Comparisons of
asymptotic results with numerical calculations are provided for three fractal substrates and for the one-
dimensional case.@S1063-651X~98!07605-3#

PACS number~s!: 05.40.1j, 05.60.1w, 66.30.Dn
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I. INTRODUCTION

Studies of diffusive processes are usually concerned w
statistical properties associated with asingle random walker
wandering over an Euclidean substrate. There is a w
established large body of knowledge about this long-stand
problem@1,2#. A more recent line of investigation is relate
to the diffusion process that takes place on a fractal subs
@3,4#. This process is characterized by its ‘‘anomalou
properties with respect to the ‘‘normal’’~or Euclidean! pro-
cess. Much less is known about the statistical properties
sociated with the diffusion of aset of random walkers@1–
10#, notwithstanding its interest@11#. For example,
asymptotic expressions for the number of different sites
ited by N@1 random walkers that diffuse on Euclidean@5#
and fractal@6# substrates have been obtained only recent

In this paper we address a related~and also basic! prob-
lem: Given a set ofN independent random walkers, all sta
ing at the same place on a fractal substrate, what is the
spent by thej th random walker to cross a given distance? O
stated using the more colorful words coined by de Gen
@12#, what is the escape time of the firstj ants ~random
walkers! of a battalion ofN members initially parachuted
onto a site of a fractal labyrinth if the exits are placed a
distancer from the origin? In more technical words, we a
dress the problem of describing the order statistic of the
fusion process@8,13# on a fractal. For Euclidean substrate
rigorous results are known only for the one-dimensional c
@8,9#. As will be seen, the results provided in this pap
which are also valid for the one-dimensional case, impro
and extend those results~a short presentation of some of th
ideas and results of this paper can be found in Ref.@10#!.

The paper is organized as follows. In Sec. II we give a
deduce relations about some statistical quantities that wil
used later. Section III is the most technical section and
devoted to obtaining asymptotic expressions for the gene
ing function of themth moment of the first-passage timet j ,N
of the j th random walker out of a total ofN@ j . ~This deri-
vation was absent in Ref.@10#.! The main and two first cor-
rective asymptotic terms of these first-passage-time mom
^t j ,N

m & and the main term of their variancess j ,N are explicitly
given in Sec. IV. Some of these results are obtained wit
571063-651X/98/57~6!/6327~8!/$15.00
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less rigorous but more intuitive and simple reasoning in S
V. In Sec. VI results found from using these asymptotic e
pressions are compared with those obtained numerically.
paper ends in Sec. VII with a discussion and conclusions

II. FIRST-PASSAGE TIMES AND MORTALITY
FUNCTION

The probability densityc j ,N(t) for the time spent by the
j th out of N noninteracting particles to first reach a give
distancer ~i.e., the first-passage density of thej th particle of
a set ofN) is easily expressed@8,13# in terms of the first-
passage-time density to this distance of a single part
c(t)[c1,1(t), namely,

c j ,N~ t !5N!/ @~N2 j !! ~ j 21!! #c~ t !hj 21~ t !@12h~ t !#N2 j .
~2.1!

Here h(t)5*0
t c(t)dt is the mortality function, i.e., the

probability that a single diffusing particle has reached t
distancer during the time interval@0,t#. Thus, with the func-
tion c(t) @or h(t)# at hand, one can evaluate the moments
t j ,N ~the ‘‘ j th-passage time’’!:

^t j ,N
m &5E

0

`

tmc j ,N~ t !dt. ~2.2!

In what follows the mean time spent by a single rando
walker to reach the~arbitrary! distancer will be taken as the
time unit.

Van den Broeck in Ref.@15# has shown how to evaluat
the Laplace transform of the first-passage-time den
c̃(s)[1/f (s) for finitely ramified fractals. For not too large
values ofs,c̃(s) can be evaluated through the Taylor seri
expansion off (s). For larges, it is more suitable to use the
asymptotic relation@14#

c̃~s!'Ãexp~2C̃s1/dw!. ~2.3!

The constantÃ is related to the probability that one particl
has gone from a site to any of its nearest neighbors on
nth generation~fractal! lattice via any of the shortest path
6327 © 1998 The American Physical Society
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6328 57S. BRAVO YUSTE
traced over the (n11)th generation lattice@14#. Therefore,
this constant can be known exactly. However,C̃ has to be
estimated numerically. Away from the short-time regime t
Laplace inversion ofc̃(s)51/f (s) leads to

c~ t !5 (
n51

`
exnt

f 8~xn!
, ~2.4!

xn,0 being the nth largest root of f (x)50 @15#. The
asymptotic behavior ofc(t) for small times can be obtaine
by Laplace inversion of Eq.~2.3! through the saddle-poin
method@16#:

c~ t !'Ât2~11b/2!exp~2C/tb!~11f1tb!, ~2.5!

where Â5An/(2p)(bC̃/n)n/2Ã, C[t0
b5bb(C̃/n)n,

f15(122dw)(dw22)/24C, b51/(dw21), and n5b
11 ~values of these constants can be found in Ref.@10#!.

From the above equation forc(t) it is not difficult to find
a similar asymptotic expression for the mortality functi
h(t)5*0

t c(t)dt. Thus, from Eq.~2.4! and taking into con-
sideration that 1[^t&[*0

`c(t)dt52(n51
` @xnf 8(xn)#21,

one finds

h~ t !511 (
n51

`
exnt

xnf 8~xn!
. ~2.6!

This expression is well known and especially simple for
one-dimensional lattice:

h~ t !511
4

p (
n51

`
~21!n

2n21
exp@2 1

8 ~2n21!2p2t#. ~2.7!

Given that *0
t taexp(2b/tb)5b(a11)/bG„2(a11)/b,b/tb

…/b
and that the incomplete Gamma function satisfies@17# G(a
11,z)'zae2z@11a/z1O(1/z2)# for z→`, one obtains
from Eq. ~2.5! that

h~ t !' h̃~ t ![Atb/2exp@2~ t0 /t !b#~11h1tb! ~2.8!

for small t, with A5Â/bC and h15f121/2C ~values of
these constants for certain substrates can be found in
@10#!.

Several cases of first-passage-time densities of thej th
particle c j ,N(t) for the two-dimensional Sierpinsky gask
are shown in Fig. 1.~For other substrates, such as those to
considered below in Fig. 4, these densities are very simil!
When j !N, we see that these functions take significant v
ues for smallt only. This means that only the behavior
c(t) andh(t) for small times are relevant in order to calc
late ^t j ,N

m & when j !N. We shall return to this fact in the nex
section.

III. ASYMPTOTIC EVALUATION OF THE GENERATING
FUNCTION

The generating function of themth moment of the
j th-passage timeUN,m(z)5( j 51

N ^t j ,N
m &zj 21 can be written as

@8,9#
e

e

ef.

e
.
l-

UN,m~z!5
m

12zE0

`

tm21$~12h1hz!N2zN%dt. ~3.1!

Dropping thezN term, we get

UN,m~z![
m

12zE0

`

tm21exp$N ln@12h~ t !~12z!#%dt.

~3.2!

The point is thatUN,m(z) andUN,m(z) have the same Taylo
series expansion up to the term of orderzN21, so that̂ t j ,N

m &
can also be estimated through the evaluation of this pseu
generating functionUN,m(z). Therefore, by means of th
asymptotic evaluation of this function one can also fi
asymptotic expressions for^t j ,N

m & when j !N. To this end we
proceed as in Ref.@9#. We start by splitting the interval o
integration

UN,m5UN,m
~t! 1UN,m

~`! ~3.3!

where

UN,m
~t! 5

m

12zE0

t

dttm21exp$N ln@12h~ t !~12z!#%dt,

~3.4!

UN,m
~`! 5

m

12zEt

`

dttm21exp$N ln@12h~ t !~12z!#%dt.

~3.5!

The timet is chosen~small enough! so thath(t)' h̃(t) for
0<t<t or, being more precise, so that

ue2Nh~t!2e2N h̃~t!u.uh~t!2 h̃~t!uNe2N h̃~ t !5
1

k
,

~3.6!

FIG. 1. First-passage-time distribution of thej th random walker
out of N for the two-dimensional Sierpinsky lattice. Here and in t
rest of the figures times are expressed in units of the mean fi
passage time of asingle random walker.
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57 6329ORDER STATISTICS OF DIFFUSION ON FRACTALS
wherek@1 is an arbitrary large positive constant that, f
convenience, we take as 1/uh(t)2 h̃(t)u. This means that the
time t is simply the solution of

eN h̃~t!5N. ~3.7!

Using the above relations and becauseh(t) is small for t
&t, one can write

exp$Nln@12h~ t !~12z!#%5exp@2N~12z! h̃~ t !#

3$11O„N h̃2~ t !…%. ~3.8!

Neglecting terms of orderN h̃2(t), one finds

UN,m
~t! '

m

12zE0

t

dttm21exp@2N~12z! h̃~ t !#. ~3.9!

Notice that these neglected terms decay essentially asN

because, from Eq.~3.7!, N h̃2(t)5(ln2N)/N . Therefore, their
algebraically decaying contribution toUN,m is negligible
against that of the retained term, which, as we will see la
decays in a mildly logarithmic way for largeN. Also, an
inspection ofUN,m as given by Eq.~3.2! shows that forN
@1 the integrand is only non-negligible whenh(t) is very
small, i.e., for small times. This is in agreement with t
remarks at the end of Sec. II~see Fig. 1!. In other words, one
expects a negligible contribution ofUN,m

(`) to UN,m . This is
explicitly confirmed in Fig. 2, which shows the dependen
on N of UN,1

(`)(z50), i.e., the dependence onN of the con-
tribution to^t1,N&5UN,1(0) of those times longer thant. We
see that this contribution essentially decays as a powe
1/N. This justifies calculatingUN,m

(t) by Eq. ~3.9! for obtain-
ing the asymptotic dependence ofUN,m(z). To this end we
shall follow closely the procedure used in@8,9#. Inserting
h̃(t) as given by Eq.~2.8! into Eq. ~3.9! one finds

UN,m
~t! '

m

12z
t0
m@ f m

~0!~l!1h1t0
b f m

~1!~l!#, ~3.10!

FIG. 2. Dependence onN of UN,1
(`)(0) @the contribution to

^t1,N&5UN,1(0) neglected in our asymptotic expansion# for the one-
dimensional lattice and the two- and three-dimensional Sierpin
lattices.
/
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where

f m
~n!~l!5lnE

0

e dr

r12n
e2lr

xm1~n11!b~r!

b1
b

2
xb~r!

, ~3.11!

r5xb/2exp~2x2b!, ~3.12!

with e5(t/t0)b/2exp@(2t0 /t)b# and l5Nat0
b/2(12z). No-

tice thate't0
b/2h̃(t)/A5 ln(N)/N!1 whenN@1. The func-

tion x(r) can be estimated as follows. We take logarithms
both sides of Eq.~3.12!, obtaining

2 lnr[vb5x2b2
b

2
lnx. ~3.13!

It is clear that (xv)21'1 for small x ~note thatt,t!1
implies x!1) becauseb lnx/2vb is a minor correction of
order lnv/vb. We can be more precise. Definingj[x212v
and using Eq.~3.13!, it is not difficult to see thatj/v satisfies
the relation

b

2
lnv1bS 1

2
1vbD j

v
1

b

2F ~b21!vb2
1

2G S j

v D 2

5OS j3

v32bD ,

~3.14!

with the solution

j

v
52

1

2

lnv

vb
1

1

8
~12b!

ln2v

v2b
1

1

4

lnv

v2b
1OS lnv

vb D 3

.

~3.15!

Inserting this solution intox5v21(12j/v)21, one finds

xm

11xb/2
5v2mF12

v2b

2
1

m

2
v2blnv1

v22b

4

2
2m1b

4
v22blnv1

m

8
~m1b!v22bln2v

1O~v23bln3v !G . ~3.16!

Thus Eq.~3.10! can be written as

UN,m
~t! '

t0
ma

12zH I 11a1
11a

2
J21a2

1

2
I 21a

1
~11a!~21a!

8
K31a2

312a

4
J31a

1F1

4
2h1t0

b~21a!G I 31aJ , ~3.17!

wherea[m/b5m(dw21) and@9#

y
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I m5E
0

edr

r
e2lr

1

lnm~1/r!
'

1

m21

1

lnm21l
2

g

lnml

1
m

2

p2/61g2

lnm11l
, ~3.18!

Jm5E
0

edr

r
e2lr

ln@ ln~1/r!#

lnm~1/r!
'

1/~m21!1 lnlnl

~m21!lnm21l
2

g lnlnl

lnml
,

~3.19!

Km5E
0

edr

r
e2lr

ln2@ ln~1/r!#

lnm~1/r!

'
1

lnm21l
F 2

~m21!3
1

2lnlnl

~m21!2
1

ln2lnl

m21 G , ~3.20!

g.0.577 215 being the Euler constant. Inserting E
~3.18!–~3.20! into Eq. ~3.17!, one finally gets

UN,m~z!5
1

12z

t0
m

lnal
H 11

a

lnlS 1

2
lnlnl2g D1

a

2ln2l
F ~11a!

3S p2

6
1g2D1g22h1t0

b2S 1

2
1~11a!g D lnlnl

1
11a

4
ln2lnlG1OS ln3lnl

ln3l
D J . ~3.21!

For the one-dimensional lattice this formula is a generali
tion of those obtained in Ref.@9# @in that reference only
one-dimensional formulas ofUN,m(z) for m51 and m52
were given#.

IV. ESCAPE TIMES

From the preceding section we know that^t j ,N
m & is the

coefficient of zj 21 in the Taylor series expansion o
UN,m(z). Therefore, themth moment of the first-passag
time of the first out ofN@1 diffusing particles is equal to
UN,m(0), i.e.,

^t1,N
m &5

t0
m

lnal0N
H 11

a

lnl0NS 1

2
lnlnl0N2g D

1
a

2ln2l0N
F ~11a!S p2

6
1g2D1g22h1t0

b

2S 1

2
1~11a!g D lnlnl0N1

11a

4
ln2lnl0NG

1OS ln3lnl0N

ln3l0N
D J , ~4.1!

wherel0[l(z50)/N5At0
b/2 . The calculation of̂ t j ,N

m & for
j .1 is more involved, as we shall now see. Because lnn(1
2z)5n!(i5n

` (21)iSi(n)zi/i!, whereSi(n) are the Stirling num-
bers of first kind@17#, one finds that
.

-

1

lnal
5

1

lnal0N
(
n50

`

~21!n
~a1n21!!

~a21!!

3
1

lnnl0N
(
i 5n

`

~21! i
Si~n!

i !
zi . ~4.2!

Interchanging the order of the sums and becauseSn(m)50 if
n,m andSn11(1)5(21)nn!, one gets

1

lnal
5

1

lnal0N
H 11 (

n51

`

znFa

n

1

lnl0N

1
~21!n

n!

~a11!!

~a21!!

Sn~2!

ln2l0N
1OS 1

ln3l0N
D G J .

~4.3!

Also, it is not difficult to prove that

lnlnl

lna11l
5

1

lna11l0N
F lnlnl0N1 (

n51

`
~a11!lnlnl0N21

nlnl0N
zn

1OS lnlnl0N

ln2l0N
D G . ~4.4!

Inserting Eqs.~4.3! and ~4.4! into Eq. ~3.21!, one finds

UN,m~z!'
1

12zS ^t1,N
m &1

t0
ma

lna11l0N
(
n51

`
Dn~a!

n
znD ,

~4.5!

where

Dn~a!511
a11

2lnl0NF ~21!n
2Sn~2!

~n21!!
1 lnln~l0N!

2
1

a11
22gG1OS ln2lnl0N

ln2l0N
D . ~4.6!

Expanding 1/(12z) in powers ofz in Eq. ~4.5! and extract-
ing the coefficient ofzj 21, one finds

^t j ,N
m &'^t1,N

m &1
t0
ma

lna11l0N
(
n51

j 21
Dn~a!

n
. ~4.7!

The variances j ,N
2 [^t j ,N

2 &2^t j ,N&2 can be obtained from
Eqs.~4.7! and ~4.1!:

s j ,N
2 '

t0
2~dw21!2

ln2dwl0N
Fp2

6
2S (

n51

j 21
1

nD 2

1 (
n51

j 21

~21!n
2Sn~2!

n! G .

~4.8!

Now it should be clear why we have calculated the m
and two corrective terms ofUN,m : It turns out that the main
and first corrective term of̂ t j ,N

2 & are equal to those o
^t j ,N&2, so that only the difference between their second c
rective terms contributes to themain term of the variance. It
is notable that to lowest order in lnN the coefficient of varia-
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57 6331ORDER STATISTICS OF DIFFUSION ON FRACTALS
tion t j ,N /s j ,N goes as lnN independently of the substrat
~this was checked numerically in Ref.@10#!.

V. SIMPLER WAYS TO OBTAIN SOME
OF THE PRESENT RESULTS

It is instructive to see how one can find some of the p
vious laboriously obtained asymptotic results by only reso
ing to simple and intuitive arguments. Let us start by sho
ing how we can easily estimate^t1,N

m &5UN,m(0)
5m*0

`dttm21@12h(t)#N in fairly good agreement with the
rigorous result of Eq.~4.1!. The following reasoning was
already used in Ref.@9# in order to get̂ t1,N

m &, but only for the
one-dimensional case. The crucial fact in our argumen
that the function@12h(t)#N approaches a unit step functio
Q(t2t) whenN→`, wheret is the step’s width@18# ~see
Fig. 3!. Therefore,^t1,N

m &'m*0
tdttm215tm. We shall esti-

mate the widtht by solving the transcendental equation

@12h~t!#N5k ~5.1!

with, say,k51/2. This value fork is arbitrary: It is clear that
any other value between 0 and 1 would also be valid beca
the step’s width is not very sensitive to the value ofk if
N@1. For these values ofN the above equation
1/25exp@Nln(12h(t)# becomes 1/2'exp@2Nh(t)#
'exp@2NAt0

b/2exp(2(t0 /t)b)#, so that

tb'
t0
b

lnN1
b

2
lnt1 lnA2 lnln2

. ~5.2!

A first solution is given bytb5t0
b/ lnN. Therefore,

^t1,N
m &5

t0
m

lnaN
, ~5.3!

with a5m/b, is a first approximation tôt1,N
m &. Notice that

this expression fully agrees with the approximation of ord

FIG. 3. Function@12h(t)#N vs t with N54,10,40 for the two-
dimensional Sierpinsky gasket. We see that the larger the valu
N, the closer@12h(t)#N is to a step function. The dotted line i
simply the mortality functionh(t).
-
t-
-

is

se

r

zero~main term! of the rigorously obtained Eq.~4.1!. Insert-
ing the above first solution fortb into the right-hand side of
Eq. ~5.2!, we get a better approximation

tb'
t0
b

lnN2 1
2 lnlnN1

b

2
lnt01 lnA2 lnln2

~5.4!

and therefore that

^t1,N
m &'

t0
m

lnaN
S 11a

1
2 lnlnN2

b

2
lnt02 lnA1 lnln2

lnN
D ,

~5.5!

FIG. 4. Dependence onN of the mean first-passage time of th
first particle out ofN, ^t1,N&, for the one-dimensional lattice, th
two- and three-dimensional Sierpinsky lattices, and the Giv
Mandelbrot curve. Hereb51/(dw21). The symbols correspond t
the numerical estimates forN52n with n50,1, . . . ,20 and the
solid lines to Eq.~4.1! with m51.

FIG. 5. Dependence onN of the second moment of the first
passage time of the first particle out ofN, ^t1,N

2 &, for the same
substrates as in Fig. 4. The symbols correspond to the nume
estimates forN52n with n50,1, . . . ,20 and thesolid lines to Eq.
~4.1! with m52.
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6332 57S. BRAVO YUSTE
with a5m/b, in good agreement with the rigorous expre
sion of Eq.~4.1!.

Let us see now another intuitive and simple way of e
mating the mean escape time of thej th particle^t j ,N&. Our
argument goes as follows. From the definition of the mor
ity function h(t) and because theN diffusing particles are
independent, one would expect that, for example, the m
first-passage time of one-half of these particles should
approximately given byt1/2, whereh(t1/2)51/2. In the same
way, one expects that the mean first-passage time ofj out of
theseN diffusing particles^t j ,N& can be approximated b
t j /N , where

h~ t j /N!5 j /N. ~5.6!

If j !N, thent j /N!1 andh(t j /N)' h̃(t j /N), so that the equa-
tion for t j /N becomesj /N'Atj /N

b/2exp@2(t0 /tj/N)b#, i.e.,

t j /N
b '

t0
b

lnN2 lnj 1
b

2
lnt j /N1 lnA

. ~5.7!

FIG. 6. Dependence onN of the variance of the first-passag
time of the first particle out ofN, s1,N

2 , for the same substrates as
Fig. 4. Hereu stands for 1/dw . The symbols correspond to th
numerical estimates forN52n with n50,1, . . . ,20 and thesolid
lines to Eq.~4.8! with j 51.
-

-

l-

an
e

We solve this equation in the same way as Eq.~5.2!, finding
a first approximated solution forj !N: t j /N

b 't0
b/ lnN. Insert-

ing this solution into the right-hand side of Eq.~5.7!, we get
a better approximation

t j /N't1/N1
t0a

lna11N
lnj , ~5.8!

where

t1/N'
t0

lnaN
F11

a

lnNS 1

2
lnlnN2

b

2
lnt02 lnAD G ~5.9!

and a51/b5dw21. These expressions are very close
those rigorously obtained in Sec. IV, namely, Eqs.~4.1! and
~4.7! ~notice that lnj.(n51

j 1/n2g for large j @17#!.
In the next section we shall compare the results provid

by these simply obtained formulas and the rigoro
asymptotic expression of Eq.~4.7! with those obtained nu-
merically. As we will see, the formulas of this section lead
surprisingly good results.

FIG. 7. Dependence onN of the mean first-passage time of th
secondparticle out ofN, ^t2,N&, for the same substrates as in Fig.
The symbols correspond to the numerical estimates forN52n with
n51, . . . ,20 and thesolid lines to Eq.~4.7! with m51 and j 52.
n first-

TABLE I. Mean first-passage time of the first random walker out ofN, ^t1,N&, for the two-dimensional

Sierpinsky lattice as given by different approximations. Times are expressed in units of the mea
passage time of asinglerandom walker. The label ‘‘zero’’ refers to the main term~order zero! of Eq. ~4.1!,
‘‘step’’ refers to Eq.~5.5!, ‘‘frac.’’ to Eq. ~5.8!, ‘‘asym.’’ to the full asymptotic expression of Eq.~4.1!, and
‘‘num.’’ to the numerical results.

Equation N510 N5102 N5103 N5104 N5105 N5106

zero 0.3233 0.1293 0.0757 0.0517 0.0385 0.0303
step 0.1678 0.1111 0.0715 0.0507 0.0384 0.0304
frac. 0.2359 0.1247 0.0768 0.0534 0.0400 0.0315
asym. 0.2773 0.1200 0.0729 0.0508 0.0383 0.0303
num. 0.2549 0.1190 0.0728 0.0508 0.0383 0.0302
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TABLE II. Mean first-passage time of the second random walker out ofN, ^t2,N&, for the two-dimensional
Sierpinsky lattice as given by different approximations. Times are expressed in units of the mea
passage time of asinglerandom walker. The labels have the same meaning as in Table I, except for ‘‘as
which now refers to Eq.~4.7!.

Equation N510 N5102 N5103 N5104 N5105 N5106

frac. 0.3645 0.1504 0.0868 0.0585 0.0431 0.0335
asym. 0.3509 0.1453 0.0846 0.0573 0.0429 0.0330
num. 0.3739 0.1497 0.0858 0.0578 0.0425 0.0331
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VI. COMPARISON WITH NUMERICAL RESULTS

In this section we shall compare the results provided
the analytical asymptotic expressions obtained in Secs
and V with those calculated numerically for different su
strates. This can be accomplished by using the relation

^t j 11,N
m &5^t j ,N

m &1m
N!

j ! ~N2 j !! E0

`

tm21hj~ t !

3@12h~ t !#N2 jdt, ~6.1!

with

^t1,N
m &5mE

0

`

tm21@12h~ t !#Ndt. ~6.2!

This expression is readily obtained from Eqs.~2.1! and~2.2!
integrating by parts. Analogously, in order to calculate n
merically the variance, one can write it as

s j 11,N
2 5s j ,N

2 12
N!

j ! ~N2 j !! E0

`

~ t2^t j 11,N&!h~ t ! j

3@12h~ t !#N2 jdt, ~6.3!

where

s1,N
2 5^t1,N&212E

0

`

~ t2^t1,N&!@12h~ t !#Ndt. ~6.4!

The mortality function is evaluated through Eq.~2.8! for
small times and by means of Eq.~2.6! otherwise.

In Figs. 4–6 we compare the first moment, the seco
moment, and the variance of the first-passage time of the
particle with the corresponding asymptotic analytical resu
for four substrates. The same comparison is made in Fig
but for the first moment of the first-passage time of the s
ond particle. We see that the agreement is very good eve
a relatively small number of particles. The results for^t j ,N

m &
with N510n andn51,2, . . . ,6found by means of the sim
ply obtained formulas of Eqs.~5.3!, ~5.5!, and ~5.8! and by
means of the rigorous asymptotic expression of Eq.~4.7! are
compared with the numerical results in Table I . In Table II
we comparê t j ,N

m & for N510n andn51,2, . . . ,6 asgiven by
Eq. ~5.8! and by the rigorous asymptotic expression of E
~4.7! against numerical results. The goodness of the res
provided by the simply obtained formulas is notable.

VII. CONCLUSIONS

In this paper we have addressed a basic problem abou
diffusion of a set of particles on a fractal substrate~including
y
V

-

d
st
s
7,
-

for

.
lts

he

the one-dimensional lattice!, namely, the order-statistic prob
lem. That is, we have been interested in giving a statist
description of the time at which thej th random walker out of
a total of N reach, for the first time, a given distance. O
answer was given in terms of rigorously obtained and
tailed asymptotic expressions~the main and first two correc
tive terms included! of the mth moment of this timê t j ,N

m &
for N@1. For example, it was found that, to first order,^t j ,N

m &
goes as (lnN)m(12dw), the nth corrective term being essen
tially of order ln2nN with respect to the main asymptoti
term. This means that the exit times decay in a mildly log
rithmic way withN and that the corrective terms are usua
not negligible even for very large values ofN. It is also
worth pointing out that in order to get only the ma
asymptotic term of the variance oft j ,N @which goes as
(lnN)22dw# it was necessary to knoŵt j ,N& and ^t j ,N

2 & up to
the second corrective term. It was also shown that the m
term of^t j ,N

m & for either j 51 ~and arbitrarym) or m51 ~and
arbitrary j ) can be obtained by means of very simple arg
ments and we found that these arguments also lead to a
estimate of the next corrective term.

It should be noticed that the results reported in this pa
have only been proved for finitely ramified determinis
fractals because in our derivation it was crucial to know
form of the mortality function and we only know it@cf. Eq.
~2.8!# for this class of fractals. Thus a natural question
whether these results are applicable to other classes of
similar substrates~such as other kinds of fractals or eve
disordered media!. I think that the answer is yes. First, the
are precedents in which it is known that statistical proper
related to the diffusion processes are described in the s
way for deterministic fractals~finitely ramified fractals in-
cluded! as for disordered media~the propagator for the short
time regime is a well-known example!. Another ~indirect!
argument~already discussed in Ref.@10#! is as follows. In
Ref. @10# it was proved that the number of different sites o
fractal visited by a set ofN@1 independent random walker
SN(t) can be derived from Eq.~4.1!. Notice that this equa-
tion would in principle only be valid for finitely ramified
fractals. However, it turned out that the expression forSN(t)
so obtained was valid for disordered media too@6#. There-
fore, it seems reasonable to expect that Eq.~4.1! and the
other order-statistic results found in this paper could also
valid for any self-similar substrate.
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